The Stock Market, the Theory of Rational Expectations and the Efficient Market Hypothesis

Money and Banking

Cesar E. Tamayo
Department of Economics, Rutgers University

July 25, 2011
Revisiting risk premium

Program

ReCap

The stock market: recent trends
The valuation of stocks
How the market sets stock prices
The theory of rational expectations
The efficient market hypothesis
Suppose that when you turned 1y/o your wealthy uncle gave you a birthday present: a $2,500 investment in the NYSE. How much would you have today?

(a) $1,544
(b) $3,000
(c) $5,567
(d) $9,416

Correct answer: $9,416
Suppose that when you turned 1y/o your wealthy uncle gave you a birthday present: a $2,500 investment in the NYSE. How much would you have today?

(a) $1,544
Suppose that when you turned 1y/o your wealthy uncle gave you a birthday present: a $2,500 investment in the NYSE. How much would you have today?

(a) $1,544
(b) $3,000

Correct answer: $9,416
Suppose that when you turned 1y/o your wealthy uncle gave you a birthday present: a $2,500 investment in the NYSE. How much would you have today?

(a) $1,544
(b) $3,000
(c) $5,567

Correct answer: $9,416
The stock market recent trends

Suppose that when you turned 1y/o your wealthy uncle gave you a birthday present: a $2,500 investment in the NYSE. How much would you have today?

(a) $1,544
(b) $3,000
(c) $5,567
(d) $9,416

Correct answer: $9,416
Suppose that when you turned 1y/o your wealthy uncle gave you a birthday present: a $2,500 investment in the NYSE. How much would you have today?

(a) $1,544
(b) $3,000
(c) $5,567
(d) $9,416

Correct answer: $9,416
The stock market recent trends: S&P 500 1990-2011

Graph showing the S&P 500 index from 1990 to 2011, with key dates marked: 2-Jan-90, 2-Jan-92, 2-Jan-94, 2-Jan-96, 2-Jan-98, 2-Jan-00, 2-Jan-02, 2-Jan-04, 2-Jan-06, 2-Jan-08, 2-Jan-10. The graph highlights significant increases and decreases, with a peak of +225% and a dip of -25%.
The valuation of stocks

- First some terminology

\[PV = CF \left(1 + \frac{i}{n}\right) \]

Where:
- \(PV \) = price of stock today
- \(CF \) = dividends and/or sales price
- \(i \) = return of your investment
- \(n \) = periods you hold the stock
First some terminology

Stockholder. Residual Claimant.
The valuation of stocks

- First some terminology
- Stockholder. Residual Claimant.
- Next, what is the "right" price of a stock? Use our GOF, the PV concept:

\[PV = \frac{CF}{(1 + i)^n} \]
The valuation of stocks

- First some terminology
- Stockholder. Residual Claimant.
- Next, what is the "right" price of a stock? Use our GOF, the PV concept:

$$PV = \frac{CF}{(1+i)^n}$$

- Where:

 - PV = price of stock today
 - CF = dividends and/or sales price
 - i = return of your investment
 - n = periods you hold the stock
Suppose that you buy a stock at price P_0, which pays dividend per period D_1 and at the end of one period you sell it for P_1. Denoting k_e as your expected return from this investment, we can use the PV formula with only slight adjustments in notation:

$$P_0 = \frac{D_1}{1 + k_e} + \frac{P_1}{1 + k_e}$$
Suppose that you buy a stock at price P_0, which pays dividend per period D_1 and at the end of one period you sell it for P_1. Denoting k_e as your expected return from this investment, we can use the PV formula with only slight adjustments in notation:

$$P_0 = \frac{D_1}{1 + k_e} + \frac{P_1}{1 + k_e}$$

Or, we can generalize this framework as:

$$P_0 = \frac{D_1}{1 + k_e} + \frac{D_2}{(1 + k_e)^2} + \ldots + \frac{D_n}{(1 + k_e)^n} + \frac{P_n}{(1 + k_e)^n}$$

If you hold the stock forever the last term will not be there. Of course you cannot hold it forever.
The valuation of stocks: generalized dividend model

Suppose that you buy a stock at price P_0, which pays dividend per period D_1 and at the end of one period you sell it for P_1. Denoting k_e as your expected return from this investment, we can use the PV formula with only slight adjustments in notation:

$$P_0 = \frac{D_1}{1 + k_e} + \frac{P_1}{1 + k_e}$$

Or, we can generalize this framework as:

$$P_0 = \frac{D_1}{1 + k_e} + \frac{D_2}{(1 + k_e)^2} + \ldots + \frac{D_n}{(1 + k_e)^n} + \frac{P_n}{(1 + k_e)^n}$$

If you hold the stock forever the last term will not be there. Of course you cannot hold it forever forever. But if the selling period is far enough in the future, we know that:

$$\lim_{n \to \infty} \frac{P_1}{(1 + k_e)^n} = 0 \quad \text{w/e} \quad (1 + k_e) > 1$$
So that we can ignore the last term and end up with:

\[P_0 = \sum_{t=0}^{\infty} \frac{D_t}{(1 + k_e)^t} \]

(1)
The valuation of stocks: generalized dividend model

- So that we can ignore the last term and end up with:

\[P_0 = \sum_{t=0}^{\infty} \frac{D_t}{(1 + k_e)^t} \]

(1)

- Now, we know that these quantities mean \((P_0, D_t, k_e, P_t)\) but where do they come from?

\[P_0 = \sum_{t=0}^{\infty} \frac{D_t}{(1 + k_e)^t} \]
The valuation of stocks: generalized dividend model

- So that we can ignore the last term and end up with:

\[P_0 = \sum_{t=0}^{\infty} \frac{D_t}{(1 + k_e)^t} \] \hspace{1cm} (1)

- Now, we know that these quantities mean \((P_0, D_t, k_e, P_t)\) but where do they come from?

- We saw that if the sale takes place far in the future \(P_t\) will not matter.
So that we can ignore the last term and end up with:

\[P_0 = \sum_{t=0}^{\infty} \frac{D_t}{(1 + k_e)^t} \]

(1)

Now, we know that these quantities mean \((P_0, D_t, k_e, P_t)\) but where do they come from?

We saw that if the sale takes place far in the future \(P_t\) will not matter.

\(k_e\) will usually be a measure of the opportunity cost, say, the interest rate payed by bonds plus some premia.
So that we can ignore the last term and end up with:

\[P_0 = \sum_{t=0}^{\infty} \frac{D_t}{(1 + k_e)^t} \]

Now, we know that these quantities mean \((P_0, D_t, k_e, P_t)\) but where do they come from?

- We saw that if the sale takes place far in the future \(P_t\) will not matter.
- \(k_e\) will usually be a measure of the opportunity cost, say, the interest rate payed by bonds plus some premia.
- On the other hand, \(D_t\) can be estimated and for the short term it can be announced by the issuer.
The valuation of stocks: generalized dividend model

- So that we can ignore the last term and end up with:

\[P_0 = \sum_{t=0}^{\infty} \frac{D_t}{(1 + k_e)^t} \]

(1)

- Now, we know that these quantities mean \((P_0, D_t, k_e, P_t)\) but where do they come from?

- We saw that if the sale takes place far in the future \(P_t\) will not matter.

- \(k_e\) will usually be a measure of the opportunity cost, say, the interest rate payed by bonds plus some premia.

- On the other hand, \(D_t\) can be estimated and for the short term it can be announced by the issuer.

- But even if we knew \(D_t\) for all \(t\), this is an infinite sum with no common term (can’t use geometric series). So...
Simplifying assumption: dividends grow at a constant rate, g. So, if D_0 is the most recent dividend paid, equation (1) can be written:

$$P_0 = D_0 \frac{1 + g}{1 + k_e} + D_0 \frac{(1 + g)^2}{(1 + k_e)^2} + \ldots + D_0 \frac{(1 + g)^{\infty}}{(1 + k_e)^{\infty}}$$

And if we assume that $k_e > g$ we can rewrite as:

$$P_0 = D_0 \frac{1 + g}{k_e g}$$

Naturally this valuation model depends crucially upon the two simplifying assumptions.
The valuation of stocks: Gordon growth model

- Simplifying assumption: dividends grow at a constant rate, \(g \).
- So, if \(D_0 \) is the most recent dividend paid, equation (1) can be written:

\[
P_0 = \frac{D_0 \times (1 + g)}{1 + k_e} + \frac{D_0 \times (1 + g)^2}{(1 + k_e)^2} + \ldots + \frac{D_0 \times (1 + g)^\infty}{(1 + k_e)^\infty}
\]
Simplifying assumption: dividends grow at a constant rate, g.

So, if D_0 is the most recent dividend paid, equation (1) can be written:

$$P_0 = \frac{D_0 \times (1 + g)}{1 + k_e} + \frac{D_0 \times (1 + g)^2}{(1 + k_e)^2} + \ldots + \frac{D_0 \times (1 + g)^\infty}{(1 + k_e)^\infty}$$

And if we assume that $k_e > g$ we can rewrite as:

$$P_0 = \frac{D_0 \times (1 + g)}{k_e - g}$$
The valuation of stocks: Gordon growth model

- Simplifying assumption: dividends grow at a constant rate, g.
- So, if D_0 is the most recent dividend paid, equation (1) can be written:

$$P_0 = \frac{D_0 \times (1 + g)}{1 + k_e} + \frac{D_0 \times (1 + g)^2}{(1 + k_e)^2} + \ldots + \frac{D_0 \times (1 + g)^\infty}{(1 + k_e)^\infty}$$

- And if we assume that $k_e > g$ we can rewrite as:

$$P_0 = \frac{D_0 \times (1 + g)}{k_e - g}$$

- Naturally this valuation model depends crucially upon the two simplifying assumptions.
How the market sets stock prices

- An electronic auction.

Note: the price is set by the buyer willing to pay the highest price. BUT: it is not necessarily the highest price this buyer would pay. Therefore, the asset goes to whoever values it more. Thus, valuation is key; information and accurate estimates about D (or g) are critical. Also, k is crucial; investors requiring high k will have lower bids (they may dislike risk more than others).
How the market sets stock prices

- An electronic auction.
- Potential buyers bid while potential sellers ask in an electronic transactional system.

Note: the price is set by the buyer willing to pay the highest price. BUT: it is not necessarily the highest price this buyer would pay. Therefore, the asset goes to whoever values it more. Thus, valuation is key; information and accurate estimates about D (or g) are critical. Also, k is crucial; investors requiring high k will have lower bids (they may dislike risk more than others).
How the market sets stock prices

- An electronic auction.
- Potential buyers bid while potential sellers ask in an electronic transactional system.
- Note: the price is set by the buyer willing to pay the highest price.
How the market sets stock prices

- An electronic auction.
- Potential buyers bid while potential sellers ask in an electronic transactional system.
- Note: the price is set by the buyer willing to pay the highest price.
- BUT: it is not necessarily the highest price this buyer would pay.

 valuation is key; information and accurate estimates about D (or g) are critical.
Also, k is crucial; investors requiring high k will have lower bids (they may dislike risk more than others).
An electronic auction.

Potential buyers bid while potential sellers ask in an electronic transactional system.

Note: the price is set by the buyer willing to pay the highest price. BUT: it is not necessarily the highest price this buyer would pay. Therefore, the asset goes to whoever values it more.
How the market sets stock prices

- An electronic auction.
- Potential buyers bid while potential sellers ask in an electronic transactional system.
- Note: the price is set by the buyer willing to pay the highest price.
- BUT: it is not necessarily the highest price this buyer would pay.
- Therefore, the asset goes to whoever values it more.
- Thus, valuation is key; information and accurate estimates about D_t (or g) are critical.
How the market sets stock prices

- An electronic auction.
- Potential buyers bid while potential sellers ask in an electronic transactional system.
- Note: the price is set by the buyer willing to pay the highest price.
- BUT: it is not necessarily the highest price this buyer would pay.
- Therefore, the asset goes to whoever values it more.
- Thus, valuation is key; information and accurate estimates about D_t (or g) are critical.
- Also, k_e is crucial; investors requiring high k_e will have lower bids (they may dislike risk more than others).
Suppose that the Fed were to increase the money supply or reduce interest rates (recall our analysis of the money market).

So that if you currently hold stocks, you are very happy!

So now you’re even happier!

Naturally this last effect is subject to the caveats we discussed before (recall Keynes vs Friedman).
How the market sets stock prices: monetary policy and stocks

Suppose that the Fed were to increase the money supply or reduce interest rates (recall our analysis of the money market).

First:

\[\uparrow M \Rightarrow \downarrow i \Rightarrow \downarrow k_e \Rightarrow \uparrow P_0 \]
Suppose that the Fed were to increase the money supply or reduce interest rates (recall our analysis of the money market).

First:

\[\uparrow M \Rightarrow \downarrow i \Rightarrow \downarrow k_e \Rightarrow \uparrow P_0 \]

So that if you currently hold stocks, you are very happy!
Suppose that the Fed were to increase the money supply or reduce interest rates (recall our analysis of the money market).

First:

\[\uparrow M \Rightarrow \downarrow i \Rightarrow \downarrow k_e \Rightarrow \uparrow P_0 \]

So that if you currently hold stocks, you are very happy!

Second:

\[\uparrow M \Rightarrow \downarrow i \Rightarrow \uparrow Y \Rightarrow \uparrow g \Rightarrow \uparrow P_0 \]
Suppose that the Fed were to increase the money supply or reduce interest rates (recall our analysis of the money market).

First:

\[\uparrow M \Rightarrow \downarrow i \Rightarrow \downarrow k_e \Rightarrow \uparrow P_0 \]

So that if you currently hold stocks, you are very happy!

Second:

\[\uparrow M \Rightarrow \downarrow i \Rightarrow \uparrow Y \Rightarrow \uparrow g \Rightarrow \uparrow P_0 \]

So now you’re even happier!
How the market sets stock prices: monetary policy and stocks

- Suppose that the Fed were to increase the money supply or reduce interest rates (recall our analysis of the money market).
- First:
 \[
 \uparrow M \Rightarrow \downarrow i \Rightarrow \downarrow k_e \Rightarrow \uparrow P_0
 \]
- So that if you currently hold stocks, you are very happy!
- Second:
 \[
 \uparrow M \Rightarrow \downarrow i \Rightarrow \uparrow Y \Rightarrow \uparrow g \Rightarrow \uparrow P_0
 \]
- So now you’re even happier!
- Naturally this last effect is subject to the caveats we discussed before (recall Keynes vs Friedman).
Because we don’t know D_t, k_e or g, what we expect of them in the future becomes critical.
Because we don’t know D_t, k_e or g, what we expect of them in the future becomes critical.

Adaptive expectations: future values of a certain variable are expected to be some average of its past values.
The role of expectations; rational vs adaptive expectations

- Because we don’t know D_t, k_e or g, what we expect of them in the future becomes critical.

- Adaptive expectations: future values of a certain variable are expected to be some average of its past values.

- Technical appendix:

$$x_t^e = (1 - \rho) \sum_{j=0}^{\infty} \rho^j x_{t-j}$$

Note that because of the long history dependence, changes in the variable’s value only affect expectations marginally.
Because we don’t know D_t, k_e or g, what we expect of them in the future becomes critical.

Adaptive expectations: future values of a certain variable are expected to be some average of its past values.

Technical appendix:

$$x_t^e = (1 - \rho) \sum_{j=0}^{\infty} \rho^j x_{t-j}$$

Note that because of the long history dependence, changes in the variable’s value only affect expectations marginally.
The role of expectations; rational vs adaptive expectations

- Rational expectations: expectations will be identical to optimal forecasts using all available information:
 \[X^e = X^{of} \]
The role of expectations; rational vs adaptive expectations

- Rational expectations: expectations will be identical to optimal forecasts using all available information:
 \[X^e = X^{of} \]

- Technical appendix: if \(X \) is the a random variable of interest and \(X^e = E[X] \) is the mathematical expectation of \(X \), the theory RE implies that the forecast error of expectations will, on average, be zero:
 \[
 \frac{1}{T} \sum_{t=0}^{T} (E_t[X_{t+1}] - X_{t+1}) = 0
 \]
 and cannot be predicted in advance.

C.E. Tamayo ()
Econ - 301
July 25, 2011 15 / 20
Rational expectations: expectations will be identical to optimal forecasts using all available information:

\[X^e = X^{of} \]

Technical appendix: if \(X \) is the a random variable of interest and \(X^e = E[X] \) is the mathematical expectation of \(X \), the theory RE implies that the forecast error of expectations will, on average, be zero:

\[
\frac{1}{T} \sum_{t=0}^{T} (E_t[X_{t+1}] - X_{t+1}) = 0
\]

and cannot be predicted in advance.

Even though a rational expectation equals the optimal forecast using all available information, a prediction based on it may not always be perfectly accurate.
The role of expectations; rational vs adaptive expectations

- **Rational expectations**: expectations will be identical to optimal forecasts using all available information:
 \[X^e = X^{of} \]

- **Technical appendix**: if \(X \) is the a random variable of interest and \(X^e = E[X] \) is the mathematical expectation of \(X \), the theory RE implies that the forecast error of expectations will, on average, be zero:
 \[
 \frac{1}{T} \sum_{t=0}^{T} (E_t [X_{t+1}] - X_{t+1}) = 0
 \]
 and cannot be predicted in advance.

- **Even though** a rational expectation equals the optimal forecast using all available information, a prediction based on it may not always be perfectly accurate:
 - It takes too much effort to make the expectation the best guess possible
The role of expectations; rational vs adaptive expectations

- **Rational expectations**: expectations will be identical to optimal forecasts using all available information:
 \[
 X^e = X^{of}
 \]

- **Technical appendix**: if \(X \) is the a random variable of interest and \(X^e = E[X] \) is the mathematical expectation of \(X \), the theory RE implies that the forecast error of expectations will, on average, be zero:
 \[
 \frac{1}{T} \sum_{t=0}^{T} (E_t [X_{t+1}] - X_{t+1}) = 0
 \]
 and cannot be predicted in advance.

- Even though a rational expectation equals the optimal forecast using all available information, a prediction based on it may not always be perfectly accurate:
 - It takes too much effort to make the expectation the best guess possible
 - Best guess will not be accurate because predictor is unaware of some relevant information
The role of expectations; rational vs adaptive expectations

- Rational expectations: expectations will be identical to optimal forecasts using all available information:
 \[X^e = X^{of} \]

- Technical appendix: if \(X \) is the a random variable of interest and \(X^e = E[X] \) is the mathematical expectation of \(X \), the theory RE implies that the forecast error of expectations will, on average, be zero:
 \[
 \frac{1}{T} \sum_{t=0}^{T} (E_t [X_{t+1}] - X_{t+1}) = 0
 \]
 and cannot be predicted in advance.

- Even though a rational expectation equals the optimal forecast using all available information, a prediction based on it may not always be perfectly accurate:
 - It takes too much effort to make the expectation the best guess possible
 - Best guess will not be accurate because predictor is unaware of some relevant information
The role of expectations; rational vs adaptive expectations

Example

Suppose that you are back in Sep. 2007. You want to know if it is a good idea to buy stocks issued by Lehman Bros. If you were a ’adaptive’ expectations person you would predict something like an annual growth of xx% for the company in the coming years (2008-). However, if you form your expectations rationally, you would consider the additional information available to you; a major shock just hit US financial markets through the default of many 'subprime” mortgages. Not only the financial institutions that lent the money are in trouble, but also those who bought large amounts of 'securitized’ debt obligations (CDOs, MDOs) including your target company, Lehman Bros. Thus, if you behave ’rationally’, your future expectations about g will be dramatically different than if you behave ’adaptively’
Rational expectations are used in all areas of decision making.
Rational expectations and the efficient market hypothesis

- Rational expectations are used in all areas of decision making.
- When applied to financial markets, the result is the efficient markets hypothesis:

\[\text{Theorem (efficient markets hypothesis)} \]

In an efficient market, a security's current price reflects all currently available information.

Recall our formula for obtaining the rate of return from \(t \) to \(t+1 \):

\[R = \frac{CF_t}{P_t} \sqrt[2]{\frac{P_{t+1}}{P_t}} \]

Where:
- \(CF_t \) is the cash payment \(t \)th.
- \(P_t \) is the price at time \(t \).
- \(P_{t+1} \) is the price at time \(t+1 \).

Suppose that \(CF_t \) and \(P_{t+1} \) are uncertain, then applying the rational expectations theory:

\[R_e = \frac{\text{CF of } t}{\text{of } t + \text{of } P_{t+1}} \]

C.E. Tamayo () Econ - 301 July 25, 2011 17 / 20
Rational expectations and the efficient market hypothesis

- Rational expectations are used in all areas of decision making.
- When applied to financial markets, the result is the efficient markets hypothesis:

Theorem (efficient markets hypothesis)

In an efficient market, a security’s current price reflects all currently available information
Rational expectations and the efficient market hypothesis

- Rational expectations are used in all areas of decision making.
- When applied to financial markets, the result is the efficient markets hypothesis:

Theorem (efficient markets hypothesis)

In an efficient market, a security’s current price reflects all currently available information

- Recall our formula for obtaining the rate of return from t to $t+1$:

$$ R = \frac{CF}{P_t} + \frac{P_{t+1} - P_t}{P_t} $$

- **Cash pymnts**
- **Capital gain**
Rational expectations and the efficient market hypothesis

- Rational expectations are used in all areas of decision making.
- When applied to financial markets, the result is the efficient markets hypothesis:

Theorem (efficient markets hypothesis)

In an efficient market, a security’s current price reflects all currently available information

- Recall our formula for obtaining the rate of return from t to $t + 1$:

\[
R = \frac{CF}{P_t} + \frac{P_{t+1} - P_t}{P_t}
\]

 - cash pymnts
 - capital gain

- Suppose that CF and P_{t+1} are uncertain, then applying the rational expectations theory:

\[
R^e = R^{of} = \frac{CF^{of}}{P_t} + \frac{P^{of}_{t+1} - P_t}{P_t}
\]
But can we observe R^e? This is based on the expectations of each market participant...

Does the EMH make sense? Consider arbitrage: unexploited profit opportunities. Suppose that for some asset $R^e < R^{of}$, so that you (and probably everyone else) predict that in the future that investment on such asset will yield a higher return than the current equilibrium return. Then you (and probably many more) will buy such asset driving up its price so, the expected return on this asset falls until again $R^e = R^{of}$.

Note: if $R^e > R^{of}$ somebody must be ill-informed.
Rational expectations and the efficient market hypothesis

- But can we observe R^e? This is based on the expectations of each market participant...
- But recall our analysis of the bonds and money markets; interest rates exhibit a tendency to converge towards equilibrium: R^E.
Rational expectations and the efficient market hypothesis

- But can we observe R^e? This is based on the expectations of each market participant...
- But recall our analysis of the bonds and money markets; interest rates exhibit a tendency to converge towards equilibrium: R^E.
- Thus, we can use:
 \[R^e = R^E \Rightarrow R^E = R^{of} \]
But can we observe R^e? This is based on the expectations of each market participant...

But recall our analysis of the bonds and money markets; interest rates exhibit a tendency to converge towards equilibrium: R^E.

Thus, we can use:

$$R^e = R^E \Rightarrow R^E = R^{of}$$

Does the EMH make sense?
Rational expectations and the efficient market hypothesis

- But can we observe R^e? This is based on the expectations of each market participant...
- But recall our analysis of the bonds and money markets; interest rates exhibit a tendency to converge towards equilibrium: R^E.
- Thus, we can use:
 \[R^e = R^E \implies R^E = R^{of} \]
- Does the EMH make sense?
- Consider arbitrage: unexploited profit opportunities. Suppose that for some asset $R^E < R^{of}$, so that you (and probably everyone else) predict that in the future that investment on such asset will yield a higher return than the current equilibrium return.
Rational expectations and the efficient market hypothesis

- But can we observe R^e? This is based on the expectations of each market participant...
- But recall our analysis of the bonds and money markets; interest rates exhibit a tendency to converge towards equilibrium: R^E.
- Thus, we can use:

$$R^e = R^E \Rightarrow R^E = R^{of}$$

- Does the EMH make sense?
- Consider arbitrage: unexploited profit opportunities. Suppose that for some asset $R^E < R^{of}$, so that you (and probably everyone else) predict that in the future that investment on such asset will yield a higher return than the current equilibrium return.
- Then you (and probably many more) will buy such asset driving up its price so, the expected return on this asset falls until again $R^E = R^{of}$.

Rational expectations and the efficient market hypothesis

- But can we observe R^e? This is based on the expectations of each market participant...
- But recall our analysis of the bonds and money markets; interest rates exhibit a tendency to converge towards equilibrium: R^E.
- Thus, we can use:
 \[R^e = R^E \Rightarrow R^E = R^{of} \]
- Does the EMH make sense?
- Consider arbitrage: unexploited profit opportunities. Suppose that for some asset $R^E < R^{of}$, so that you (and probably everyone else) predict that in the future that investment on such asset will yield a higher return than the current equilibrium return.
- Then you (and probably many more) will buy such asset driving up its price so, the expected return on this asset falls until again $R^E = R^{of}$.
- Note: if $R^E \neq R^{of}$ somebody must be ill-informed
An important implication of the efficient market hypothesis is that prices will respond to announcements only in as much as the information being announced is new and unexpected.
An important implication of the efficient market hypothesis is that prices will respond to announcements only in as much as the information being announced is new and unexpected.

Strong version of EMH: prices are not only "correct" but they also reflect "market fundamentals"
An important implication of the efficient market hypothesis is that prices will respond to announcements only in as much as the information being announced is new and unexpected.

Strong version of EMH: prices are not only "correct" but they also reflect "market fundamentals"

Market fundamentals: items that have a direct impact on future income streams of the underlying security.
An important implication of the efficient market hypothesis is that prices will respond to announcements only in as much as the information being announced is new and unexpected.

Strong version of EMH: prices are not only "correct" but they also reflect "market fundamentals".

Market fundamentals: items that have a direct impact on future income streams of the underlying security.

Did the Nasdaq free fall from 5,000 points in 2000 to 1,500 points in 2001 reflect a dramatic change in market fundamentals?
Beyond the EMH: bubbles and behavioral finance

- It's hard to explain some episodes of swings in stock prices only by changes in "fundamentals".
Beyond the EMH: bubbles and behavioral finance

- It’s hard to explain some episodes of swings in stock prices only by changes in "fundamentals".
- Variables other than fundamentals may influence stock prices: psychological issues and the institutional structure of the marketplace.
Beyond the EMH: bubbles and behavioral finance

- It’s hard to explain some episodes of swings in stock prices only by changes in "fundamentals".
- Variables other than fundamentals may influence stock prices: psychological issues and the institutional structure of the marketplace.
- Rational bubbles.
Beyond the EMH: bubbles and behavioral finance

- It’s hard to explain some episodes of swings in stock prices only by changes in "fundamentals".
- Variables other than fundamentals may influence stock prices: psychological issues and the institutional structure of the marketplace.
- Rational bubbles.
- Irrational exhuberance: overconfidence and social contagion.