Semiparametric Bayesian Partially Identified Models based on Support Function

Yuan Liao \(^1\) & Anna Simoni\(^2\)

\(^1\)University of Maryland

\(^2\)CNRS and THEMA

ESEM, 26-30 August, 2013 - Gothenburg
We consider a finite dimensional structural parameter $\theta \in \Theta$. In many econometric/statistical models this parameter is not point-identified but only partially identified to belong to a non-singleton set (identified set).

Partial identification arises when (i) limitation of what variables can be observed and/or (ii) the plausible constraints coming from economic theory only allow to place the parameter θ into a proper subset of the parameter space Θ.

The identified set is the set of values for θ that are compatible with a particular distribution of observables and economic theory.

The identified set is characterized by ϕ: $\Theta(\phi) \subset \Theta$, where ϕ is a parameter characterizing the distribution of the data, e.g. a vector of moments.
Example 1: Interval censored data

- \((Y, Y_1, Y_2)\) = three dimensional random vector such that

 \[Y \in [Y_1, Y_2] \quad w.p. \ 1 \]

 \(Y = \) unobservable, \(Y_1, Y_2 = \) observable.

- \(\theta = \mathbf{E}(Y);\)

- \(\phi = (\phi_1, \phi_2)' \) with \(\phi_1 = \mathbf{E}(Y_1)\) and \(\phi_2 = \mathbf{E}(Y_2).\)

- Identified set: \(\Theta(\phi) = [\phi_1, \phi_2].\)
Partially Identified models: examples I

- Interval data: see e.g. Manski and Tamer (2002)

- Game-theoretic models with multiple equilibria: entry games (Bresnan and Reiss 1991, Ciliberto and Tamer, . . .), auctions (Ciliberto and Tamer 2009, . . .)

- Sign restrictions in VAR models: Canova and De Nicolò (2002), . . .

- Finance: Hansen-Jagannathan bound, see e.g. Chernozhukov, Kocatulum and Menzel (2012)
Aim of the paper I

- Inference for θ and $\Theta(\phi)$:
 1. estimating the boundaries of $\Theta(\phi)$;
 2. reporting a confidence set for $\Theta(\phi)$. Distinction btw confidence sets for θ and confidence sets for $\Theta(\phi)$.

- A partial list of recent contributions includes:

Aim of the paper II

- **Limit of frequentist approaches:** do not naturally tell us anything inside the identified region. So, perfect knowledge of the distribution of the data (i.e. \(n \to \infty \)) will give the (true) identified region.

- Bayesian analysis provides (as \(n \to \infty \)) a posterior that converges towards a non-degenerate distribution and gives relative weighting of points in the identification region. In a *decision problem setting* we can always take a decision.

- **Computational advantage** of Bayesian:
 - Bayesian credible sets (BCS) are often easy to construct;
 - BCS are easy to project to a low-dimensional space (if we are interested in just one element of \(\theta \)).

- **Finite sample advantages:** when \(\phi \) (which characterizes the support \(\Theta(\phi) \) of \(\theta \)) is integrated out with respect to \(p(\phi|Data) \) then the posterior of \(\theta \) is completely revised by the data. Thus, a Bayesian procedure learns about \(\theta \) based on the whole posterior distribution of \(\phi \) (more information in finite samples).
Our contributions:

1. We propose a pure Bayesian procedure without assuming a parametric form of the true likelihood: nonparametric priors on the likelihood, and a prior on (ϕ, θ) (semi-parametric procedure). We use a conditional prior $\pi(\theta|\phi)$ so that we take into account the partial identification. Still, the conditional prior can be very informative inside the identified set.

 This is different from traditional Likelihood based approaches, see Moon & Schorfheide (2012 ECTA), Gustafson (2011), and also different from moment-inequality-based likelihood (LIL) approaches, see Kim (2002 JoE), Liao & Jiang (2010 AoS).

2. We construct a (2-sided) BCS for $\Theta(\phi)$ which has (asymptotically) correct frequentist coverage probability. BCS are constructed based on the support function of $\Theta(\phi)$.

3. We provide a frequentist validation of our procedure:
 - posterior consistency of the posteriors of: $\theta, \Theta(\phi)$ and the support function;
 - Bernstein-von Mises (BvM) theorem for the posterior of the support function.
We extend Moon & Schorfheide (2012)’s analysis for θ to a semi-parametric setup (which is relevant in more general moment inequality models). Thus, the (asymptotic) equivalence between BCS and FCS for θ breaks down in partially-identified models.

Our procedure is still valid even if there is no prior information on θ available: we do not need to have a prior for θ in order to make Bayesian inference on $\Theta(\phi)$.

Projection and subset inference: we show that it is relatively easy for the Bayesian partial identification approach to project onto low-dimensional subspaces for subset inference, and the computation is fast.

Our Bayesian inference is valid uniformly over a class of data generating process. In particular, as the identified set shrinks to a singleton so that point identification is (nearly) achieved, the Bayesian inference for the identified set carries over.

Applications: we focus on the interval censoring, interval regression and missing data problems. We also study an application problem for the financial asset pricing model.
1 Introduction

2 Setup and Prior specification

3 Inference for θ: posterior consistency

4 Inference for $\Theta(\phi)$
 Posterior of $\Theta(\phi)$
 Posterior of the Support Function

5 Bayesian Credible Region
Semiparametric Bayesian setup I

- Observable random variable X for which one has n i.i.d. observations, denoted by $D_n = \{X_i\}_{i=1}^n$. X takes values in $(\mathcal{X}, \mathcal{B}_x, F)$.

- Three parameters: $(\theta, \phi, F) \in \Theta \times \Phi \times \mathcal{F}$ where $F \in \mathcal{F}$ is the probability distribution of X.

- With respect to identification:
 - $(\phi, F) = \text{identified parameter which characterizes the sampling distribution};$
 - $\theta = \text{partially identified parameter which is linked to the sampling distribution through } \phi$.

- The prior is naturally decomposed in a marginal prior for (ϕ, F) and a conditional prior for θ given ϕ such that

 $$\pi(\theta \in \Theta(\phi)|\phi) = 1.$$
Therefore, partial identification is incorporated into the prior:

\[\pi(\theta|\phi) \propto I_{\theta \in \Theta(\phi)} g(\theta). \]

Two possible schemes for the prior on \((\phi, F)\):

- fully nonparametric prior
- semiparametric prior.

This prior induces a prior for the identified set \(\Theta(\phi)\).

We develop 2 inferences:

- Inference for \(\theta\): marginal posterior \(\pi(\theta|D_n)\)
- Inference for \(\Theta(\phi)\): posterior of \(\Theta(\phi)\) or posterior of its support function.

Both these posteriors are justified by good frequentist asymptotic properties.
Nonparametric Prior:

- The parameter ϕ is a measurable function of F: $\phi = \phi(F)$. E.g.:
 $$\phi = \mathbb{E}^F(X) = \int xF(dx).$$

- Nonparametric prior for F and deduce from it the prior for ϕ via $\phi(F)$:
 $$X|F \sim F, \quad F \sim \pi(F), \quad \theta|\phi = \phi(F) \sim \pi(\theta|\phi(F))$$

Semiparametric Prior:

- Reformulate the model and parameterize F in terms of ϕ and η
 $$\mathcal{F} = \{F_{\phi,\eta}; \phi \in \Phi, \eta \in \mathcal{P}\}$$

- We assume: \exists a fixed true value for F, denoted by F_0. Then $\exists! \phi_0 \in \Phi$ and $\eta_0 \in \mathcal{P}$ such that $F_0 = F_{\phi_0,\eta_0}$ (since both ϕ and F are identified).

- Bayesian experiment:
 $$X|\phi, \eta \sim F_{\phi,\eta}, \quad (\phi, \eta) \sim \pi(\phi, \eta) = \pi(\phi) \times \pi(\eta), \quad \theta|\phi, \eta \sim \pi(\theta|\phi).$$
Outline:

1. Introduction

2. Setup and Prior specification

3. Inference for θ: posterior consistency

4. Inference for $\Theta(\phi)$
 Posterior of $\Theta(\phi)$
 Posterior of the Support Function

5. Bayesian Credible Region
Posterior Consistency for Nonparametric prior I

- Conditional posterior of θ, given ϕ:

$$p(\theta|\phi(F), D_n) = \pi(\theta|\phi(F)).$$

Conditionally on ϕ, the Bayesian experiment is completely uninformative about θ: the prior distribution of θ is revised by the data only through the information brought by the identified parameter $\phi(F)$.

- Marginal posterior of θ:

$$p(\theta|D_n) = \int_{\mathcal{F}} p(\theta|\phi(F), D_n)p(F|D_n)dF = \int_{\mathcal{F}} \pi(\theta|\phi(F))p(F|D_n)dF.$$

The shape of $p(\theta|D_n)$ still relies upon the prior distribution of θ even asymptotically. So, the Bernstein-von Mises theorem does not hold.
Posterior Consistency for Nonparametric prior II

- **Posterior consistency**: let \(d(\theta, \Theta(\phi)) = \inf_{x \in \Theta(\phi)} \|\theta - x\| \). Our goal is to show

\[
P(\theta \in \Theta(\phi_0)^\varepsilon | D_n) \to^p 1 \quad \text{and} \quad P(\theta \in \Theta(\phi_0)^{-\varepsilon} | D_n) \to^p (1 - \tau)
\]

for any \(\varepsilon > 0 \) and some \(\tau > 0 \) where

\[
\Theta(\phi)^\varepsilon = \{ \theta : d(\theta, \Theta(\phi)) \leq \varepsilon \} \quad \text{and} \quad \Theta(\phi)^{-\varepsilon} = \{ \theta : d(\theta, \Theta \setminus \Theta(\phi)) \geq \varepsilon \}
\]

are the \(\varepsilon \)-envelope and \(\varepsilon \)-contraction of \(\Theta(\phi) \).
• **Assumption 1:** At least one of the following holds:

 (i). The measurable function $\phi: \mathcal{F} \to \Phi$ is continuous and $\pi(F)$ is such that:
 $$\int_{\mathcal{F}} m(F)p(F|D_n)dF \to^p \int_{\mathcal{F}} m(F)\delta_{F_0}(dF)$$

 for any bounded and continuous function $m(\cdot)$ on \mathcal{F};

 (ii). the prior $\pi(\phi)$ is such that:
 $$\int_{\Phi} m(\phi)p(\phi|D_n)d\phi \to^p \int_{\Phi} m(\phi)\delta_{\phi_0}(d\phi)$$

 for any bounded and continuous function $m(\cdot)$ on Φ.

• **Assumption 2:** For any $\epsilon > 0$ there are measurable sets $A_1, A_2 \subset \Phi$ such that 0 < $\pi(\phi \in A_i) \leq 1$, $i = 1, 2$ and

 (i) for all $\phi \in A_1$, $\Theta(\phi_0)^\epsilon \cap \Theta(\phi) \neq \emptyset$; for all $\phi \notin A_1$, $\Theta(\phi_0)^\epsilon \cap \Theta(\phi) = \emptyset$,

 (ii) for all $\phi \in A_2$, $\Theta(\phi_0)^{-\epsilon} \cap \Theta(\phi) \neq \emptyset$; for all $\phi \notin A_2$, $\Theta(\phi_0)^{-\epsilon} \cap \Theta(\phi) = \emptyset$.

• **Assumption 3:** For any $\epsilon > 0$, and $\phi \in \Phi$, $\pi(\theta \in \Theta(\phi)^{-\epsilon}|\phi) < 1$.
Posterior Consistency for Nonparametric prior IV

Theorem 1:

Let \(\pi(\theta|\phi) \) be a regular conditional distribution. Under assumptions 1-3, for any \(\epsilon > 0 \), there is \(\tau \in (0, 1] \) such that

\[
P(\theta \in \Theta(\phi_0)^\epsilon|D_n) \rightarrow^p 1 \quad \text{and} \quad P(\theta \in \Theta(\phi_0)^-\epsilon|D_n) \rightarrow^p (1 - \tau).
\]

▶ Proof
1 Introduction

2 Setup and Prior specification

3 Inference for θ: posterior consistency

4 Inference for $\Theta(\phi)$
 - Posterior of $\Theta(\phi)$
 - Posterior of the Support Function

5 Bayesian Credible Region
Moment inequality models:

Let us consider a more specific partially identified model which assumes that \(\theta \) satisfies:

\[
\Psi(\theta, \phi) \leq 0, \quad \Psi(\theta, \phi) = \begin{pmatrix}
\Psi_1(\theta, \phi) \\
\vdots \\
\Psi_k(\theta, \phi)
\end{pmatrix},
\]

(1)

where \(\Psi : \Theta \times \Phi \rightarrow \mathbb{R}^k \) is a known function of \((\theta, \phi)\). The identified set is given by

\[
\Theta(\phi) = \{ \theta \in \Theta : \Psi(\theta, \phi) \leq 0 \}.
\]

Semiparametric prior setup: posterior concentration rate I

- Consistency of the posterior of $\Theta(\phi)$: we aim at deriving the rate r_n such that

$$P \left(d_H(\Theta(\phi), \Theta(\phi_0)) < Cr_n | D_n \right) \rightarrow^p 1$$

for some $C > 0$, where d_H denotes the Hausdorff distance. The Hausdorff distance between two sets A and B is defined as

$$d_H(A, B) = \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right\}$$

$$= \max \left\{ \sup_{a \in A} \inf_{b \in B} \|a - b\|, \sup_{b \in B} \inf_{a \in A} \|b - a\| \right\}.$$
Assumption PC: The marginal posterior of ϕ is such that

$$P(\|\phi - \phi_0\| \leq Cn^{-1/2} (\log n)^{1/2} | D_n) \rightarrow^p 1$$

see Rivoirard & Rousseau (2012 - nonparametric) or Bickel & Kleijn (2012 - semiparametric).
Theorem 2:

Assume that:

H1. \(\Theta \times \Phi \) is compact;

H2. Lipschitz equi-continuity on \(\Phi \): for some \(K > 0 \), \(\forall \phi_1, \phi_2 \in \Phi \):

\[
\sup_{\theta \in \Theta} \| \Psi(\theta, \phi_1) - \Psi(\theta, \phi_2) \| \leq K \| \phi_1 - \phi_2 \|;
\]

H3. \(\exists \) a closed neighborhood \(U(\phi_0) \), such that for any \(a_n = O(1) \), and any \(\phi \in U(\phi_0) \), \(\exists C_\phi > 0 \) that might depend on \(\phi \) such that

\[
\inf_{\theta : d(\theta, \Theta(\phi)) \geq C_\phi a_n} \max_{i \leq k} \Psi_i(\theta, \phi) > a_n.
\]

Then, under assumption PC:

\[
P \left(d_H(\Theta(\phi), \Theta(\phi_0)) > Cn^{-1/2}(\log n)^{1/2} | D_n \right) \rightarrow_p 0
\]

for some \(C > 0 \).
Outline:

1. Introduction
2. Setup and Prior specification
3. Inference for θ: posterior consistency
4. Inference for $\Theta(\phi)$
 - Posterior of $\Theta(\phi)$
 - Posterior of the Support Function
5. Bayesian Credible Region
Bayesian Inference of Support Function I

- Aim: to develop inference for $\Theta(\phi)$ through its support function $S_\phi(p)$. We assume $\Theta(\phi)$ is a convex set for each ϕ.

Definition:

Let $S^d \subset \mathbb{R}^d$, $d = \text{dim}(\theta)$. $\forall \phi \in \Phi$ the support function for $\Theta(\phi)$ is a function $S_\phi(\cdot) : S^d \rightarrow \mathbb{R}$ such that

$$S_\phi(p) = \sup_{\theta \in \Theta(\phi)} \theta^T p.$$

- We consider the *moment inequality model* previously described:

$$\Theta(\phi) := \{\theta \in \Theta; \Psi(\theta, \phi) \leq 0\}.$$

- **Assumption S1.** $\Psi(\theta, \phi)$ is continuous in (θ, ϕ) and convex in $\theta \ \forall \phi \in \Phi$.

Bayesian Inference of Support Function II

Study of frequentist asymptotic properties: we admit the existence of true values of the parameters: ϕ_0, η_0. We show: posterior consistency and BvM theorem.

- We first linearize $S_\phi(p)$ in ϕ and then use it to show consistency and asymptotic Normality of the posterior of $S_\phi(p)$.

- The support function $S_\phi(\cdot) : \mathbb{S}^d \rightarrow \mathbb{R}$ of the identified set $\Theta(\phi)$ is the optimal value of an ordinary convex program:

$$S_\phi(p) = \sup_{\theta \in \Theta} \{ \langle p, \theta \rangle ; \Psi(\theta, \phi) \leq 0 \}$$

and it also admits a Lagrangian representation (see Rockafellar):

$$S_\phi(p) = \sup_{\theta \in \Theta} \{ \langle p, \theta \rangle - \lambda(p, \phi)^T \Psi(\theta, \phi) \}, \quad (3)$$

where $\lambda(p, \phi) : \mathbb{S}^d \times \mathbb{R}^{d\phi} \rightarrow \mathbb{R}^k$ are the Lagrange multipliers.
Let $B(\phi_0, \delta) = \{ \phi \in \Phi; \| \phi - \phi_0 \| \leq \delta \}$.

Assumption S2. There is $\delta > 0$ such that $\forall \phi \in B(\phi_0, \delta)$, we have:

(i) $\nabla_\phi \Psi(\theta, \phi) \exists$ and is continuous in $(\theta, \phi) \in \Theta \times B(\phi_0, \delta)$;

(ii) the set $\Theta(\phi)$ is non empty;

(iii) $\exists \theta \in \Theta$ such that $\Psi(\theta, \phi) < 0$;

(iv) $\Theta(\phi) \subset \text{int}(\Theta)$;

(v) for every $i \in \text{Act}(\theta, \phi_0)$, with $\theta \in \Theta(\phi_0)$, $\nabla_\theta \Psi_i(\theta, \phi) \exists$ and is continuous in $(\theta, \phi) \in \Theta \times B(\phi_0, \delta)$.

Assumption S3. The gradient vectors $\{\nabla_\theta \Psi_i(\theta, \phi)\}_{i \in \text{Act}(\theta, \phi_0)}$, are linearly independent $\forall \theta \in \Theta(\phi_0)$.
Bayesian Inference of Support Function IV

• Let \(\Xi(p, \phi) = \arg \max_{\theta \in \Theta} \{ <p, \theta>; \Psi(\theta, \phi) \leq 0 \} \) be the support set of \(\Theta(\phi) \).

Assumption S4. At least one of the following holds:

\begin{enumerate}
\item for the ball \(B(\phi_0, \delta) \) in S2, \(\forall (p, \phi) \in S^d \times B(\phi_0, \delta), \Xi(p, \phi) \) is a singleton;
\item there are linear constraints in \(\Psi(\theta, \phi_0) \) which are separable in \(\theta \), that is, \(\Psi_L(\theta, \phi_0) = A_1 \theta + A_2(\phi_0) \) for some function \(A_2 : \Phi \to \mathbb{R}^{k_L} \) (not necessarily linear) and some \((k_L \times d) \)-matrix \(A_1 \).
\end{enumerate}
Theorem 3:

Let $\theta_*: \mathbb{S}^d \to \Theta$ be a Borel measurable mapping satisfying $\theta_*(p) \in \Xi(p, \phi_0)$ for all $p \in \mathbb{S}^d$. Assume that:

- ϕ_0 is in the interior of Φ;
- Θ is convex and compact;

If also assumptions S1 - S4 hold with $\delta = r_n = o(1)$, then $\exists N \in \mathbb{N}$ such that for every $n \geq N$ there exist: (i) a real function $f(\phi_1, \phi_2)$ defined $\forall \phi_1, \phi_2 \in B(\phi_0, r_n)$ and (ii) a function $\lambda(p, \phi_0) : \mathbb{S}^d \times \mathbb{R}^{d\phi} \to \mathbb{R}^k_+$ such that $\forall \phi_1, \phi_2 \in B(\phi_0, r_n)$:

$$\sup_{p \in \mathbb{S}^d} \left| (S\phi_1(p) - S\phi_2(p)) - \lambda(p, \phi_0)^T \nabla_{\phi} \Psi(\theta_*(p), \phi_0)[\phi_1 - \phi_2] \right| = f(\phi_1, \phi_2)$$

and $\frac{f(\phi_1, \phi_2)}{\|\phi_1 - \phi_2\|} \to 0$ uniformly in $\phi_1, \phi_2 \in B(\phi_0, r_n)$ as $n \to \infty$.

▶ Proof
Bayesian Inference of Support Function VI

Theorem 4: Posterior consistency

Under assumption 2 and the assumptions of theorem 3 with $r_n = \sqrt{(\log n)/n}$:

$$ P \left(\sup_{p \in S^d} |S_\phi(p) - S_{\phi_0}(p)| < C_S (\log n)^{1/2} n^{-1/2} \left| D_n \right| \right) \to^p 1 $$

for some constant $C_S > 0$.

- We now state a Bernstein-von Mises (BvM) theorem for $S_\phi(p)$.
- **Assumption S5.** Let $P \sqrt{n}(\phi - \phi_0)|D_n$ denote the posterior distribution of $\sqrt{n}(\phi - \phi_0)$ and $\| \cdot \|_{TV}$ denote the total variation distance. We assume

$$ \| P \sqrt{n}(\phi - \phi_0)|D_n - \mathcal{N}_{d_\phi}(\Delta_{n,\phi_0}, I_{\phi_0}^{-1}) \|_{TV} \to^p 0 $$

where $\Delta_{n,\phi_0} := n^{-1/2} \sum_{i=1}^n I_{\phi_0}^{-1} \hat{l}_{\phi_0}(X_i), \hat{l}_{\phi_0}$ is the semiparametric efficient score function of the model and I_{ϕ_0} denotes the semiparametric efficient information matrix. See e.g. Bickel & Kleijn (2012), Rivoirard & Rousseau (2012).
Theorem 5: (BvM)

Under assumptions S5 and S6 and the assumptions of Theorem 3 with $r_n = \sqrt{(\log n)/n}$: $\forall p \in S^d$

$$\left\| P \sqrt{n} (s_\phi(p) - s_{\phi_0}(p)) \right\|_{D_n} - \mathcal{N}(\tilde{\Delta}_{n,\phi_0}, \tilde{I}_{\phi_0}^{-1}) \xrightarrow{TV} p 0$$

where $\tilde{\Delta}_{n,\phi_0} = \lambda(p, \phi_0)^T \nabla_\phi \Psi(\theta^*(p), \phi_0) \Delta_{n,\phi_0}$ and

$$\tilde{I}_{\phi_0}^{-1} = \lambda(p, \phi_0)^T \nabla_\phi \Psi(\theta^*(p), \phi_0) I_{\phi_0}^{-1} \nabla_\phi \Psi(\theta^*(p), \phi_0)^T \lambda(p, \phi_0).$$

- **Assumption S6.** For some $K_1, K_2, K_3 > 0$ and $\forall \phi_1, \phi_2 \in B(\phi_0, r_n)$:
 1. $\sup_{p \in S^d} ||\lambda(p, \phi_1) - \lambda(p, \phi_2)|| \leq K_1 ||\phi_1 - \phi_2||$;
 2. $\sup_{\theta \in \Theta} ||\nabla_\phi \Psi(\theta, \phi_1) - \nabla_\phi \Psi(\theta, \phi_2)|| \leq K_2 ||\phi_1 - \phi_2||$;
 3. $||\nabla_\phi \Psi(\theta_1, \phi_0) - \nabla_\phi \Psi(\theta_2, \phi_0)|| \leq K_3 ||\theta_1 - \theta_2||$, for every $\theta_1, \theta_2 \in \Theta$;
 4. If $\Xi(p, \phi_0)$ is a singleton $\forall p \in W$ for some compact subset $W \subseteq S^d$ then there exists a $\varepsilon_n = \mathcal{O}(r_n)$ such that $\Xi(p, \phi_1) \subseteq \Xi^{\varepsilon_n}(p, \phi_0)$.
The support function \(S_\phi(\cdot) \) is a stochastic process with realizations in \(C(S^d) \). The posterior distribution of \(\sqrt{n}(S_\phi(\cdot) - S_{\phi_0}(\cdot)) \) does not converge to a Gaussian measure on \(C(S^d) \) in the total variation distance. However, a \textit{weak} Bernstein-von Mises theorem holds with respect to the weak topology.

\textbf{Theorem 5: (weak BvM)}

Let \(\mathcal{G} \) be a Gaussian measure on \(C(S^d) \) with mean function \(\bar{\Delta}_{n,\phi_0}(\cdot) = \lambda(\cdot, \phi_0)^T \nabla_{\phi} \Psi(\theta_\star(\cdot), \phi_0) \Delta_{n,\phi_0} \) and covariance operator with kernel

\[
I_0^{-1}(p_1, p_2) = \lambda(p_1, \phi_0)^T \nabla_{\phi} \Psi(\theta_\star(p_1), \phi_0) I_0^{-1} \nabla_{\phi} \Psi(\theta_\star(p_2), \phi_0)^T \lambda(p_2, \phi_0), \quad \forall p_1, p_2 \in S^d.
\]

Let ‘\(\Rightarrow \)’ denote weak convergence on the class of probability measures on \(C(S^d) \). Then

\[
P_{\sqrt{n}(S_\phi(\cdot) - S_{\phi_0}(\cdot))|D_n} \Rightarrow \mathcal{G}(\cdot). \quad (4)
\]
Outline:

1. Introduction
2. Setup and Prior specification
3. Inference for θ: posterior consistency
4. Inference for $\Theta(\phi)$
 - Posterior of $\Theta(\phi)$
 - Posterior of the Support Function
5. Bayesian Credible Region
• Finite-sample Bayesian credible sets (BCS) is a set $BCS(\tau)$ such that

$$P(\theta \in BCS(\tau) | D_n) = 1 - \tau, \quad \tau \in (0, 1)$$

(5)

• A frequentist confidence set (FCS) for θ_0 satisfies

$$\lim_{n \to \infty} \inf_{\phi \in \Phi} \inf_{\theta \in \Theta(\phi)} P_0(\theta \in FCS(\tau)) \geq 1 - \tau, \quad \tau \in (0, 1).$$

• Assumption 3.

(i) The FCS(τ) is such that, there is $\hat{\phi}$ with $\|\hat{\phi} - \phi_0\| = o_p(1)$ satisfying

$$\Theta(\hat{\phi}) \subset FCS(\tau).$$

(ii) $\sup_{\theta \in \Theta} g(\theta) < \infty$ (where $\pi(\theta|\phi) \propto g(\theta)I_{\theta \in \Theta(\phi)}$).
Theorem 6:

Under Assumptions 2 and 3, for any $\epsilon > 0$, and any $\tau > 0$,

(i) $P(\theta \in \text{FCS}(\tau)|D_n) \to^p 1$;

(ii) $P(\theta \in \text{FCS}(\tau), \theta \notin \text{BCS}(\tau)|D_n) \to^p \tau$.

Proof
Two-sided credible region for $\Theta(\phi)$ I

We now construct the BCS for $\Theta(\phi)$. Aim: constructing two-sided credible sets A_1 and A_2 such that

$$ P(A_1 \subset \Theta(\phi) \subset A_2 | D_n) \geq 1 - \tau \quad w.p. \rightarrow 1. $$

The one-sided set A_2 is easy to obtain. We construct A_1 and A_2 with the help of the support function.

- Why support function can help?

- Let $\hat{\phi}_M$ be the posterior mode. Then for any $c_n \geq 0$:

$$ P\left(\Theta(\hat{\phi}_M)^{-c_n} \subset \Theta(\phi) \subset \Theta(\hat{\phi}_M)^{c_n} | D_n \right) = P\left(\sup_{\|p\|=1} |S_\phi(p) - S_{\hat{\phi}_M}(p)| \leq c_n |D_n \right). $$
Two-sided credible region for $\Theta(\phi)$ II

- Let q_τ be the $1 - \tau$ quantile of the posterior of

 $$J(\phi) = \sqrt{n} \sup_{||p||=1} |S_\phi(p) - S_{\hat{\phi}_M}(p)|$$

 so that

 $$P \left(J(\phi) \leq q_\tau \bigg| D_n \right) = 1 - \tau. \quad (6)$$

Theorem 6:

Suppose for any $\tau \in (0, 1)$, q_τ is defined as in (6), then for every sampling sequence D_n,

$$P(\Theta(\hat{\phi}_M)^{-q_\tau/\sqrt{n}} \subset \Theta(\phi) \subset \Theta(\hat{\phi}_M)^{q_\tau/\sqrt{n}} \big| D_n) = 1 - \tau.$$

- The BCS for θ does not have a correct frequentist coverage when θ is partially identified, since the BCS tends to be a subset of the interior of FCS.
In contrast, our two-sided BCS for the identified set has desired frequentist properties.

Assumption 4. The posterior mode $\hat{\phi}_M$ is such that

$$\sqrt{n}(\hat{\phi}_M - \phi_0) \to^d N(0, I_{\phi_0}^{-1})$$

where I_{ϕ_0} denotes the semi-parametric efficient information matrix.

Theorem 7:

The constructed two-sided Bayesian credible set has asymptotically correct frequentist coverage probability, *i.e.*

$$P_0(\Theta(\hat{\phi}_M)^{-q\tau/\sqrt{n}} \subset \Theta(\phi_0) \subset \Theta(\hat{\phi}_M)^{q\tau/\sqrt{n}}) \geq 1 - \tau + o_p(1).$$
Conclusions

• We have shown how to develop a nonparametric/ semiparametric Bayesian inference on the partially identified parameter.

• We establish frequentist asymptotic properties of our procedure (posterior consistency, BvM and BCS that are (asymptotically) FCS).

• Bayesian credible sets for θ and for $\Theta(\phi_0)$.
Semiparametric Bayesian Partially Identified Models based on Support Function

Yuan Liao 1 & Anna Simoni2

1University of Maryland
2CNRS and THEMA

ESEM, 26-30 August, 2013 - Gothenburg
Example 1: Interval censored data

- $(Y, Y_1, Y_2) = \text{three dimensional random vector such that}$

 $$Y \in [Y_1, Y_2] \quad \text{w.p. 1}$$

 $Y = \text{unobservable, } Y_1, Y_2 = \text{observable}.$

- $\theta = \mathbf{E}(Y)$;

- $\phi = (\phi_1, \phi_2)'$ with $\phi_1 = \mathbf{E}(Y_1)$ and $\phi_2 = \mathbf{E}(Y_2)$.

- Identified set: $\Theta(\phi) = [\phi_1, \phi_2]$.
Example 2: Hansen-Jagannathan bounds for SDF I

- The equilibrium price P_t^i of a financial asset i is equal to

$$P_t^i = \mathbb{E}[M_{t+1}P_{t+1}^i | \mathcal{I}_t], \quad i = 1, \ldots, N$$

where M_{t+1} is the stochastic discount factor (SDF) and \mathcal{I}_t is the information set at time t. In vectorial form:

$$\iota = \mathbb{E}[M_{t+1}R_{t+1} | \mathcal{I}_t]$$

where $R_{t+1} = (r_{1,t+1}, \ldots, r_{N,t+1})'$ with $r_{i,t+1} = P_{t+1}^i/P_t^i$ the gross asset return at time $(t+1)$.

- This model can be reinterpreted as a model of the SDF and may be used to detect the SDFs (i.e. the asset-pricing models) that are compatible with asset return data.
Example 2: Hansen-Jagannathan bounds for SDF II

- Hansen and Jagannathan (1991) show that the minimum variance $\sigma^2_*(\mu)$ achievable by a SDF with mean μ and compatible with the observed (m, Σ) is given by

$$
\sigma^2_*(\mu) = (1 - \mu m)' \Sigma^{-1} (1 - \mu m) =: \phi_1 \mu^2 - 2 \phi_2 \mu + \phi_3
$$

with $\phi_1 = m' \Sigma^{-1} m$, $\phi_2 = m' \Sigma^{-1} \iota$, $\phi_3 = \iota' \Sigma^{-1} \iota$

and $m = \mathbb{E}(R_{t+1})'$, $\Sigma = \mathbb{E}(R_{t+1} - m)(R_{t+1} - m)'$, $\mu = \mathbb{E}(M_{t+1})$ and $\sigma^2 = \text{Var}(M_{t+1})$ (constant over time).

- Identified set:

$$
\Theta(\phi) = \left\{ (\mu, \sigma^2) \in \Theta; \; \sigma^2_*(\mu) - \sigma^2 \leq 0 \right\}
$$

where $\phi = (\phi_1, \phi_2, \phi_3)'$.

- If there is a non-risky asset then μ is fixed and the lower bound is just a point.
Example 1: Interval censored data

- Consider the simpler setting: \(Y_2 = Y_1 + 1 \). Therefore,

\[
EY_1 \leq EY \leq EY_1 + 1,
\]

where only \(Y_1 \) is observable, \(i.e. \ Y_1 \equiv X \sim F \).

- Let \(\phi = EY_1 \) and \(\theta = EY \), then

\[
\Theta(\phi) = [\phi, \phi + 1].
\]

- Dirichlet process prior for \(F \):

\[
\pi(F) = Dir(\nu_0, Q_0),
\]

where \(\nu_0 \in \mathbb{R}^+ \) and \(Q_0 \) is a base probability on \((\mathcal{X}, \mathcal{B}_x) \) such that \(Q_0(x) = 0, \forall x \in (\mathcal{X}, \mathcal{B}_x) \).
• Induced prior on $\phi = \phi(F)$:

$$\pi(\phi \in A) = P \left(\sum_{j=1}^{\infty} \alpha_j \xi_j \in A \right), \quad \forall A \subset \Phi$$

where (see Sethuraman 1994 SS):

- $\xi_j \sim i.i.d. Q_0$, for $j \geq 1$,
- $\alpha_j = v_j \prod_{l=1}^{j} (1 - v_l)$ with $v_l \sim i.i.d. Be(1, \nu_0)$, for $l \geq 1$
- $\{v_l\}_{l \geq 1}$ are independent of $\{\xi_j\}_{j \geq 1}$.
Example 1: Interval censored data. We reformulate the model as

\[
Y_1 = \phi_1 + u, \quad Y_2 = \phi_2 + v \\
u \sim f_1, \quad v \sim f_2, \quad \mathbb{E}^{f_1}(u) = 0, \quad \mathbb{E}^{f_2}(v) = 0 \\
u \parallel v | f_1, f_2 \text{ and disjoint supports.}
\]

- Therefore, \(\eta = (f_1, f_2), X = (Y_1, Y_2) | \phi, \eta \sim F_{\phi, \eta} \) and the likelihood function is

\[
l_n(\phi, \eta) = \prod_{i=1}^{n} f_1(Y_{1i} - \phi_1)f_2(Y_{2i} - \phi_2).
\]

- We put priors on \((\phi, f_1, f_2)\):

\[
\pi(\theta, \phi, \eta) = \pi(\theta | \phi) \times \pi(\phi, \eta) = \pi(\theta | \phi) \times \pi(\phi) \times \pi(\eta). \tag{8}
\]

This is the location model, see Ghosal et al. (1999) and Amewou-Atisso et al. (2003).
Examples of priors on a density function η:

- mixture of Dirichlet process priors;
- Gaussian process priors (Lenk, 1991; Van der Vaart & Van Zanten, 2008);
- Finite mixture of Normals:

$$\eta(x) = \sum_{i=1}^{k} w_i \phi(x - \mu_i; \Sigma_i);$$

such that $\sum_{i=1}^{k} w_i \mu_i = 0$.

- Dirichlet mixture of Normals: if $H \sim Dir(\nu_0, Q_0)$

$$\eta(x) = \int \phi(x - z; \Sigma) dH(z)$$

where ϕ is a standard Normal density. H must be such that $\int zH(z)dz = 0$. We may also place a prior on Σ independent of H.
• Random Bernstein polynomial

\[\eta(x) = \sum_{j=1}^{k} [H(j/k) - H((j - 1)/k)] Be(x; j, k - j + 1). \]

where \(Be(x; a, b) \) is the beta density, \(H \sim Dir(\nu_0, Q_0) \) and \(H \parallel k \) is independent of the prior on \(k \). Then

\[p(\phi|D_n) \propto \int \pi(\phi) \prod_{i=1}^{n} \eta(X_i - \phi) \pi(H) \pi(k) dHdk. \]

• Other examples: wavelet expansions, Polya tree priors (Lavine (1992), etc.)
Example 1: Interval censored data.

- $\Psi(\theta, \phi) = (\theta - \phi_2, \phi_1 - \theta)^T$;
- for any $\phi = (\phi_1, \phi_2)$ and $\tilde{\phi} = (\tilde{\phi}_1, \tilde{\phi}_2)$,

$$||\Psi(\theta, \phi) - \Psi(\theta, \tilde{\phi})|| = ||\phi - \tilde{\phi}||.$$

This verifies assumption H2.

- Moreover, for any θ such that $d(\theta, \Theta(\phi)) \geq a_n$, either

$$\theta \leq \phi_1 - a_n$$

or

$$\theta \geq \phi_2 + a_n.$$

If $\theta \leq \phi_1 - a_n$, then $\Psi_2(\theta, \phi) = \phi_1 - \theta \geq a_n$; if $\theta \geq \phi_2 + a_n$, then

$\Psi_1(\theta, \phi) = \theta - \phi_2 \geq a_n$. This verifies assumption H3.
Proof of Theorem 1 (sketch)

• $\pi(\theta|\phi)$ is a regular conditional distribution $\rightarrow \exists$ a transition probability from (Φ, \mathcal{B}_ϕ) to $(\Theta, \mathcal{B}_\theta)$ that characterizes it $\rightarrow \pi(\Theta_0(\phi_0)^c|\phi)$ is a measurable function of ϕ.

• $\pi(\Theta_0(\phi_0)^c|\phi) = 0$, $\forall \phi \notin A$.

• since $\forall \phi \in \Phi$, $|\pi(\Theta_0(\phi_0)^c|\phi)| \leq 1$, by the the Lusin’s theorem $\exists h_m \in C(\Phi)$, $|h_m| \leq 1$ such that

$$\pi(\Theta_0(\phi_0)^c|\phi) = \lim_{m \to \infty} h_m(\phi), \quad \pi_\phi - a.s.$$

• Now,

$$P(\theta \in \Theta(\phi_0)^c|D_n) = \int_\Phi \pi(\theta \in \Theta(\phi_0)^c|\phi)\pi(\phi|D_n)d\phi$$

$$= \int_\Phi \lim_{m \to \infty} h_m(\phi)\pi(\phi|D_n)d\phi$$

$$= \lim_{m \to \infty} \int_\Phi h_m(\phi)\pi(\phi|D_n)d\phi, \quad \text{by D.C.T.}$$
\[
\lim_{m \to \infty} \int_{\mathcal{F}} h_m(\phi(F)) \pi(F|D_n) dF.
\]

Since \(\phi\) is a continuous function of \(F\), \(h_m \circ \phi\) is a continuous and bounded function of \(F\) and under assumption 1:

\[
\lim_{n \to \infty} P(\theta \in \Theta(\phi_0)^c | D_n) = \lim_{n \to \infty} \lim_{m \to \infty} \int_{\mathcal{F}} h_m(\phi(F)) \pi(F|D_n) dF
\]

\[
= \lim_{m \to \infty} \int_{\mathcal{F}} h_m(\phi(F)) \delta_{F_0}(dF)
\]

\[
= \lim_{m \to \infty} h_m(\phi(F_0)) = \pi(\theta \in \Theta(\phi_0)^c | \phi(F_0))
\]

\[
= 1 \quad F_0 - a.s.
\]

Q.E.D.
Posterior concentration for ϕ: lower level assumptions

- Let $E = E_{\eta_0, \phi_0}$ and $U = \{\phi; \|\phi - \phi_0\| \leq Mr_n\}$ for $M > 0$ and $r_n = n^{-1/2}(\log n)^{1/2}$.

- Then it suffices to show that for some $M > 0$, $EP(\phi \in U^c | D_n) = o(1)$.

- Existence of test functions:

 Assumption A1: for all n large enough, $\mathcal{N}(n^{-1/2}(\log n)^{1/2}, G, \|\|_G) \leq n$

 where

 $$G = \{l(\cdot; \phi, \eta) : \phi \in \Phi, \eta \in \mathcal{P}\}$$

 .

 Lemma A.1: Under Assumption A1, there exists a test T and a constant $L > 4$ and $L \geq M + 2$ (for M defined in Assumption A2) such that

 (i) $ET = o(1)$

 (ii) for $r_n = \sqrt{(\log n)/n}$,

 $$\sup_{\eta \in \mathcal{P}, \|\phi - \phi_0\| > Lr_n} E_{\phi, \eta}(1 - T) \leq \exp \left(-\frac{9}{16} L^2 nr_n^2\right).$$
Therefore,

\[
EP(\phi \in U^c | D_n) = E[P(\phi \in U^c | D_n)T] + E[P(\phi \in U^c | D_n)(1 - T)] \\
\leq ET + EP(\phi \in U^c | D_n)(1 - T) = o(1) + EP(\phi \in U^c | D_n)(1 - T) \\
= o(1) + E[P(\phi \in U^c | D_n)(1 - T)I_A] + E[P(\phi \in U^c | D_n)(1 - T)I_{Ac}] \\
\leq EP(\phi \in U^c | D_n)(1 - T)I_A + o(1)
\]

where

- \(A := \left\{ \int\int \frac{l_n(\phi, \eta)}{l_n(\phi_0, \eta_0)} \pi(\phi, \eta)d\phi d\eta \geq \beta_n \right\} \),
- \(\beta_n := \frac{1}{2n^2} \pi(K_{\phi, \eta} \leq \log n/n, V_{\phi, \eta} \leq \log n/n) \) and
- it can be shown that \(P(A) \to 1 \) if the prior \(\pi(\phi, \eta) \) satisfies (Assumption A2):
 \[
 \pi \left(K_{\phi, \eta} \leq \frac{\log n}{n}, \ V_{\phi, \eta} \leq \frac{\log n}{n} \right) n^M \to \infty
 \]
 for some \(M > 2 \).
Finally, we need to lower bound the denominator of the posterior probability, and upper bound the numerator as well.

Then

\[
E[P(\phi \in U^c | D_n)(1-T)I_A] \leq \frac{1}{\beta_n} E\left\{ \int \int_{U^c \times \mathcal{P}} \prod_{i=1}^{n} \frac{l(X_i; \phi, \eta)}{l(X_i; \phi_0, \eta_0)} \pi(d\eta, d\phi)(1-T) \right\}
\]

\[
= \beta_n^{-1} \int \int \int \prod_{i=1}^{n} l(X_i; \phi, \eta)(1 - T) \pi(d\eta, d\phi) dX_1 ... dX_n
\]

\[
= \beta_n^{-1} \int \int E_{\phi, \eta}(1 - T) \pi(d\eta, d\phi)
\]

\[
\leq \beta_n^{-1} \pi(\phi \in U^c) \sup_{\phi \in U^c, \eta \in \mathcal{P}} E_{\phi, \eta}(1 - T) \leq \exp(-Lnr_n^2) \beta_n^{-1} = o(1).
\]
Let us define $r_n = \sqrt{\frac{\log n}{n}}$, $A = \{\Theta(\phi_0) \subset \Theta(\phi)^{Lr_n}$ and $\Theta(\phi) \subset \Theta(\phi_0)^{Kr_n}\}$ and $C \geq \max\{L, K\}$ for some $K, L > 0$ which satisfy Lemmas C.4 and C.5. Then,

$$P\left(d_H(\Theta(\phi), \Theta(\phi_0)) \leq Cr_n | D_n\right) = P\left(\{d_H(\Theta(\phi), \Theta(\phi_0)) \leq Cr_n\} \cap A | D_n\right)$$

$$+ P\left(\{d_H(\Theta(\phi), \Theta(\phi_0)) \leq Cr_n\} \cap A^c | D_n\right)$$

$$\leq P\left(d_H(\Theta(\phi), \Theta(\phi_0)) \leq Cr_n | A, D_n\right) P(A | D_n)$$

$$+ P\left(\{d_H(\Theta(\phi), \Theta(\phi_0)) \leq Cr_n\} | A^c, D_n\right) P(A^c | D_n)$$

$$\leq P\left(\max\{L, K\} r_n \leq Cr_n | D_n\right) P(A | D_n) + o_P(1) \rightarrow^p 1$$

if

- $P(\{\Theta(\phi_0) \subset \Theta(\phi)^{Lr_n}$ and $\Theta(\phi) \subset \Theta(\phi_0)^{Kr_n}\}| D_n) \rightarrow^p 1$ (see Lemmas C.4 and C.5) and

- $d_H(\Theta(\phi), \Theta(\phi_0)) \leq \max\{L, K\} r_n$ on A (see Lemma C.6).
Define $Q(\theta, \phi) = \| \max(\Psi(\theta, \phi), 0) \| = \left[\sum_{i=1}^{k} (\max(\Psi_i(\theta, \phi), 0))^2 \right]^{1/2}$.

Lemma C.4:

\exists a constant $K > 0$ so that

$$P(\Theta(\phi) \subset \Theta(\phi_0)^{K_{rn}}|D_n) \rightarrow^p 1,$$

where $\Theta(\phi_0)^{K_{rn}} = \{ \theta \in \Theta : d(\theta, \Theta(\phi_0)) \leq K_{rn} \}$, and $P(\cdot|D_n)$ denotes the marginal posterior probability of ϕ.

Proof. For any $K > 0$, let $\Theta \setminus \Theta(\phi_0)^{K_{rn}} = \{ \theta \in \Theta : d(\theta, \Theta(\phi_0)) > K_{rn} \}$.

- It suffices to show that $\exists K > 0$ such that

 $$P \left(\inf_{\theta \in \Theta \setminus \Theta(\phi_0)^{K_{rn}}} Q(\theta, \phi) > \sup_{\theta \in \Theta(\phi)} Q(\theta, \phi) \bigg| D_n \right) \rightarrow^p 1. \tag{9}$$

- Note that $\sup_{\theta \in \Theta(\phi)} Q(\theta, \phi) = 0$, since $\forall \theta \in \Theta(\phi), \Psi(\theta, \phi) \leq 0$, which is equivalent to $Q(\theta, \phi) = 0$.
• We have \(P(\|\phi - \phi_0\| < r_n|D_n) \to^p 1 \). Therefore, it remains to show
\[
P \left(\inf_{\theta \in \Theta \setminus \Theta(\phi_0)^{K_{r_n}}} Q(\theta, \phi) > 0 \bigg| D_n \right) \to^p 1.
\] (10)

• In fact, for any \(\phi \) so that \(\|\phi - \phi_0\| \leq r_n \), by Lemma C.1, \(\exists \tilde{K} > 0 \) such that for any \(K > 0 \),
\[
\inf_{\theta \in \Theta \setminus \Theta(\phi_0)^{K_{r_n}}} Q(\theta, \phi) \geq \inf_{\theta \in \Theta \setminus \Theta(\phi_0)^{K_{r_n}}} Q(\theta, \phi_0) - \sup_{\theta \in \Theta} |Q(\theta, \phi) - Q(\theta, \phi_0)| \\
\geq \inf_{\theta \in \Theta \setminus \Theta(\phi_0)^{K_{r_n}}} Q(\theta, \phi_0) - \tilde{K}r_n.
\] (11)

• By Lemma C.3, \(\exists \tilde{K} > 0 \) such that
\[
\inf_{\theta \in \Theta \setminus \Theta(\phi_0)^{K_{r_n}}} Q(\theta, \phi_0) = \inf_{d(\theta, \Theta(\phi_0)) \geq K_{r_n}} Q(\theta, \phi_0) \geq 3\tilde{K}r_n.
\]

• Hence we have shown that whenever \(\|\phi - \phi_0\| \leq r_n \),
\[
\inf_{\theta \in \Theta \setminus \Theta(\phi_0)^{K_{r_n}}} Q(\theta, \phi) \geq 2\tilde{K}r_n > 0.
\]

• Therefore, by the posterior concentration for \(\phi \), (10) holds from
\[
P \left(\inf_{\theta \in \Theta \setminus \Theta(\phi_0)^{C_{r_n}}} Q(\theta, \phi) > 0 \bigg| D_n \right) \geq P(\|\phi - \phi_0\| \leq r_n|D_n) \to^p 1.
\]
Lemma C.5:
There exists $L > 0$ so that

$$P(\Theta(\phi_0) \subset \Theta(\phi)^{Lr_n} | D_n) \rightarrow^p 1.$$

Proof. By Lemma C.1, $\exists \tilde{L} > 0$ such that whenever $\|\phi - \phi_0\| \leq r_n$,

$$\sup_{\theta \in \Theta} |Q(\theta, \phi) - Q(\theta, \phi_0)| \leq \tilde{L}r_n.$$

- Now, fix such a ϕ, then for all large enough n, $\phi \in U(\phi_0)$ where $U(\phi_0)$ is the neighborhood satisfying Lemma C.3. For such a \tilde{L}, by Lemma C.3, $\exists L > 0$ that does not depend on ϕ such that

 $$\inf_{d(\theta, \Theta(\phi)) \geq Lr_n} Q(\theta, \phi) > \tilde{L}r_n,$$

 which then implies that $\{\theta : Q(\theta, \phi) \leq \tilde{L}r_n\} \subset \{\theta : d(\theta, \Theta(\phi)) \leq Lr_n\}$.

- On the other hand, for any $\theta \in \Theta(\phi_0)$, $Q(\theta, \phi_0) = 0$, which implies

 $$Q(\theta, \phi) \leq 0 + |Q(\theta, \phi) - Q(\theta, \phi_0)| \leq \tilde{L}r_n.$$

 Therefore, $\Theta(\phi_0) \subset \{\theta : Q(\theta, \phi) \leq \tilde{L}r_n\} \subset \{\theta : d(\theta, \Theta(\phi)) \leq Lr_n\}$.

- Hence we have in fact shown that, the event $\|\phi - \phi_0\| \leq r_n$ implies the event $\Theta(\phi_0) \subset \Theta(\phi)^{Lr_n}$.

August 26-30, 2013
Semiparametric Bayesian Support Function
Liao - Simoni
Moreover, the event $\|\phi - \phi_0\| \leq r_n$ occurs with probability approaching one under the posterior distribution of ϕ, which then implies the result.

Q.E.D.

Lemma C.6:

For two sets A, B, if $A \subset B^{r_1}$ and $B \subset A^{r_2}$ for some r_1, r_2, then

$$d_H(A, B) \leq \max\{r_1, r_2\}.$$

Proof. $d_H(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\}$. Then $\forall a \in A$, since $A \subset B^{r_1}, a \in B^{r_1}$, that is $d(a, B) \leq r_1$. This implies $\sup_{a \in A} d(a, B) \leq r_1$. Similarly we can show $\sup_{b \in B} d(b, A) \leq r_2$. Q.E.D.
Lemma C.1:

There exists $C > 0$ such that for any $\phi_1, \phi_2 \in \Phi$,

$$\sup_{\theta \in \Theta} |Q(\theta, \phi_1) - Q(\theta, \phi_2)| \leq C\|\phi_1 - \phi_2\|.$$

Proof. For any $\phi_1, \phi_2 \in \Phi$,

$$|Q(\theta, \phi_1) - Q(\theta, \phi_2)| = \left| \|\max(\Psi(\theta, \phi_1), 0)\| - \|\max(\Psi(\theta, \phi_2), 0)\| \right|$$

$$\leq \|\max(\Psi(\theta, \phi_1), 0) - \max(\Psi(\theta, \phi_2), 0)\|$$

$$= \left(\sum_{i=1}^{d} \left[\max(\Psi_i(\theta, \phi_1), 0) - \max(\Psi_i(\theta, \phi_2), 0)\right]^2 \right)^{1/2}$$

$$= \left(\sum_{i=1}^{d} [f(\Psi_i(\theta, \phi_1)) - f(\Psi_i(\theta, \phi_2))]^2 \right)^{1/2} \leq \left(\sum_{i=1}^{d} [\Psi_i(\theta, \phi_1) - \Psi_i(\theta, \phi_2)]^2 \right)^{1/2}$$

$$= \|\Psi_{\theta, \phi_1} - \Psi(\theta, \phi_2)\| \leq C\|\phi_1 - \phi_2\| \text{ by H2.}$$

Q.E.D.
Lemma C.2:

∃ a closed neighborhood $U(\phi_0)$, for any $a_n = O(1)$, there exists $K > 0$ that does not depend on ϕ, so that

$$\inf_{\phi \in U(\phi_0)} \inf_{\theta: d(\theta, \Theta(\phi)) \geq Ka_n} \max_{i \leq k} \Psi_i(\theta, \phi) > a_n.$$

Proof. For any $C > 0$, define

$$A_C = \{ \phi \in U(\phi_0) : \inf_{\theta: d(\theta, \Theta(\phi)) \geq Ca_n} \max_{i \leq k} \Psi_i(\theta, \phi) > a_n \}.$$

- By assumption H3, $\forall \phi \in U(\phi_0)$, there exists $C_\phi > 0$ so that $\phi \in A_{C_\phi}$. Thus, $U(\phi_0) \subset \bigcup_{\phi \in U(\phi_0)} A_{C_\phi}$.

- Since $U(\phi_0)$ is compact \exists constants C_1, \ldots, C_N for some finite $N > 0$ to form a finite cover so that

$$U(\phi_0) \subset \bigcup_{i=1}^{N} A_{C_i}.$$

Then $\forall \phi \in U(\phi_0)$, there exists $j \leq N$ so that $\phi \in A_{C_j}$, that is

$$\inf_{\theta: d(\theta, \Theta(\phi)) \geq C_j a_n} \max_{i \leq d} \Psi_i(\theta, \phi) > a_n.$$
Let $K = \max\{C_i : i \leq N\}$, then

$$\inf_{\theta : d(\theta, \Theta(\phi)) \geq K a_n} \max_{i \leq k} \Psi_i(\theta, \phi) \geq \inf_{\theta : d(\theta, \Theta(\phi)) \geq C_j a_n} \max_{i \leq k} \Psi_i(\theta, \phi) > a_n.$$

This is true for any $\phi \in U(\phi_0)$.

Q.E.D.
Lemma C.3:

For any $M > 0$, $\exists \delta > 0$, and a neighborhood $U(\phi_0)$ so that

$$\inf_{\phi \in U(\phi_0)} \inf_{d(\theta, \Theta(\phi)) \geq \delta} Q(\theta, \phi) > M \sqrt{\frac{\log n}{n}}.$$

Proof. For any $M > 0$, by Lemma C.2, $\exists U(\phi_0)$ and $\delta > 0$ so that

$$\inf_{\phi \in U(\phi_0)} \inf_{d(\theta, \Theta(\phi)) \geq \delta} \max_{i \leq d} \Psi_i(\theta, \phi) > M \sqrt{\frac{\log n}{n}}. \quad (14)$$

• Now, for any $(\theta, \phi) \in \left\{ (\theta, \phi) \in \Theta \times U(\phi_0) : d(\theta, \Theta(\phi)) \geq \delta \sqrt{\log n/n} \right\}$, we have

$$\max_{i \leq k} \Psi_i(\theta, \phi) > 0$$

since $\theta \notin \Theta(\phi)$, which then implies that

$$\max_{i \leq k} \Psi_i(\theta, \phi) = \max_{i \leq k} \Psi_i(\theta, \phi) I(\Psi_i(\theta, \phi) > 0).$$
• Let $\Psi_i = \Psi_i(\theta, \phi)$, and $\Psi = (\Psi_1, \ldots, \Psi_k)^T$. Then using the fact that
$\max_i A_i^2 = (\max_i A_i)^2$ if $A_i \geq 0$, we have,

$$Q(\theta, \phi) = \| \max(\Psi, 0) \| = \left(\sum_{i=1}^{k} \left[\max(\Psi_i, 0) \right]^2 \right)^{1/2}$$

(15)

$$\geq \left(\max_{i \leq k} \left[\max(\Psi_i, 0) \right]^2 \right)^{1/2} = \left(\left[\max_{i \leq k} \max(\Psi_i, 0) \right]^2 \right)^{1/2}$$

(16)

$$= \max_{i \leq k} \max(\Psi_i, 0) = \max_{i \leq k} \Psi_i I(\Psi_i \geq 0) = \max_{i \leq k} \Psi_i(\theta, \phi).$$

(17)

The result follows immediately from (14).

Q.E.D.
Proof of Lemma 1 (sketch)

• ∀τ ∈ [0, 1] define φτ := τφ1 + (1 − τ)φ2 with φ2 = φτ|τ=0 and φ1 = φτ|τ=1.

• Under Assumption S3 Sφτ (p) is differentiable at τ = τ0 ∈ (0, 1). By the mean value theorem:

\[
S_{\phi_1}(p) - S_{\phi_2}(p) = \frac{\partial}{\partial \tau} S_{\phi_\tau}(p) \bigg|_{\tau=\tau_0 \in (0,1)}.
\] \hspace{1cm} (18)

• Define τ0 : Sd → (0, 1) a measurable and differentiable function of p. We prove that

\[
\frac{\partial}{\partial \tau} S_{\phi_\tau}(p) \bigg|_{\tau=\tau_0(p)} = \frac{dS_{\phi_\tau}(p)}{d\tau+} \bigg|_{\tau=\tau_0(p)} = \frac{dS_{\phi_\tau}(p)}{d\tau-} \bigg|_{\tau=\tau_0(p)}
\]

\[
= \lambda(p, \phi_{\tau_0}(p))^T \nabla_{\phi} \Psi(\tilde{\theta}(p), \phi_{\tau_0}(p))[\phi_1 - \phi_2]
\]

for some \(\tilde{\theta}(p) \in \Xi(p, \phi_{\tau_0}(p)), p \in S^d\).
Proof of Lemma 1 (sketch)

• Therefore,

\[S_{\phi_1}(p) - S_{\phi_2}(p) = \lambda(p, \phi_{\tau_0(p)})^T \nabla_{\phi} \Psi(\tilde{\theta}(p), \phi_{\tau_0(p)})[\phi_1 - \phi_2] \]

\[= \lambda(p, \phi_0)^T \nabla_{\phi} \Psi(\theta_*(p), \phi_0)[\phi_1 - \phi_2] \]

\[+ \left(\lambda(p, \phi_{\tau_0(p)})^T \nabla_{\phi} \Psi(\tilde{\theta}(p), \phi_{\tau_0(p)}) - \lambda(p, \phi_0)^T \nabla_{\phi} \Psi(\theta_*(p), \phi_0) \right)[\phi_1 - \phi_2] \]

where \(\theta_* : \mathbb{S}^d \rightarrow \Theta \) is a Borel measurable mapping s.t. \(\theta_*(p) \in \Xi(p, \phi_0) \).

• We show:

\[\sup_{p \in \mathbb{S}^d} \left| \left(\lambda(p, \phi_{\tau_0(p)})^T \nabla_{\phi} \Psi(\tilde{\theta}(p), \phi_{\tau_0(p)}) - \lambda(p, \phi_0)^T \nabla_{\phi} \Psi(\theta_*(p), \phi_0) \right)[\phi_1 - \phi_2] \right| \]

\[= o(||\phi_1 - \phi_2||). \]

• The functions \(\lambda(p, \phi_0) \) and \(\nabla_{\phi} \Psi(\theta_*(p), \phi_0) \) are uniformly bounded in \(p \), then:

\[\sup_{p \in \mathbb{S}^d} \left| \left(S_{\phi}(p) - S_{\phi}(\tilde{p}) \right) - \lambda(p, \phi_0)^T \nabla_{\phi} \Psi(\theta_*(p), \phi_0)[\phi_1 - \phi_2] \right| = o(||\phi_1 - \phi_2||). \]
Proof of Theorem 3 (sketch)

• Denote \(r_n = (\log n)^{1/2} n^{-1/2} \) and \(\Omega = \{ \phi \in B(\phi_0, r_n) \} \).

• Under assumption 2:

\[
P\left(\sup_{p \in \mathbb{S}^d} |S_\phi(p) - S_{\phi_0}(p)| \geq Cr_n \left| D_n \right| \right)
= P\left(\left\{ \sup_{p \in \mathbb{S}^d} |S_\phi(p) - S_{\phi_0}(p)| \geq Cr_n \right\} \cap \Omega \left| D_n \right| \right)
+ P\left(\sup_{p \in \mathbb{S}^d} |S_\phi(p) - S_{\phi_0}(p)| \geq Cr_n \cap \Omega^c \left| D_n \right| \right)
\leq P\left(\sup_{p \in \mathbb{S}^d} |S_\phi(p) - S_{\phi_0}(p)| \geq Cr_n \cap \Omega \left| D_n \right| \right)
+ P(\Omega^c \left| D_n \right|)
\leq P\left(o(||\phi - \phi_0||) + \sup_{p \in \mathbb{S}^d} |\lambda(p, \phi_0)' \nabla_\phi \Psi(\theta_*(p), \phi_0) [\phi - \phi_0]| \geq Cr_n \cap \Omega \left| D_n \right| \right)
+ o_p(1)
\leq P\left(o(||\phi - \phi_0||) + \sup_{p \in \mathbb{S}^d} |\lambda(p, \phi_0)' \nabla_\phi \Psi(\theta_*(p), \phi_0)||||\phi - \phi_0|| \geq Cr_n \left| D_n \right| \right) P(\Omega \left| D_n \right|) + o_p(1)
\]

which converges to 0 in probability.
Proof of Theorem 4 (sketch)

- Denote \(r_n = (\log n)^{1/2} n^{-1/2} \), \(\Omega := \{ \phi \in B(\phi_0, r_n) \} \) and \(h_n := \sqrt{n} \sup_{p \in S_d} (S_\phi(p) - S_{\phi_0}(p)) \).

- Since the \(\| \cdot \|_{TV} \leq 2 \):

 \[
 \mathbb{E}\|P_{h_n|D_n} - \mathcal{N}(\tilde{\Delta}_n, \phi_0, \tilde{I}_\phi^{-1})\|_{TV} = \mathbb{E}\|P_{h_n|D_n} - \mathcal{N}(\tilde{\Delta}_n, \phi_0, \tilde{I}_\phi^{-1})\|_{TV}\Omega + \\
 \mathbb{E}\|P_{h_n|D_n} - \mathcal{N}(\tilde{\Delta}_n, \phi_0, \tilde{I}_\phi^{-1})\|_{TV}\Omega^c \\
 \leq \mathbb{E}\|P_{h_n|D_n} - \mathcal{N}(\tilde{\Delta}_n, \phi_0, \tilde{I}_\phi^{-1})\|_{TV}\Omega + 2P(\Omega^c).
 \]

- Under assumption 2, \(P(\Omega^c) = o(1) \) so that, under assumption S6:

 \[
 \mathbb{E}\|P_{h_n|D_n} - \mathcal{N}(\tilde{\Delta}_n, \phi_0, \tilde{I}_\phi^{-1})\|_{TV} = \\
 \mathbb{E}\|P^{\sqrt{n}} \sup_{p \in S_d} |\lambda(p, \phi_0)' \nabla_{\phi} \Psi(\theta_*(p), \phi_0)[\phi - \phi_0]|_{D_n} - \mathcal{N}(\tilde{\Delta}_n, \phi_0, \tilde{I}_\phi^{-1})\|_{TV}\Omega + o(1)
 \]

 which converges to 0 under assumption S4.

Q.E.D.

August 26-30, 2013
Semiparametric Bayesian Support Function
Liao - Simoni
Proof of Theorem 5 (sketch)

Since $\Theta(\hat{\phi}) \subset \text{FCS}(\tau)$, we have:

- **Part (i).** $P(\theta \notin \text{FCS}(\tau)|D_n) \leq P(\theta \notin \Theta(\hat{\phi})|D_n)$.

- **Part (ii).** $P(\text{FCS}(\tau) \setminus \text{BCS}(\tau)|D_n)$ is lower bounded by

$$\geq P(\Theta(\hat{\phi}) \setminus \text{BCS}(\tau)|D_n) \geq P(\theta \in \Theta(\hat{\phi})|D_n) - P(\theta \in \text{BCS}(\tau)|D_n) \to^p \tau.$$

We then have to show that $P(\theta \notin \Theta(\hat{\phi})|D_n) = o_P(1)$.

$$P(\theta \notin \Theta(\hat{\phi})|D_n) = \int \pi(\theta \notin \Theta(\hat{\phi})|\phi)p(\phi|D_n)d\phi \leq \int \pi(\theta \notin \Theta(\phi_0)|\phi)p(\phi|D_n)d\phi$$

$$+ \int \left|\pi(\theta \notin \Theta(\hat{\phi})|\phi) - \pi(\theta \notin \Theta(\phi_0)|\phi)\right|p(\phi|D_n)d\phi.$$

The result follows by the posterior concentration of ϕ (at the rate r_n) and by the asymptotic expansion of $S_\phi(\cdot)$ since $||\phi - \phi_0|| \leq r_n$ implies

$$P(\text{d}_H(\Theta(\phi), \Theta(\phi_0)) \leq Cr_n|D_n) \to 1,$$

for some $C > 0$.

Hence, $P(\Theta(\phi) \subset \Theta(\phi_0)^{Cr_n}) \to 1$.

◀
Proof of Theorem 6 (sketch)

By definition of q_τ:

$$P\left(\Theta(\hat{\phi}_M)^{-q_\tau/\sqrt{n}} \subset \Theta(\phi) \subset \Theta(\hat{\phi}_M)^{q_\tau/\sqrt{n}}\right|D_n)$$

$$= P\left(\sup_{||p||=1} |S_\phi(p) - S_{\hat{\phi}_M}(p)| \leq \frac{q_\tau}{\sqrt{n}}\right|D_n) = 1 - \tau.$$

Q.E.D. ◼️
Proof of Theorem 7 (sketch)

• We first show that for any \(q \geq 0 \),

\[
P(\sqrt{n} \sup_{\|p\|=1} |S_\phi(p) - S_{\hat{\phi}_M}(p)| \leq x | D_n \) - \(P(\sqrt{n} \sup_{\|p\|=1} |S_{\phi_0}(p) - S_{\hat{\phi}_M}(p)| \leq x) = o_p(1) .
\]

• This implies

\[
P_0(\Theta(\hat{\phi}_M)^{-q/\sqrt{n}} \subset \Theta(\phi_0) \subset \Theta(\hat{\phi}_M)^{q/\sqrt{n}}) = P_0(\sqrt{n} \sup_{\|p\|=1} |S_{\phi_0}(p) - S_{\hat{\phi}_M}(p)| \leq q) \]

\[
\geq P(\sqrt{n} \sup_{\|p\|=1} |S_{\phi_0}(p) - S_{\hat{\phi}_M}(p)| \leq q | D_n)
\]

\[
- \left| P(\sqrt{n} \sup_{\|p\|=1} |S_{\phi_0}(p) - S_{\hat{\phi}_M}(p)| \leq q) - P(\sqrt{n} \sup_{\|p\|=1} |S_{\phi_0}(p) - S_{\hat{\phi}_M}(p)| \leq q | D_n) \right|
\]

\[
= P(J(\phi) \leq q | D_n) + o_p(1) = 1 - \tau + o_p(1) ,
\]