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ABSTRACT

Bayesian Analysis in Partially Identified Parametric and Non-Parametric Models

Yuan Liao

This dissertation studies a general type of econometrc model characterized by moment condi-

tions. Such a model, with different variations, has many important empirical applications in

economics, biostatistics, and finance. The variations of the model have two dimensions: one

is on the type of the moment conditions: either moment equality more inequality; the other is

on the dimension of the structural parameter: either finite or infinite. As a result, the model

contains most of the important econometric models. The key feature of the model that I am

interested in is that the parameter is not completely identified. With limited knowledge of the

underlying data distribution, it is only partially identified. I proceed with a Bayesian approach

in this dissertation.

Chapter 1 This chapter introduces the model and corresponding Bayesian methods in the

literature, followed by detailed examples of the models to be considered in this dissertation.

I present in detail some closely related recent literature, from both frequentist and Bayesian

perspectives.



4

Chapter 2 I study a type of moment condition that has been rapidly studied by econo-

metricians in recent years: moment inequalities. Since the parameter of interest is allowed to

be not point identified, the treatment is very flexible in dealing with incomplete data, such as

missing data or censored data. I construct the posterior distribution of the structural parameter,

and establish its large sample behaviors. Since in many applications, it is more straightforward

to specify the moment inequalities than the distribution of the data generating process, hence

instead of the true likelihood, the posterior density is derived based on the limited information

likelihood, a moment condition based likelihood. It is shown that the posterior converges to zero

exponentially fast outside any small neighborhood of the identified region. Inside the identified

region, it is bounded below by a rate that is not exponentially small. The simulations provide

evidence that the Bayesian approach has very attractive properties, in the sense that, with a

proper choice of the prior, the posterior provides extra information about the true parameter

inside the identified region.

Chapter 3 There exists a moment and model selection problem in the moment inequality

model. Here only a subset of the moment inequalities are to be used and the true parameter

vector is assumed to follow a submodel allowing only some selected components to be nonzero

(which can be, e.g., the regression coefficients of some selected explanatory variables). The

moment inequalities are called compatible if fixing the dimension of the parameter vector and

the parameter space, the identified region defined by these moment inequalities is not empty.

I derive the posterior distribution of the moment inequality/parameter subspace combination,

and show that the incompatible combinations have exponentially small posteriors. While the

posteriors of compatible combinations are positive, they are sensitive to the researchers’ a priori

information of the model, which is the choice of the priors.
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Chapter 4 This chapter addresses the estimation of the semi-nonparametric conditional

moment restricted model that involves a nonparametric structural function g0. The posterior

distribution of the parameter of interest is derived based on the limited information likelihood.

I focus on the frequentist properties of the posterior distribution, allowing the nonparametric

structural function to be partially identified. It is shown that the posterior converges to any small

neighborhood of the identified region. I then apply the results to the single index model and the

nonparametric instrumental regression model. In particular, the compactness assumption on the

parameter space for nonparametric instrumental regression is relaxed, and a regularized prior is

used to overcome the ill-posedness.

Chapter 5 I consider a Bayesian approach to making joint probabilistic inference on the

action and the associated risk in data mining. The posterior probability is based on an empirical

likelihood, which imposes a moment restriction relating the action to the resulting risk, but does

not otherwise require a probability model for the underlying data generating process. The mo-

ment restriction partially identifies the parameters of interest, which include both the theoretical

risk of interest and the parameters describing the associated actions. I illustrate with examples

how this framework can be used to describe the posterior probability of actions to take in order

to achieve a low risk, or conversely, to describe the posterior distribution of the resulting risk for

a given action. The posterior distribution will cluster around the true risk-action relation with

high probability for large data size, and that the actions can be generated from this posterior to

reliably control the true resulting risk.
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CHAPTER 1

Introduction

Many econometric and statistical models involve an unknown structural parameter of inter-

est, which is either parametric or semi/non-parametric. Such a parameter often satisfies some

moment conditions that are implied by the assumptions imposed on the distribution of the data

generating process. Therefore, the variations of these models are in terms of two directions:

one is the dimension of the structural parameter: either finite or infinite; the other is the type of

the moment conditions: either moment equality or moment inequality. The moment equality is

one of the most commonly seen moment conditions, defined as

(1.1) Em(X, θ) = 0

where the expectation is taken with respect to the observable random vector X , and m(X, .)

is a known function of the parameter of interest θ. Many statistical and econometric methods

have been developed to estimate and make inference about θ from the frequentist perspective,

such as estimating equations and generalized method of moments. At almost the same time,

Bayesian statistical methods were also widely developed and applied to such a model. When

the structural parameter is identifiable, a standard Bayesian procedure can be stated as follow-

ing: first, specify the prior distribution of the parameter either from previous study experiences

or using objective priors such as the Jeffery’s prior if the Fisher’s information matrix is nonsin-

gular. Second, construct the likelihood function based on the distribution of the data generating
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process. Third, find the posterior distribution of the parameter by multiplying the prior with the

likelihood function. Finally, obtain MCMC draws from the posterior by carrying out the Me-

tropolis algorithm. From the frequentist point of view, under regularity conditions, the Bayesian

procedure is consistent, meaning that asymptotically, the posterior distribution degenerates to

a Dirac measure on the true value. As a result, the posterior mean estimated by averaging the

MCMC draws should consistently estimate the unknown parameter.

In recent years, the statistical models where the structural parameters are not identifiable

have been brought into attention by both statisticians and econometricians. The problem with

loss of identifiability occurs in diverse areas such as industrial organization, reliability theory

and survival analysis (Prakasa Rao 1992 and Tamer 2009). One of the most important types of

econometric models with loss of identifiability is the “moment inequality”, as given by

(1.2) Em(X, θ) ≥ 0

The structural parameter θ may be unidentifiable in this model since there can be more than one

θ satisfying model( 1.2), regardless of the dimension of m.

One of the biggest problems of the loss of identifiability is that the regular estimators, de-

veloped in mathematical statistics and econometrics, are not consistent anymore. The reason

is that, generally speaking, in classical statistical models with identifiability, the structural pa-

rameter is usually identified as the minimizer of some nonnegative function over the parameter

space. That is to say, let θ0 denote the true parameter of interest, which lies in some parameter

space Θ. θ0 = arg minθ∈ΘQ(θ), where Q(θ) is a nonnegative function on Θ, and depends on

the distribution of the data generating process. Let Qn(θ) denote the sample analog of Q(θ),
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under some regularity conditions, the estimator defined by θ̂n = arg minθ∈ΘQn(θ) then con-

verges in probability to θ0. On the other hand, the loss of identifiability often occurs when the

set of minimizers of Q(θ) is not a singleton, say arg minθ∈ΘQ(θ) 6= {θ0}, hence the minimizer

of Qn(θ) is usually not a singleton either, and even if it were, it would not converge to the true

parameter of interest. Therefore, the consistency of point estimation cannot be achieved. From

the Bayesian perspective, the classical posterior consistency is established based on the fact that,

up to the leading order, the likelihood function is proportional to exp(−nQn(θ)), where Qn(θ)

converges to some unknown function Q(θ) uniformly over θ, and Q(θ) is uniquely minimized

at θ0. In addition, the prior distribution has support on a neighborhood of θ0 (Chernozhukov

and Hong 2003). However, when θ0 is not identifiable, the posterior distribution will not only

asymptotically supported on a neighborhood of θ0, but also on all the minimizers of Q(θ) (Liao

and Jiang 2010).

A third type of important econometric model is the “conditional moment restricted model”,

as defined by

(1.3) E[ρ(Z, θ)|W ] = 0

where the conditional expectation is taken with respect to the conditional distribution of Z

given W , with both Z and W observable. Here ρ(Z, .) is a known function of the structural

parameter θ, usually called the “residual function”. Model (1.3) is usually satisfied by the

regression models, with the dimension of θ being either finite or infinite. For example, when

θ is finite dimensional and ρ(Z, θ) linearly depends on θ, model (1.3) is then either the simple

linear regression model or the linear regression model with instrumental variable W . When θ is
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infinite dimensional, it is the semi-parametric or nonparametric regression model. Depending

on different cases, the sufficient conditions for the identifiability of θ can be different.

In organizing this introductory chapter, I will start by illustrating some empirical examples

in economics, survival analysis, and treatment effects, where the structural parameter is not

identifiable (or point identified) by the statistical model assumptions. This section will then

be followed by detailed reviews of the theories and methodologies developed in dealing with

the problems of loss of identifiability in the literature, from both the frequentist and Bayesian

perspectives. The literature review comes from both the statistics and econometrics literatures,

where in the latter case, the term “loss of identifiability” is usually referred to “partial identifi-

cation”. Followed the partial identification, I will then introduce the literature of the conditional

moment restricted model (1.3), with both the point identification and partial identification cases.

1.1. Examples of Loss of Identifiability

This section illustrates some important examples of loss of identifiability in statistics and

econometrics. These examples are: the empirical English auctions, the treatment selections, the

censored data in survival analysis, and the binary choice model.

Example 1.1.1 (Empirical English Auctions). Haile and Tamer (2003) carried out an em-

pirical analysis of the English auctions that relies on an incomplete model consisting of two

simple assumptions.

Assumption 1: Bidders do not bid more than they are willing to pay.

Assumption 2: Bidders do not allow an opponent to win at a price they are willing to

beat.
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At the auction, an initial price of the object is designated, and monotonically increasing bids are

then accepted from the participating bidders, subject to a minimum bid increment ∆ ≥ 0. For

each bidder i, let Vi denote her valuation on the object, i.e., the maximal value that she is willing

to pay. The valuation Vi is not observable to econometricians. Often one is directly interested in

how valuations are affected by auction-specific observables such as the bidder’s demographic

characteristics, the terms of a government contract, or the seller’s reputation. Let Xi denote a

vector of the observales for bidder i. The parameter of interest θ is defined as an element that

lies in some parameter space Θ, satisfying

E(Vi|X = xi) = l(xi, θ)

for all i, where l(., .) is known and may take any form; it may be either linear or a polynomial,

for example. In addition, instead of Vi, econometricians can observe Yi, bidder i’s final bid,Ymax,

the maximal bid of all the bidding participants for the object, and ∆, the minimum increment.

By Assumptions 1 and 2, Yi ≤ Vi ≤ Ymax + ∆. It then follows that

(1.4) E(Yi|Xi = xi) ≤ l(xi, θ) ≤ E(Ymax + ∆|Xi = xi).

The parameter of interestθ may not be identifiable if the set of θ that satisfies inequalities

(1.4) is not a singleton, i.e., that are more than one elements in Θ that are consistent with data.

If it is true, we cannot consistently estimate the true parameter θ even if we had infinitely many

(Yi, Xi, Ymax). Therefore it results to the loss of identifiability.

Example 1.1.2 (Missing Data Problem). Manski (2003) discussed and worked out a type of

problem in which the loss of identifiability of the parameter of interest arises from the missing
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data. Let us start with the simplest case where only the outcome is missing, and then extend to

the case where both the covariate and outcome are missing, previously studied by Horowitz and

Manski (2000).

Let Y be an outcome dummy random variable that indicates whether a treatment is success-

ful (Y = 1) or unsuccessful (Y = 0). Z is an indicator of missing data. Y is observed if Z = 1

and unobserved if Z = 0. The parameter of interest here is P (Y = 1), the probability that the

treatment is successful. Note that

P (Y = 1) = P (Y = 1|Z = 1)P (Z = 1) + P (Y = 1|Z = 0)P (Z = 0)

The data generating process identifies P (Y = 1|Z = 1), P (Z = 1) and P (Z = 0), but not

P (Y = 1|Z = 0), therefore θ = P (Y = 1) is not identifiable or point identified. Note that

P (Y = 1|Z = 0) can take any possible value in [0, 1], hence we can derive the lower and upper

bounds for θ, which would be

(1.5) P (Y = 1|Z = 1)P (Z = 1) ≤ θ ≤ P (Y = 1|Z = 1)P (Z = 1) + P (Z = 0)

Horowitz and Manski (2000) considered nonparametric missing data problem with both

outcome and covariate missing. Let Y be a binary outcome variable same as before, and X be

a covariate. Let Zy and Zx denote the indicators of missing data. Y is observed if Zy = 1 and

unobserved if Zy = 0. X is observed if Zx = 1 and unobserved if Zx = 0. The covariate X is

assumed to be “missing completely at random”, meaning that

P (Zx = i|Y = j,X = x, Zy = k) = P (Zx = i)
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for all x in th support of X and all i, j, k ∈ {0, 1}. The parameter of interest is g(x) = P (Y =

1|X = x), which is assumed to be nonparametric. Under the Missing Completely at Random

assumption, it can be shown that

g(x) = P (Y = 1|X = x, Zx = 1, Zy = 1)P (Zy = 1|X = x, Zx = 1)

+P (Y = 1|X = x, Zx = 1, Zy = 0)P (Zy = 0|X = x, Zx = 1)(1.6)

All quantities on the right side of (1.6) are identifiable by the data generating process except

P (Y = 1|X = x, Zx = 1, Zy = 0), which can take any value in [0, 1]. Therefore g(x) is

not point identified. The upper and lower bounds similar to (1.5) can be derived. Let h(x) =

P (Zy = 1|X = x, Zx = 1), then

g(x) ≥ P (Y = 1|X = x, Zx = 1, Zy = 1)h(x)

g(x) ≤ P (Y = 1|X = x, Zx = 1, Zy = 0)h(x) + 1− h(x)(1.7)

Example 1.1.3 (Censored Data). Consider the parameter θ in the model

yi = x′iθ + εi

where xi is a vector of covariates, θ is the unknown parameter of interest, and ε denotes the

unobserved error term with Median(εi|xi) = 0. In survival analysis, yi is usually censored. In

particular, we observe the random vector (xi, vi, di) such that

vi = min{yi, ci}

di = I(yi<ci)
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where di is a binary variable that indicates whether an observation vi is censored or not. The

random variable ci is only observed for censored observations. If the censoring value ci is

assumed to be independent of (xi, εi), then under non-singularity conditions for some matrices,

θ is point identified (Honore, Khan and Powell 2002). In fact, let Fi(yi; θ|xi) be the conditional

distribution function of yi, with density function fi(yi; θ|xi). The likelihood function can be

written as

L(θ) =
∏
di=1

fi(yi, θ|xi)
∏
di=0

[1− Fi(ci, θ|xi)]

The structural parameter θ can then be consistently estimated by parametric methods (max-

imum likelihood), or nonparametric methods (first estimate the survival function using the

Kaplan-Meier estimator). However, in many applications, the independence assumption is sus-

pected. For example, suppose yi and ci are the survival time and censoring time for a patient

respectively. When patients whose conditions worsen significantly are less likely to continue

in the study, the result would be a positive correlation between censoring time and the survival

time. In other situations, the censoring can also be affected by unobservables that also affect

outcomes. Without assuming the independence between the censoring and surviving time, the

point identification often does not hold. In the literature of survival analysis, there is difficulty

of estimating survival functions when survival and censoring are not independent, see Tsiatis

(1975).

Under the assumption Median(εi|xi) = 0 alone, Khan and Tamer (2009) showed that θ

satisfies conditional moment inequalities:

E[I(vi≥x′iθ)|xi] ≤
1

2

E[diI(vi≤x′iθ)|xi] ≤
1

2
(1.8)
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The proof is straightforward:

E[I(vi≥x′iθ)|xi] = P (vi ≥ x′iθ|xi) = P (ci ≥ x′iθ, yi ≥ x′iθ|xi)

= P (ci ≥ x′iθ, εi ≥ 0|xi)

≤ P (εi ≥ 0|xi) =
1

2

E[diI(vi≤x′iθ)|xi] = E[I(vi≤x′iθ,yi≤ci)|xi] = P (vi ≤ x′iθ, yi ≤ ci|xi)

= P (yi ≤ ci, yi ≤ x′iθ|xi) = P (εi ≤ ci − x′iθ, εi ≤ 0|xi)

≤ P (εi ≤ 0|xi) =
1

2

Without further assumptions on the distribution of (xi, εi, ci), conditional moment inequalities

(1.8) generally do not guarantee the point identification of θ.

Example 1.1.4 (Probit Binary Choice Model). Consider the binary choice model

yi = I(x′iθ+εi<0)

The error term ε is assumed to be N(0, σ2) and independent of xi, where σ2 is the unknown

variance. We observe (xi, yi)
n
i=1. Note that

P (yi = 1|xi) = P (x′iθ + εi < 0|xi) = Φ

(
−x

′
iθ

σ

)

where Φ(.) denotes the cumulative distribution function of standard normal distribution. Here

θ
σ

is point identified, but not θ (Imai and van Dyk 2004, and McCulloch et al. 2000). In fact, for
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any c 6= 0, let θ̃ = cθ, and σ̃ = cσ, then

Φ

(
−x

′
iθ̃

σ̃

)
= P (yi = 1|xi)

1.2. Literature Review on Partially Identified Models

The inference on the structural parameter that is only partially identified has been largely

initiated and popularized in recent years. The recent literature on partially identified models in

econometrics starts from the study of interval identified models. Horowitz and Manski (2000)

consistently estimated the bounds of the conditional probability of a successful treatment which

is partially identified on an interval, with missing data. They also derived confidence intervals

that asymptotically cover the entire identification region with fixed probability. Manski and

Tamer (2002) considered the linear models with interval data, where the structural parameter is

partially identified on a set of minimizers of a particular objective function Q(θ), i.e. the true

parameter θ0 ∈ arg minθ∈ΘQ(θ), where Θ is the parameter space. Different from the classical

M-estimator, arg minθ∈ΘQ(θ) is no longer a singleton. Manski and Tamer (2002) constructed a

set of parameters An that consistently estimates the identified region arg minθ∈ΘQ(θ) in Haus-

dorff distance. Define

(1.9) dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

where d(b, A) = infa∈A ||b− a||. Let Ω = arg minθ∈ΘQ(θ), they showed that dH(An,Ω)→p 0

in probability. In addition, Imbens and Manski (2004) considered inference on the partially

identified structural parameter. They constructed a uniform confidence interval Cn for θ0 with
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coverage probability α, say,

lim
n→∞

inf
θ∈Ω

P (θ ∈ Cn) ≥ α

A more general form of partially identified models is the moment inequality model

Em(X, θ) ≥ 0

where m(., .) : Supp(X)×Θ→ Rd is a known function of observable random variable X and

θ, where supp(X) denotes the support of X .

Example 1.2.1 (Empirical English Auction Continued). Consider example 1.1.1. The pa-

rameter of interest satisfies (1.4). Then for any positive function h(x), such that E|h(X)| <∞,

E[h(Xi)Yi] ≤ E[h(Xi)l(Xi, θ)] ≤ E[h(X)(Ymax + ∆)]

Therefore we have moment inequalities, with

m(X, Y, θ) =

 h(X)l(X, θ)− h(X)Y

h(X)(Ymax + ∆)− h(X)l(X, θ)


Example 1.2.2 (Missing Data Problem Continued). Consider example 1.1.2, where only the

outcome is missing. The parameter of interest satisfies (1.5). Write P (Y = 1|Z = 1)P (Z =

1) = E(I(Y=1,Z=1)), and P (Z = 0) = E(I(Z=0)), then we have moment inequality model with

m(Z, Y, θ) =

 θ − I(Y=1,Z=1)

I(Y=1,Z=1) + I(Z=0) − θ
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Example 1.2.3 (Censored Data Continued). Consider example 1.1.3. The parameter of

interest satisfies 1.8. Then for any positive function h(x) such that E|h(X)| <∞, we have

E[h(X)I(V≥X′θ)] ≤
1

2
E[h(X)]

E[h(X)DI(V≤X′θ)] ≤
1

2
E[h(X)]

Then the moment inequalities hold with m(., .) given by:

m(X, V, θ) =

 1
2
h(X)− h(X)I(V≥X′θ)

1
2
h(X)− h(X)DI(V≤X′θ)



1.2.1. Consistent Set Estimation and Confidence Regions

Suppose the true parameter of interest θ0 belongs to some parameter space Θ. The set of

parameter values that satisfy the moment inequality models (1.2) is given by

Ω = {θ ∈ Θ : Em(X, θ) ≥ 0}.

The true parameter θ0 is not point identified because normally Ω is not a singleton: there are

more than one elements in Θ that satisfy the moment inequalities. The set Ω that captures all the

information about θ0 is called the identified region for θ0. Under the general moment inequality

setting, the identified region is neither necessarily an interval nor the Cartesian products of

intervals.

Chernozhukov, Hong and Tamer (2007) are among the first who construct the consistent

set estimator in Haursdorff distance of Ω and its confidence region, given the general moment

inequality assumptions. Their inference was based on the observation that the identified region
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is the set of minimizers of a criterion function Q(θ). Let

m(X, θ) =


m1(X, θ)

...

mp(X, θ)


and w1(θ), ..., wp(θ) be strictly positive functions on Θ. Define

(1.10) Q(θ) =

p∑
i=1

wi(θ)[Emi(X, θ)]
2I(Emi(X,θ)<0)

FunctionQ(θ) is minimized to zero if and only if θ ∈ Ω. In other words, Ω = arg minθ∈ΘQ(θ).

Therefore, the inference on Ω may be based on the empirical analog of Q: define

Qn(θ) =

p∑
i=1

wni(θ)m̄i(θ)
2I(m̄i(θ))<0

where m̄i(θ) = 1
n

∑n
j=1mi(Xj, θ), and wni(θ) is an estimate that converges to wi(θ) uniformly

in θ ∈ Θ. For a sequence an → ∞, define Cn(c) = {θ ∈ Θ : anQn(θ) ≤ c}. Chernozhukov,

Hong and Tamer (2007) showed that if cn ≥ supθ∈Ω anQn(θ) with probability approaching 1,

and cn/an →p 0, then dH(Cn(cn),Ω) = op(1). They further derived the rate of convergence,

which is close to 1/
√
n.

For the confidence region of Ω, note that Θ ⊂ Cn(c) is equivalent to supθ∈Ω anQn(θ) ≤ c.

Hence if cα is such that

P

(
sup
θ∈Ω

anQn(θ) ≤ cα

)
= 1− α

then P (Θ ⊂ Cn(cα)) = 1 − α. Chernozhukov Hong and Tamer (2007) constructed the confi-

dence region based on the approximation to the quantiles of supθ∈Ω anQn(θ).
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In addition, Romano and Shaikh (2008) provided a similar subsampling procedure for the

confidence region. Bugni (2010) proposed a Bootstrap procedure to approximate the quantiles

of supθ∈Ω anQn(θ), and showed that the convergence rate of the Bootstrap procedure is faster

than subsampling. Other related papers in the literature regarding the confidence regions for

moment inequality models can be found in Rosen (2008), Pakes, Porter, Ishiii and Ho (2006),

Andrews and Jia (2008), among others.

1.2.2. Optimal Inference

There currently exist a variety of inferential methods for the inference of partially iden-

tified parameters in models with moment inequalities. As illustrated earlier, the moment in-

equality models are usually represented via an objective criterion function Q(θ) so that Ω =

arg minθ∈ΘQ(θ). Function (1.10) is one of the examples applied by Chernozhukov, Hong and

Tamer (2007). Rosen (2006) provided an alternative formulation for the criterion function,

which is defined by

Q(θ) = min
λ≥0

[Em(X, θ)− λ]′V (θ)−1[Em(X, θ)− λ]

where V (θ) is the variance of m(X, θ). In fact, any function Q(θ) such that:

(1) Q(θ) ≥ 0 for all θ ∈ Θ, and

(2) Q(θ) = 0 if and only if θ ∈ Ω

can be adopted as a criterion function. See Andrews and Soares (2010) for a more formal

definition of criterion functions.

Since there are a variety of criterion functions Q(θ) that have Ω as the set of minimizers,

with each criterion function resulting to a different test statistic, and so a different confidence
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region, a natural question arises immediately: is there a criterion function that is better than the

others? Canay (2010) defined the optimality criterion in terms of the asymptotic power of the

test statistic for testing

H0 : Em(X, θ) ≥ 0.

He showed that the criterion function constructed based on the empirical likelihood function

(Owen 1990) achieves the optimal asymptotic power than others under certain rate restriction.

Suppose we observe i.i.d. data Xn = (X1, ..., Xn) from the population X , the empirical log-

likelihood for θ of moment inequality models is given by

lel(θ) = max
p1,...,pn

n∑
i=1

log pi

subject to: pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pim(Xi, θ) ≥ 0(1.11)

where pi denotes the probability mass placed atXi by a discrete distribution with support {Xn}.

The unrestricted empirical log-likelihood lu(θ) is defined similarly except that the moment re-

striction
∑n

i=1 pim(Xi, θ) ≥ 0 is not imposed. Based upon both restricted and unrestricted

empirical log-likelihood lel(θ) and lu(θ), the empirical likelihood ratio statistic is given by

ELRn(θ) = 2[lel(θ)− lu(θ)] = max
λ≤0

2
n∑
i=1

log(1 + λ′m(Xi, θ))

For each given θ, large values of ELRn(θ) suggest that the moment inequalities Em(X, θ) ≥ 0

are not supported by the data.

Canay (2010) showed that, for any θ ∈ Θ, and any c > 0, under H0,

P (ELRn(θ) ≥ 2cn) ≤ e−cn.



29

In addition, Any test for H0 can be defined as r(θ) = 1(Xn∈R(θ)), where R(θ) is the rejection

region of the sample space, i.e., test r(θ) rejects H0 if and only if Xn ∈ R(θ). For some δ > 0,

denote the neighborhood of R(θ) by Rδ(θ) = ∪x∈R(θ)B(x, δ). It is then showed that if a test

r(θ) is such that for any c > 0, under H0, there exists δ > 0 such that

(1.12) lim sup
n→∞

P (r(θ) = 1) ≤ lim sup
n→∞

P (Xn ∈ Rδ(θ)) ≤ e−cn

then

lim inf
n→∞

P (r(θ) = 0)

P (ELRn(θ) < 2cn)
≥ 1

if H0 is false. This result says that, among all the tests for H0 : Em(X, θ) ≥ 0 whose type I

error rate is restricted by (1.12), the empirical log-likelihood ratio test has the best asymptotic

power.

1.2.3. Bayesian approach to the partially identified models

The Bayesian methods have been extensively applied to models with loss of identifiabil-

ity. Gelfand and Sahu (1999) have studied issues surrounding non-identifiability and improper

priors in the context of generalized linear models. Neath and Samaniego (1997) considered

Bayesian updating for a non-identified two parameter binomial model. Gustafson (2005) stud-

ied Bayesian inference in non-identified scenarios involving misclassification and measurement

errors, which was discussed by a number of prominent researchers.

With a Bayesian approach McCulloch, Polson and Rossi (2000) have studied the multino-

mial probit model (MNP) with the case of non-identifiability. The MNP is a multivariate case
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of the binary choice model, defined as:

W = Xθ + ε

Y =


0, max(W ) < 0

i, max(W ) = Wi > 0

(1.13)

where ε is N(0,Σ). X is a p × k matrix, and max(W ) means the maximal element of W ′ =

(W1, ...,Wp)
′. In practice, econometricians observe a set of observations of (Y,X). In the set-

ting of (1.13), the parameters (θ,Σ) are not point identified. One of the commonly adopted

frequentist methods to achieve the point identification is to set the first diagonal element σ11of

Σ equal to 1. However, it is not straightforward to adopt this approach in Bayesian analysis

because of the difficulty in imposing a prior on the parameter space such that σ11 is one. Mc-

Culloch, Polson and Rossi (2000) proposed two ways of prior specification: one imposes priors

on θ and Σ directly, and the other imposed priors on θ and Σ|σ11 = 1.

A more related work to this dissertation is by Moon and Schorfheide (2009a), who were the

first to study the posterior properties of partially identified models, and compare the Bayesian

approach to the frequentist’s. In Moon and Schorfheide (2009a), the model can involve three

types of parameters: the structural parameters of interest θ, a reduced form parameter vector

that is point identified by data φ, and also a vector of auxiliary parameters α, which links the

structural and reduced form parameters via a known function θ = θ(φ, α). For a particular

value of φ, the auxiliary parameter takes its value in some set Aφ. The identified set for θ can

be written as

Θ(φ) = {θ(φ, α) : α ∈ Aφ}
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Assuming the log-likelihood function l(φ) for φ is known, we can consistently estimate φ by

maximum likelihood estimator φ̂. It is then straightforward to obtain a consistent set estimator

of Θ(φ), which is Θ(φ̂).

For any set A, let p(θ ∈ A|Data) denote the posterior probability that θ ∈ A. Moon and

Schorfheide (2009a) showed that for any τ ∈ (0, 1), there exists a set Tn(τ) ⊂ Θ(φ̂) such that

in probability,

P (θ ∈ Tn(τ)|Data)→p 1− τ

Hence Tn(τ) is the asymptotic 1 − τ credible set for θ. In addition, let G(θ, α) = φ be the

link function deduced by θ = θ(φ, α). Let α̂(θ) = arg maxα ln(G(θ, α)). Define Qn(θ) =

2[l(G(θ, α̂(θ)) − l(φ̂)]. Consider a confidence region for θ that is of the form CS(c) = {θ :

Qn(θ) ≥ −c} for some positive constant c. It is a confidence set of level 1− τ that is uniformly

valid asymptotically if

lim
n→∞

inf
θ∈Θ

P (θ ∈ CS(cτ )) ≥ 1− τ

Since Qn(θ) = 0 if θ ∈ Θ(φ̂), it follows immediately that Θ(φ̂) ⊂ CS(c) for any c > 0.

Therefore with probability approaching one,

(1.14) Tn(τ) ⊂ Θ(φ̂) ⊂ CS(cτ )

Result 1.14 indicates that the Bayesian credible set for θ locates inside the identified region,

whereas the frequentist confidence region extends beyond the identified region. Hence the

Bayesian credible set is asymptotically smaller. This result is different from the point identified

case.



32

Example 1.2.4 (Interval censored data). Consider the simple location model Yi = φ + εi,

where φ = EYi. Suppose the structural parameter θ = EXi is the expectation of an unobserv-

able Xi, which is censored almost surely in the interval [Yi, Yi +λ] for a known constant λ > 0.

Therefore φ ≤ θ ≤ φ + λ. Since econometricians can observe Yi, hence φ is point identified,

and is linked with θ by an auxiliary parameter α through

φ = θ − α, α ∈ [0, λ]

The identified region for θ is then Θ(φ) = {φ + α : α ∈ [0, λ]}. Suppose the prior p(θ|φ) is

uniform on [φ, φ + λ], and p(φ) is flat. In addition, suppose p(Y |θ, φ) = p(Y |φ) ∼ N(φ, σ2)

for some known σ2, then under some week regularity conditions, we can show that

p(θ|Data) ∝
∫
p(Data|φ)p(θ|φ)p(φ)dφ

∝
∫ θ

θ−λ
exp

(
−
∑n

i=1(Yi − φ)2

2σ2

)
dφ

∝ P (θ − λ ≤ Z ≤ θ)

∼ Uniform[Ȳ , Ȳ + λ]

where Z in the third line is N(Ȳ , σ2/n). Therefore, the interval Tn(τ) = [Ȳ + τλ/2, Ȳ +

λ − τλ/2] is an asymptotic 1 − τ credible interval for θ. Apparently Tn(τ) ⊂ Θ(Ȳ ). One can

additionally verify that

Qn(θ) =



0 Ȳ < θ < Ȳ + λ

− n
σ2 (Ȳ − θ)2, θ ≤ Ȳ

− n
σ2 (Ȳ − θ + λ)2, θ ≥ Ȳ + λ
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Therefore the confidence set CS that satisfies limn→∞ infφ infθ∈Θ(φ) P (θ ∈ CS|φ) = 1 − α is

given by CS = [Ȳ − z1−τ/2σ/
√
n, Ȳ + λ+ z1−τ/2σ/

√
n], where z1−τ/2 is the 1− τ/2 quantile

of the standard normal distribution. We can see Tn(τ) ⊂ Θ(Ȳ ) ⊂ CS.

Recently, Bollinger and Hasselt (2009) applied Moon and Schorfheide (2009a)’s setting to

binary misclassification problem. Let Z ∈ {0, 1} be a binary random variable with P (Z =

1) = π, where π is the parameter of interest. Instead of observing Z, we observe X ∈ {0, 1},

with measurement error. Suppose the misclassification probability is p = P (X 6= Z|Z). On

can show that µ = E(X) = π(1−2p)+p. Here µ is point identified, p is the reduced parameter,

and π is the parameter of interest, which is partially identified as we do not directly observe Z.

Suppose the data Xn = {X1, ..., Xn} are i.i.d., let n1 =
∑

iXi. Because the data are from

Bernoulli distribution, the likelihood function is given by

f(Xn|µ) = µn1(1− µ)n−n1

One can start with putting a joint prior f1(π, p), and obtain the joint prior f1(π, µ). Finally, the

posterior of π is obtained:

p(π|Xn) ∝
∫
f1(π, µ)f(Xn|µ)dµ.

1.3. Literature Review on Conditional Moment Restricted Models

The conditional moment restricted model is given by

(1.15) E(ρ(Z, g0)|W ) = 0
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where (ZT ,W T ) is a vector of observable random variables, and W might or might not be

included in Z. Here ρ is a residual function known up to g0. The conditional expectation

is taken with respect to the conditional distribution of Z given W , assumed unknown. The

parameter of interest is g0, which is infinite dimensional. Model (1.15) is a very general setting,

which encompasses many important classes of nonparametric and semiparametric models.

Example 1.3.1 (Regular nonparametric regression). Consider model

Y = g0(W ) + ε

assuming E(ε|W ) = 0. Let Z = (Y,W ), then it can be written as the conditional moment

restricted model with ρ(Z, g0) = Y − g0(W ).

Example 1.3.2 (Nonparametric IV regression). Consider nonparametric model

Y = g0(X) + ε

where X is an endogenous regressor, meaning that E(ε|X) does not vanish. However, suppose

we have observed an instrumental variable W for which E(ε|W ) = 0, then it becomes a non-

parametric regression model with instrumental variables, studied by Newey and Powell (2003)

and Hall and Horowitz (2005). Define ρ(Z, g0) = Y − g0(X), with Z = (Y,X). Then we have

conditional moment restriction

E(ρ(Z, g0)|W ) = 0

Example 1.3.3 (Single index model). Consider single index model

Y = h0(W T θ0) + ε
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where E(ε|W ) = 0. The parameter of interest is (h0, θ0), with h0 being nonparametric. This

type of model is studied by Ichimura (1993) and Antoniadis et al (2004). By defining Z =

(Y,W ) and g0 = (h0, θ0), we can write E(ρ(Z, g0)|W ) = 0.

Note that g0 is infinite dimensional, hence model (1.15) is either nonparametric or semi-

parametric. Therefore it is different from the conditional restriction considered by Kitamura

(2005) and Smith (20007), who assume g0 lies in a finite dimensional compact parameter space.

In this section, I will review the work done by Ai and Chen (2003), where the model was studied

in a general setting, and the parameter space was assumed to be compact. One of the important

applications of the model is the nonparametric instrumental regression. In this particular model,

the estimation is very difficult when the compactness assumption on the parameter space is

relaxed, and there is a huge literature on solving the so-called “ill-posed” problem. I will review

the literature of nonparametric IV regression in a separate section.

Let Θ be a compact parameter space that contains g0. Definem(w, g) = E[ρ(Z, g)|W = w],

then under the assumption that g0 is point identified by model (1.15),

(1.16) g0 = arg inf
g∈Θ

E[m(W, g)′Σ(W )−1m(W, g)]

where Σ(W ) is a positive definite matrix for any given W . To consistently estimate g0, Ai and

Chen (2003) replaced Θ by a finite dimensional sieve space Θn
q that becomes dense in Θ as n

increases, where q = dim(Θq). In addition, suppose m̂(w, g) is a nonparametric estimator of

m(w, g), then Ai and Chen (2003) proposed a sieve minimum distance (SMD) parameter that
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minimizes the sample analog of (1.16)

(1.17) ĝ = arg min
g∈Θnq

1

n

n∑
i=1

m̂(Wi, g)′Σ̂(Wi)
−1m̂(Wi, g)

where Σ̂(W ) is a consistent estimator of Σ(W ).

To consistently estimate m(W, g), consider a sieve estimator. Let pk(W ) = (p1(W ), ...,

pk(W ))′, where {pj(W ), j = 1, 2, ...} is a sequence of known basis functions whose linear

combination can approximate any square integrable real-valued function of W well. Then for

each g ∈ Θ, m(W, g) can be approximated by pk(W )′β for some vector of coefficients β as

k →∞. The linear sieve estimator form(W, g) is m̂(W, g) = pk(W )′β̂, where β̂ is the ordinary

least squares estimate obtained by regressing ρ(Zi, g) on pk(Wi)
′. Note that with Σ̂(W ) = I ,

the SMD estimator has a GMM interpretation: define P = (pk(W1), ..., pk(Wn))′, then the

SMD estimator defined by (1.17) with m̂(W, g) = pk(W )′β̂ is the GMM estimator based on the

following unconditional moment restrictions:

(1.18) E[ρ(Z, g)pj(W )] = 0, j = 1, 2, ..., k

with weighting matrix P ′P . Note that, this GMM interpretation implies an overidentifying

restriction: k ≥ q.

Under some regularity conditions imposed on ρ, k, and pk(W ), it can be shown that the

SMD estimator is consistent. With further assumptions imposed on the metric in Θ and on

the approximation rate of Θn
q , the SMD estimator can achieve a convergence rate ||ĝ − g0|| =

op(n
−1/4). When g0 consists of a parametric part θ0, the op(n−1/4) convergence rate is useful
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for constructing the asymptotic normality of θ̂. Ai and Chen (2003) in addition showed that the

SMD estimator θ̂ is semiparametric efficient.

Besides their work, Newey and Powell (2003) also considered the estimation of conditional

moment restricted model in a general setting. Their approach is similar to Ai and Chen (2003)

while they were more focusing on the identification and consistency. In particular, they were

among the first to consider the identification conditions of g0 in nonparametric IV regression

models (Example 1.3.2). Recently, Chen and Pouzo (2009a, 2009b) relaxed the compactness

assumption on the parameter space. To achieve the consistency, they imposed a penalty term.

1.4. Nonparametric Instrumental Variable Regression

Although the nonparametric instrumental variable regression model is a special case of the

nonparametric conditional moment restricted models, it is particularly of interest to us, be-

cause of its importance in many empirical applications and as a natural extension from the

conventional instrumental variable regression model. Consequently, ever since Newey an Pow-

ell (2003), nonparametric IV has been receiving tremendous attentions in both statistics and

econometrics literature.

The nonparametric IV regression is formally defined as:

(1.19) Y = g0(X) + ε

where Y is the response variable, and X is the explanatory variable, which can be either scalar

or mutivariate. Here ε denotes unobservable disturbances. The function g0 is nonparametric.

It satisfies regularity conditions but does not belong to a known, finite-dimensional parametric

family. In addition, ε is assumed to be correlated with the explanatory variable X , and hence
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E(ε|X) 6= 0. Therefore classical nonparametric methods can’t be applied here to estimate g0.

Instead, suppose we have available another observable W , for which

(1.20) E(ε|W ) = 0

In the literature of econometrics, W is known as ”instrumental variable”. We then have an

opportunity to estimate g0 based upon observed simple random samples of the triple (Y,X,W ).

The model (1.19) and (1.20) together is known as nonparametric regression model with presence

of instrumental variables.

1.4.1. Identification

In a nonparametric setting, the restriction E(ε|W ) = 0 is important to the identification of

structural function g0. Newey and Powell (2003) characterized the identification in terms of the

completeness of the conditional distribution of X given W as follows.

Consider the model

Y = g0(X) + ε, E(ε|W ) = 0,

Taking conditional expectation of Y yields

(1.21) E(Y |W ) = E[g0(X)|W ]

Since E(Y |W ) depends upon the conditional distribution of observable random variable Y |W ,

it is identified; hence the identification of g0 depends upon the existence and uniqueness of

integral equation (1.21), say, if E[g(X)|W ] = E[g̃(X)|W ] = E(Y |W ) almost surely implies
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g(X) = g̃(X). This is equivalent to the completeness of the conditional distribution of X given

W . Therefore Newey and Powell (2003) obtained the following proposition.

Theorem 1.4.1 (Newey and Powell 2003). If E(Y |W ) = E(g0(X)|W ) is satisfied almost

surely, then g0 is point identified if and only if for all δ(X) with finite expectation,E[δ(X)|W ] =

0 implies δ(X) = 0 a.s..

Example 1.4.1 (Severini and Tripathi 2006, Example 3.2). Let Y = g0(X) + ε, where g0 ∈

L2(X). The regressor X is endogenous and we have an instrument W satisfying E(ε|W ) = 0

a.s. Suppose that X = W + U , where W and U are independent and identically distributed as

Uniform [−1
2
, 1

2
]. DefineM = {δ ∈ L2(X) : E(δ(X)|W ) = 0a.s.}. Note that E(δ(X)|W =

w) =
∫ w+1/2

w−1/2
δ(x)dx, it can be shown that

∫ w+1/2

w−1/2
δ(x)dx = 0 for almost all w ∈ [−1

2
, 1

2
] if and

only if δ(x) = δ(1 + x) for almost all x ∈ [−1, 0] and
∫ 0

−1
δ(x)dx = 0. Therefore, we have

M = {δ ∈ L2(X) : δ(x) = δ(1 + x)a.a.x ∈ [−1.0], and
∫ 0

−1
δ(x)dx = 0}, which is clearly

not a singleton {0}. Therefore, g0 is not point identified.

In addition to the completeness of the conditional distribution, Severini and Tripathi (2006)

framed the identification problem in a general Hilbert space setting. Consider Y,X and W as

elements of a separable Hilbert space with inner product (., .). Assume that W is a known

linear subspace that contains the support of W , and call vector a orthogonal toW if (a, w) = 0

for all w ∈ W , which we write as a⊥W . Let M denote a linear subspace, and assume that,

corresponding to Y , there exists an element µy ∈ M. Here µy is a summarization of the

distribution of Y and may be viewed as the parameter of interest. In addition, assume that

Y −µy⊥W . We callM the“model space” andW the“instrumental space”. It is easy to see that

if µy is not identified, say, suppose corresponding to Y , there exist two different µy, µ′y ∈ M
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such that Y − µy⊥W and Y − µ′y⊥W , then we have a nonzero vector µy − µ′y ∈ M such that

µy − µ′y⊥W , which follows thatM⊥W . Hence we have

Theorem 1.4.2 (Severini and Tripathi 2006). µy is identified if and only ifM is not orthog-

onal toW .

In nonparametric regression problem, M = L2(X) and W = L2(W ) are infinite dimen-

sional linear subspaces consisting of square integrable functions. The restriction E(ε|W = 0)

implies Y − g0(X)⊥L2(W ). Therefore it follows from Theorem 1.4.2 that a sufficient and

necessary condition for g0 to be point identified, is that if a function f ∈ L2(X) satisfies

E[f(X)h(W )] = 0 for all h ∈ L2(W ), then f = 0 a.s, which is equivalent to saying if

E[f(X)|W ] = 0 a.s. for f ∈ L2(W ), then f = 0 a.s. This is the completeness of conditional

distribution of X|W .

Another equivalent statement of point identification of g0 was provided by Hall and Horowitz

(2005). Define

T̃ : L2(X)→ L2(W ), such that T̃ (g)(w) = E[g(X)|W = w],∀g ∈ L2(X)

µ(w) = E[Y |W = w]

It then follows from E[ε|W ] = 0 that T̃ (g0) = µ. Therefore, g0 is point identified if and only if

T̃ is nonsingular.

1.4.2. Ill-posed inverse problem

As previously discussed, when g0 is point identified, it is the unique solution to an integral

equation T̃ (g0) = µ, where T̃ is nonsingular, and is defined as
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T̃ (g)(w) =

∫
g(x)fX|W (x|w)dx

where fX|W (x|w) is the conditional density function of X|W . if fX|W (x|w) is continuous in x

for all w, then the integral operator T̃ : L2(X)→ L2(W ) has a continuous kernel, and hence is

compact. Therefore, although T̃ is continuous and nonsingular, it does not have a bounded in-

verse. As a result, g0 cannot be estimated consistently by T̂−1µ̂, simply replacing T̃−1 and µ by

their consistent estimators, because even small error in the data will cause arbitrarily large error

in the estimation. This problem is known as “ill-pose” problem, and was discussed by Kress

(1999). The ill-posed problem is the main task to overcome in the estimation of nonparametric

IV models, and there has been a huge literature concerned about it, see for example, Newey and

Powell (2003), Chen and Pouzo (2009a,b), Florens and Simoni (2009a), and Hall and Horowitz

(2005), among others.

Let us assume g0 ∈ L2(X). Even if g0 is not identified, in the sense that ΘI = {g ∈ L2(X) :

E(Y − g(X)|W )} 6= {g0}, the problem of recovering ΘI from the data is still ill-posed. To

illustrate the problem, we need to introduce some additional notation. For any g1 ∈ L2(X), let

[g1] = {g : E(g(X)|W ) = E(g1(X)|W )}

which is an equivalence family of g1 under T̃ . Let N (T̃ ) = {g : E(g(X)|W ) = 0}, the null

space of T̃ . It deduces a quotient space L2(X)/N (T̃ ). Define

A : L2(X)/N (T̃ )→ L2(W )

A[g] = T̃ g
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It can be shown that A−1 : L2(W ) → L2(X)/N (T̃ ) is not continuous. Therefore to recover

[g0] = ΘI from A−1µ requires some regularization techniques.

1.4.3. Estimation with point identification

In this subsection, we assume that g0 is point identified, and focus on the consistent estima-

tion of g0. To overcome the inverse problem, one way is to restrict the parameter space for g0 to

a compact subspace of L2(X). This approach is based on a fact that, if T̃ : Θ → W , where T̃

is a compact nonsingular linear operator and Θ is a compact function space, then T̃−1 is contin-

uous onW . Therefore the ill-posed problem is removed. Both Newey and Powell (2003) and

Ai and Chen (2003) followed this approach. Alternatively, Hall and Horowitz (2005) and Chen

and Pouzo (2009a,b) relaxed the compactness assumption, but put a regularization parameter

on the operator. This so-called Tikhonov regularization approach requires the convergence rate

assumptions on the eigenvalues of the linear operator. We present it in detail here.

In order for the regularization approach to be valid, it is essential to require the operator

that identifies g0 have positive eigenvalues. Therefore, we need to do some transformation first.

Denote by fX , fW and fXW the marginal densities of X and W , and the joint density of X and

W , respectively. It may be proved from (1.1) and (1.2) that

(1.22) EW{E(Y |W )fXW (z,W )} =

∫ ∫
g(x)fXW (x,w)fXW (z, w)dxdw

Define φ(z) = EW{E(Y |W )fXW (z,W )}, and t(x, z) =
∫
fXW (x,w)fXW (z, w)dw. In addi-

tion define the linear operator T on L2(z) by (Tψ)(z) =
∫
t(x, z)ψ(x)dx. Therefore (1.22) can
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be written into the form of integral equation

Tg0 = φ

Assuming T is nonsingular, all its eigenvalues are positive. However, the ill-posed problem

is still there because if we order the eigenvalues to be λ1 ≥ λ2 ≥ ... > 0, we have λk → 0 as k

increases. Let T̂ be a nonparametric consistent estimator of T , instead of inverting T̂ , Hall and

Horowitz (2005) imposed a regularization parameter an, which converges to zero as the sample

size increases. Let φ̂(−i) be the kernel estimator of φ with the ith observation missing. Their

proposed estimator is given by

ĝ =
1

n

n∑
i=1

(T̂ + an)−1φ̂(−i)

For the consistency of ĝ, appropriate assumptions on the convergence rates of the eigen-

values o T and a0 are necessary. In particular, a0 should not decease too fast, otherwise the

ill-posed problem comes back again. In addition, although ĝ will still be consistent even if the

restrictions on the eigenvalues of T do not hold, the rate of convergence of ĝ will be very slow

if the eigenvalues decrease too slowly. See Hall and Horowitz (2005) for detailed regularity

conditions.

1.4.4. Inference with partial identification

It is also interesting to make inference about nonparametric IV models without assuming

the point identification of g0, for the following two reasons: First, as discussed earlier, the iden-

tification of g0 depends on the completeness of the conditional distribution X|W . When the
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conditional distribution does not belong to the exponential family, the completeness assump-

tions is hard to check, and is in fact hard to be satisfied (see, for example, Example 1.4.1).

Another reason is that, sometimes instead of g0 itself, we are only interested in one of its

particular characteristics, say its linear functional h(g0). For example, in the nonparametric IV

regression, if g0(x) is the inverse demand function, then its consumer surplus at some level x∗

can be written as a functional h(g0) =
∫ x∗

0
g0(x)dx − g0(x∗)x∗. In this case, the identification

of g0 might not be necessary. Severini and Tripathi (2006) have shown that without assuming

g0 to be identified, it is still possible to point identify its functional h(g0).

Let Θ be the parameter space for g0, which is a collection of all the possible functions of g0,

defined to be a compact space Θ = {g : ‖θ‖s ≤ B} for some known B and norm ‖.‖s. Define

ΘI = {g ∈ Θ : E(Y |W ) = E[g(X|W )]a.s.}

When g0 is not point identified, ΘI is not equal to {g0}. Santos (2007) developed methods for

hypothesis testing in a nonparametric IV setting within a partial identification framework. The

kind of hypothesis tests he allowed for are of the form

H0 : ΘI ∩R 6= ∅ H1 : ΘI ∩R = ∅

where R is a set of functions that satisfy a property we wish to test for. Under the assumption

thatR is compact, the null hypothesis is equivalent toH0 : infg∈Θ∩RE[(E(Y−g(X)|W ))2f 2
W (W )] =

0. The advantage of this transformed null hypothesis overH0 : ΘI ∩R 6= ∅ is that no estimation

of ΘI is required.

Define Qn(g) = 1
n

∑n
i=1 hn(g,Wi)

2f̂ 2
W (Wi), where hn(g,Wi) is the Nadaraya-Watson ker-

nel estimator for E[Y − g(X)|W = Wi], and f̂W is the kernel estimator for fW . Let Tn(g)
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be a properly centered version of Qn(g). The test statistic is then infΘ∩R Tn(g). Santos (2007)

showed with some regularity conditions that, under the null hypothesis, infΘ∩R Tn(g) converges

in distribution to a Gaussian process.

For most hypotheses, the computation of the test statistic requires solving a minimization

problem over a nonparametric set of functions Θ ∩ R. Santos (2007) addressed this challenge

by approximating Θ∩R with a sieve space Θq ∩R, and the minimizing problem can be solved

over Θq ∩ R without losing the asymptotic results. Finally, the critical values can be found by

either subsampling or Bootstrap procedure (Santos 2008b).

Recently, Kovchegov and Yildiz (2010) considered consistent estimation of the identified

region ΘI . Recall that in Section 1.4.2, we established that ΘI = [g0], which is an equivalence

family in the quotient space L2(X)/N (T̃ ), hence it is straightforward to estimate [g0] using

the same regularization techniques as what have been used for the point identification case.

Kovchegov and Yildiz (2010) also considered constructing the confidence region for ΘI .

1.4.5. Bayesian approach

Recently, Florens and Simoni (2009a) proposed a quasi-Bayesian nonparametric approach

to estimating the structural function g0.

Let L2(X) denote the square integrable Hilbert space for g0. It is assumed that the prior of g0

is a Gaussian measure on L2(X) that defines a mean element g∗ and a covariance operator σ2Ω0,

and that the error term isN(0, σ2). Under some conditions, the conditional posterior of g0 given

σ2 is Gaussian with mean n−1/2A(Y1, ..., Yn)T + b, and covariance operator σ2(Ω0 − AKΩ0),

where

A = Ω0K
∗(KΩ0K

∗)−1, b = (I − AK)g∗
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K(g) = E(g(X)|W ) for each g ∈ L2(X), and K∗(h) = E(h(W )|X) for each h ∈ L2(W ).

Note thatKΩ0K
∗ is a compact operator which is not continuously invertible. Therefore (KΩ0K

∗)−1

is a non-continuous operator that amplifies the measurement error in (Y1, ..., Yn) and thus the

posterior is not consistent in the frequentist sense.

In order to solve the lack of continuity of (KΩ0K
∗)−1, Florens and Simoni (2009a) re-

placed the standard posterior distribution with a regularized posterior distribution, by applying

a Tikhonov regularization scheme to the inverse of KΩ0K
∗, so that to get (KΩ0K

∗ + anI)−1,

where an is a regularization parameter that plays the same regularization rule in Hall and

Horowitz (2005). By using this regularization scheme, it can be shown that the posterior mean

is consistent.

Note that, if we write U = g0(X)−E(g0(X)|W )+ε, andK(g0) = E(g0(X)|W ), then Y =

K(g0) + U . The regularization scheme therefore used here to achieve the posterior consistency

can be applied to general statistical linear inverse problems of the form Y = K(g0) +U , where

the operator K is compact so that its inverse is not continuous on the whole space of reference.

Florens and Simoni (2009b) proposed an extended version of Zellner’s g-prior (Zellner 1986)

to correct the ill-posedness.

1.5. Bayesian GMM and Bayesian Empirical Likelihood

As we have seen so far, many econometric and statistical models can be characterized by

moment conditions, either conditional Em(X, θ) = 0 or unconditional: E[m(X, θ)|W ] = 0,

where the parameter θ can be either finite dimensional or infinite dimensional. (Note that for

moment inequality model Em(X, θ) ≥ 0, we can always impose a bias parameter λ ≥ 0 and

rewrite it as E[m(X, θ) − λ] = 0.) To conduct appropriate Bayesian analysis of θ, one needs
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to specify the likelihood function. However, in many applications, what is known or assumed,

is just the moment conditions instead of the distribution of the data generating process. On the

other hand, even if the data generating process can be directly assumed, for instance, in linear

regression model, E[Y − x′θ|x] = 0, the error term Y − x′θ0 can be assumed to be normal,

however, the assumption inevitably suffers from the model mis-specification problem. When

the likelihood function is mis-specified, the result will be inconsistent. Therefore, it is more

robust to construct the likelihood function of θ directly from the moment conditions, without

assuming the true underlying likelihood function.

One way of constructing such a moment-based likelihood is to use the Bayesian GMM (Yin

2009). Write m̄(θ) = 1
n

∑n
i=1m(Xi, θ), and let V = V ar(m(X, θ0)), for any θ ∈ Θ where θ0

denotes the true structural parameter. Define the Bayesian GMM likelihood:

LGMM(θ) = e−nm̄(θ)′V (θ)m̄(θ)

Suppose p(θ) is the prior of θ, the GMM posterior is then given by p(θ|Data) ∝ p(θ)LGMM(θ).

When V is not known, one can replace it by a consistent estimator V̂ . Let

ΘI = arg min
θ∈Θ

Em(X, θ)′V Em(X, θ).

If θ0 is point identified, ΘI = {θ0}, Chernozhukov and Hong (2003) showed that the GMM pos-

terior is consistent, meaning that p(θ|Data) converges in probability to any small neighborhood

of θ0. Alternatively, one can use the empirical likelihood (Owen 1990):

LEL(θ) = max
pi:i=1,...,n

{
n∏
i=1

pi|
n∑
i=1

pi = 1,
n∑
i=1

pim(Xi, θ) ≥ 0, pi ≥ 0}
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Again, the Empirical likelihood posterior can be constructed via p(θ|Data) ∝ p(θ)LEL(θ).

This Bayesian procedure was considered by Lazar (2003), who heuristically showed that LEL

can be used as a valid likelihood function for every absolutely continuous prior in terms of

the posterior coverage probability. As for the formal posterior consistency, Chernozhukov and

Hong (2003) also showed that the posterior converges in probability to any small neighborhood

of θ0 if θ0 is identified by the moment conditions. However, to my best knowledge, so far there

is no result on the posterior consistency of partial identification case (when ΘI is not minimized

uniquely) yet.

One of the biggest concerns of using either Bayesian GMM or Bayesian empirical likeli-

hood, is the Bayesian interpretation of the moment-based likelihood function. Ideally, by the

Bayes’ law, the likelihood function should be interpreted as the conditional probability of the

data given the parameter. Since the true underlying likelihood is not assumed, one needs to

figure out a similar interpretation of the “artificial” likelihood function to be used. Fortunately,

both Bayesian GMM and Bayesian empirical likelihood have such a good interpretation. Kim

(2002) gave a Bayesian interpretation of LGMM with the “limited information likelihood” idea.

He showed that, although LGMM is not the true likelihood function, it is the best approximation

subject to the moment restrictions. It is also known that the empirical likelihood LEL is the

solution to the following constrained optimization problem:

min
L
K(L||Ln), subject to

∫
m(x, θ)dL,∀θ ∈ Θ

where K(L||Ln) is the Kulback-Leibler divergence, and Ln is the empirical distribution based

on X1, ..., Xn. Therefore, LEL is the best approximation to the empirical distribution of the
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data, and the latter uniformly converges to the underlying true likelihood according to Gliverko-

Cantelli theorem.

1.6. Structure of this Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 studies the moment

inequality models (1.2) with a Bayesian approach. I will first derive the moment-based like-

lihood function, which is the Bayesian GMM, and then study the large sample properties of

the posterior distribution of the partially identified parameter. In particular, I will consider two

cases subsequently: when the identified region has nonempty interior and when the identified

region has empty interior.

Chapter 3 addresses the moment and model selection problem in moment inequality models.

I will derive the posterior of each moment and model combination, and show that the posterior

is exponentially small if the selected combination defines an empty identified region.

Chapter 4 studies the Bayesian estimation of the semi-nonparametric conditional moment

restricted model (1.3). Because the structural nonparametric function may not be point identi-

fied, as discussed in Section 1.4, I will put the discussion into the partial identification setup.

The nonparametric function is approximated by a sieve series, with the number of sieve terms

diverging to infinity as n increases. The posterior distribution will then be constructed on the

sieve approximation instead of the true nonparametric function directly. I will show that the

posterior is consistent. Finally, an empirical example on estimating the Engel curve will be

conducted.

Chapter 5 is concerned with the Bayesian classification problem, where we measure both

the classification rule and classification risk simultaneously using the posterior distribution.
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Suppose the loss function is given by ρ(W, θ), where the classification rule depends on certain

parameter θ, and the risk is denoted by r, it then follows by definition that

Eρ(W, θ) = r

I will use the Bayesian empirical likelihood function approach to construct the posterior distri-

bution based on this moment condition.

The technical proofs are collected in the Appendices.
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CHAPTER 2

Bayesian Analysis in Moment Inequality Models

2.1. Introduction

In this chapter, I study a type of moment conditions that have been rapidly studied by econo-

metricians in recent years: moment inequalities. In moment inequality models, since the param-

eter of interest is allowed to be not point identified, the treatment is very flexible in dealing with

incomplete data, such as missing data or censored data. Consequently, the moment inequality

model has many important applications in economics and biostatistics. See Tang (2008) and

Haile and Tamer (2003) for the application in empirical auctions, Ciliberto and Tamer (2009) in

game theory, Khan and Tamer (2009) in survival analysis, Horowitz and Manski (2000), Manski

(2003), and Molinari (2010) in missing treatments, and references therein.

Let (Ω̄,A, P ) denote a probability space. Suppose we are interested in some structural

parameter θ0 ∈ Rd that satisfies a set of moment inequality conditions:

(2.1) Emj(X, θ0) ≥ 0, j = 1, ..., p

where mj(., θ), i = 1, ..., p are known real-valued moment functions. X is an observable

random vector defined on (Ω̄,A, P ), and assume we observe independent and identically dis-

tributed or stationary realizations Xn = {X1, ..., Xn} of X . A model that is characterized by

moment inequalities (2.1) is usually called a moment inequality model.
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As discussed in Chapter 1, a key feature of moment inequality models is that θ0 is not

necessarily point identified: there exists more than one solution to the inequalities in (1.1) if

Emj(X, θ0) is viewed as a function of θ0. In other words, let Θ be the parameter space that

contains θ0, and define

(2.2) Ω = {θ ∈ Θ, Emj(X, θ) ≥ 0, j = 1, ..., p}

then Ω can be a non-singleton set. In this case, we say that θ0 is partially identified on Ω, and Ω

is called the identified region.

Many partially identified models are characterized by such moment inequalities, where the

parameter of interest is only partially identified and therefore cannot possibly to be consistently

estimated. Under this framework, since the identified region captures all the information about

the parameter, it becomes one of the most interesting subjects of study in moment inequality

models. See Section 1.2 in Chapter 1 for the examples of moment inequality models and the

corresponding literature in both frequentist and Bayesian approach.

In this chapter, I study a Bayesian approach to the moment inequality models. The Bayesian

procedure provides distributional information for the partially identified parameter both inside

and outside the identified region, through its posterior distribution. The advantages of using

posterior distributions to characterize the parameters are many. First of all, as pointed out

by Poirier (1998), a Bayesian analysis of partial identification models is always possible if

a proper prior for the parameters is specified. If we have some a priori information on θ0,

then by using a properly chosen prior distribution, the resulting posterior density may not be

flat within the identified region; this provides evidence that the parameter is more likely to
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lie in some particular area. Secondly, even with a flat prior distribution, when θ0 is multi-

dimensional, the posterior density of some components of θ0 may no longer be flat, due to the

shape of the identified region. Hence if we are interested in these components of θ0, the posterior

density can still provide extra information on their locations within the identified region. As a

third advantage, it can be shown asymptotically that the posterior density has support only on

the identified region. Containing more information, a posterior density can always be used

to estimate the identified region, but not vice versa. Finally, the MCMC method is a very

powerful method to draw samples from the posterior, which can be used for approximations of

the calculation of the posterior statistics. In addition, those posterior samples can also be used

in frequentist methods to estimate the identified region, by, e.g., minimizing an econometric

criterion function in Chernozhukov Hong and Tamer (2007).

To my best knowledge, so far all the methods proposed in the partial identification literature

other than Liao and Jiang (2010) use traditional posteriors based on the likelihood function in-

stead of the moment inequalities. Our Bayesian approach proceeds with a more general frame-

work. In contrast to the previous work, we do not need to have a full probability model for the

observed data. Starting from moment inequalities Em(X, θ0) ≥ 0, where m(X, .) is a known

function of θ0, we put some bias parameter λ0 ≥ 0 so that Em(X, θ0) = λ0, and place prior

distributions on (θ0, λ0). Then the posterior density of θ0 can be derived based on a limited

information likelihood function, which is generated by the conditional asymptotic distribution

of 1
n

∑n
i=1m(Xi, θ0) − λ0 given (θ0, λ0), integrating out λ0. I study in detail the frequentist

behaviors of the posterior density function of θ0. I derive the bounds of convergence rates of the

posterior density both inside and outside of the identified region. It will be shown that there is a

big “gap” between them. Once the posterior density and its frequentist properties are obtained,
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it is easy to derive consistent estimators for the identified region. However, I point out that a

posterior density provides more information than a region estimation, since it can also incorpo-

rate prior information and describe how likely the true parameter is distributed both inside and

outside of the identified region.

2.2. Moment Inequality Models

2.2.1. Limited Information Likelihood

Suppose for θ ∈ Rd, we have moment inequality conditions:

Emj(Xi, θ) ≥ 0, j = 1, ..., p

Let m(X, θ) = (m1(X, θ),m2(X, θ), ...,mp(X, θ))
T . The moment inequalities can then be

rewritten as

(2.3) Em(X, θ) = λ, for some λ ∈ [0,∞)p

Here θ is the structural parameter of interest, e.g., θ = EY , the mean of the unobserved random

variable Y in Example 1.1 and 1.2, and λ is the bias parameter of Em(X, θ), e.g., λ = (EY2 −

θ, θ − EY1)T , in Example 1.1. Let θ0 be the true parameter value of θ, and λ0 be the true bias

parameter when θ = θ0. Suppose the prior of θ0 is supported on a large enough compact set that

contains the identified region. We are interested in constructing the marginal posterior for θ0.

In addition, let m̄(θ) = 1
n

∑n
i=1 m(Xi, θ), and G(θ, λ) = m̄(θ) − λ, then after the bias

parameter λ is introduced, G can be considered as the “de-biased” sample moment. In other

words, G is an estimating function with EG(θ, λ) = 0. It is over-parameterized, meaning that
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the dimension of (θ, λ) is bigger than the dimension of G, and hence we can not consistently

estimate θ0 by solving G(θ, λ) = 0 directly.

Under some regularity conditions, by the central limit theorem,

(2.4)
√
nG(θ, λ)|θ=θ0,λ=λ0 →d Np(0, V0)

where V0 = V ar(m(X, θ0)). We can therefore formally construct a “likelihood” function:

(2.5) p(Xn|θ, λ) =
1√

det(2π
n
V0)

e−
n
2
G(θ,λ)TV −1

0 G(θ,λ)

Note that for θ 6= θ0, (2.4) is not true in general. In fact, we can’t find a λ ∈ [0,∞)p such

that Em(X, θ) = λ for θ /∈ Ω. Hence (2.5) is not the large sample conditional pdf of G for

general (θ, λ). The asymptotic result (2.4) alone would not allow us to derive a likelihood

function over the entire Θ× [0,∞)p. To solve this problem, Kim (2002) introduces the concept

of Limited Information Likelihood. For each parameter θ ∈ Θ, although (2.5) may not be the

true probability density of Xn, it is shown to be proportional to the density that is closest to

the true density in the Kullback-Leibler distance, among a family of densities satisfying the

moment condition EG(θ, λ) = 0. The “likelihood” in (2.5) is therefore the limited information

likelihood of θ and λ, which is the best approximation to the true density that satisfies the

moment restrictions. The concept of the Kullback-Leibler information distance and applications

of it can be found in a number of works such as Cover and Thomas (1991) and Zellner (1994).

Let p(λ) be the marginal prior of λ. Assume λ and θ are independent, i.e., the conditional

prior of λ given θ is equal to the marginal prior of λ. Since we are only interested in θ, we thus
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integrate out λ to obtain the Limited Information Likelihood function for θ:

L(θ) = p(Xn|θ)

=

∫
[0,∞)p

p(Xn|θ, λ)p(λ|θ)dλ

=

∫
[0,∞)p

p(Xn|θ, λ)p(λ)dλ(2.6)

The fact that λ is a location parameter of (2.5) makes the problems solvable. This will be

described in detail in Section 3.1.

In practice, the asymptotic variance V0 in (2.5) is not known, but it can be shown to have very

little influence on the inference about θ, in the current situation of partially identified moment

inequality models. In future expositions, we will replace V0 by a pre-specified nonsingular

matrix V , and show that L(θ) has good and very similar frequentist properties for inference on

θ, whatever V is chosen. (A more delicate treatment would be to approximate V0 by a sample

analog and replace the true parameter θ0 in V0 by the unknown argument θ. This will be left for

future work. We expect that similar techniques will lead to similar results in this treatment, but

the technical details can be much more complicated.)

2.2.2. A General Result on the Posterior Set Estimation

I first define some notation that will be used subsequently. Throughout this chapter, let Ac

and int(A) denote the complement and interior of a set A respectively. In addition, following

CHT’s notation, ∀δ > 0, let (Ωc)−δ be the δ−contraction of Ωc,

(Ωc)−δ = {θ ∈ Θ : d(θ,Ω) ≥ δ}
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Let B(ω, r) denote an open ball around ω: B(ω, r) = {θ : d(ω, θ) < δ}, where d(ω, θ) denotes

the Euclidean distance between ω, θ. Let dH(A,B) denote the Hausdorff distance between set

A and B.

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

where d(a,B) = infb∈B d(a, b). We say a set estimator An consistently estimates Ω, if

dH(An,Ω)→ 0 in probability.

Moreover, for two sequences {an}∞n=1 and {bn}∞n=1, we write an � bn if an
bn
→ ∞. Finally we

write w.p.a.1 to represent “with probability approaching one in the probability distribution of

Xn as n→∞”.

Let p(θ) be the prior of θ, then by Bayes’ rule the posterior of θ satisfies

(2.7) p(θ|Xn) ∝ p(θ)L(θ)

It is desirable for the posterior to possess some “good” frequentist properties. Roughly

speaking, we want to see that the posterior density of θ concentrates near Ω and drops dramat-

ically to zero outside Ω, with a high probability as n increases. The significant difference of

such an asymptotic behavior between inside and outside the identified region implies that the

resulting posterior has the capability to produce consistent set estimation for Ω. Such a relation

between a “good” posterior and its capability to estimate Ω is demonstrated below for a scalar

function of Ω. (A more general estimation of Ω itself will also be discussed later in Section 2.3)
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The posterior probability that θ belongs to a set A is

P (θ ∈ A|Xn) =

∫
A

p(θ|Xn)dθ

Definition 2.2.1 (dense). A subset A ⊂ Ω is said to be dense in Ω if ∀ω ∈ Ω\A, and any

neighborhood Uw of ω, Uw ∩ A 6= φ.

An equivalent definition of dense subsets in real analysis is that the closure of A is Ω, i.e.

cl(A) = Ω. I will consider the large sample behavior of the posterior distribution on a dense

subset of Ω.

Suppose instead of θ we are interested in the functions of θ: g(θ), where g : Θ→ R is some

known continuous mapping. For instance, if we are interested in the ith component of θ, then

g(θ) = θi. Let g(Ω) = {g(θ) : θ ∈ Ω}, the image of g. We are interested in estimating g(Ω)

directly. Let us impose the following assumptions:

Assumption 2.2.1. Θ is compact.

Assumption 2.2.2. Ω is compact and connected.

In moment inequality models, the compactness of Ω follows from assuming Emj(X, .) :

Θ→ R to be continuous for each j. Here Ω is assumed to be connected so that the intermediate

value theorem on a topological space holds.

Assumption 2.2.3. g : Θ→ R is continuous on Θ.
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The estimation of g(Ω) to be constructed is based on the inverted posterior cdf of g(θ). Let

Fg(x) = P (g(θ) ≤ x|Xn), the posterior cdf of g(θ). Denote

F−1
g (y) = inf{x : Fg(x) ≥ y}.

Then x ≥ F−1
g (y) if and only if Fg(x) ≥ y. The following theorem provides a general con-

sistency result of a set estimator of g(Ω) based on the posterior cdf. Notice that since it can be

shown g(Ω) = [infθ∈Ω g(θ), supθ∈Ω g(θ)], one might think that a more natural set estimator can

be constructed by finding estimators for the end points of the interval g(Ω). This idea works,

for example, when g(Ω) = [EY1, EY2] where EY1 < EY2 and both Y1 and Y2 are observable.

In this case, Ω can be estimated by [Ȳ1, Ȳ2]. However, in a more general setting, estimating the

end points infθ∈Ω g(θ) and supθ∈Ω g(θ) would require the estimation of Ω first. The estimator

proposed in the following theorem provides a way of estimating the interval directly.

Theorem 2.2.1. Under Assumptions 2.2.1-2.2.3, assume there exists {πn}∞n=1, πn → 0 such

that

(1) ∀δ > 0, P (θ ∈ (Ωc)−δ|Xn) = op(πn)

(2) There exists a dense subset A ⊂ Ω, such that ∀ω ∈ A, and ∀ρ > 0,

P (θ ∈ B(ω, ρ)|Xn) � πn w.p.a.1

Let ĝ = [F−1
g (πn), F−1

g (1− πn)], then

dH(ĝ, g(Ω))→ 0 in probability.

There are some remarks regarding this theorem:
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(1) The consistent set estimator depends on the choice of πn. However, we do not pur-

sue an operational way of constructing the estimator based on the posterior distribution in this

chapter, because there are many frequentist methods to achieve this purpose, for instance, CHT,

Beresteanu and Molinari (2008), etc. this chapter is more focused on the posterior distribution

itself. The purpose of this theorem is to demonstrate that the posterior can be used to consis-

tently estimate the identified region, if needed. The posterior distribution can actually provide

more information than the identified region, when taking into account the prior.

(2) We can also provide an exact credible region (based on, say, setting πn = 0.025 for in-

stance) for the true parameter, conditional on the observed data. This is parallel to the provision

of the confidence intervals with required coverage probabilities in the frequentist approaches of

Imbens and Manski (2004), Rosen (2008), etc.

(3) It is possible to get an optimal rate of πn for optimal convergence rate in Hausdorff

distance. We leave it as a future work.

We will see in the next section that under some regularity conditions, the posterior distribu-

tion of θ satisfies conditions 1 and 2 in this theorem, which describe the frequentist properties

of the posterior. In addition, we will also propose a consistent estimator for Ω directly based on

the log-posterior density.

2.3. Posterior Properties: When the Identified Region Has Nonempty Interior

In this section it is assumed that the identified region contains a non-empty interior int(Ω).

I assume it is dense in Ω, then it is of interest to study the asymptotic properties of the posterior

distribution inside int(Ω).
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2.3.1. The Posterior Density

Following the discussions in Section (2.2), let us define the limited information likelihood

for θ:

(2.8) L(θ) =

∫
[0,∞)p

1√
det(2πV

n
)
e−

n
2

(m̄(θ)−λ)TV −1(m̄(θ)−λ)p(λ)dλ

where V is some pre-selected positive definite matrix that doesn’t depend on θ. We will use a

multivariate exponential distribution as the prior on λ throughout this chapter.

p(λ) = (

p∏
i=1

ψi)e
−ψTλ, ψ = (ψ1, ..., ψp)

T ∈ [0,∞)p, λ ∈ [0,∞)p

where ψ is pre-specified. I use the exponential prior for ease of integration over λ. More general

choices of p(λ) may not allow the integration to be carried out analytically, but the large sample

behavior of the posterior should remain unchanged.

Let Zθ be a p- dimensional multivariate normal random vector, with mean (m̄(θ)− V ψ
n

), and

variance covariance matrix V
n

. Then a straightforward calculation of (3.1) leads to

(2.9) L(θ) = P (Zθ ≥ 0)e−ψ
T m̄(θ)+ 1

2n
ψTV ψ(

p∏
i=1

ψi)

and we have p(θ|Xn) ∝ p(θ)L(θ).

For large values of n, by uniform WLLN, m̄(θ) is bounded on Θ w.p.a.1. Thus for fixed

ψ and V , e−ψ
T m̄(θ)+ 1

2n
ψTV ψ(

∏p
i=1 ψi) is bounded away from zero and infinity. Therefore the

only term that characterizes the large sample properties of the posterior should be P (Zθ ≥ 0).

Moreover, the variance covariance matrix of Z has order Op(n
−1), so we would expect that

limn→0 P (Zθ ≥ 0) = 1 in probability if and only if m̄(θ) − V ψ
n
≥ 0 w.p.a.1. This depends on
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whether θ belongs to Ω. For large n, the posterior density is positive inside Ω, and drops to zero

exponentially fast as θ gets away from Ω. I will formally examine these asymptotic properties

and derive the convergence rate of the posterior probabilities.

2.3.2. Large Sample Analysis

I now conduct a large sample analysis to the posterior distribution of the parameter θ.

Assumption 2.3.1. int(Ω) is non-empty and is dense in Ω.

The assumption that int(Ω) is dense in Ω can be restated as follows: for any ω on the

boundary of Ω, and any neighborhood Uw of ω, Uw contains points in int(Ω). Most of the

identified regions characterized by moment inequalities possess such property. The case when

int(Ω) will be empty is considered in the next section.

Assumption 2.3.2. Emj(X, .) : Θ→ R is continuous, for each j = 1, ..., p.

This assumption guarantees that Em(X, θ) is bounded in any compact set, and that the

uniform law of large number holds. The next assumption puts a regularity condition on the

prior of θ.

Assumption 2.3.3. (i) p(θ) is continuous, and bounded away from zero and infinity on Ω.

(ii) P (minj Emj(X, θ) = 0) ≡
∫
{θ:minj Emj(X,θ=0} p(θ)dθ = 0.

Let vjj be the jth diagonal element of V . We can write

Ωc = {θ : min
j
Emj(X, θ) < 0} =

{
θ : min

j

Emj(X, θ)√
vjj

< 0

}
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For any δ > 0, let

Aδ =

{
θ : min

j

Emj(X, θ)√
vjj

< −δ
}

Apparently, Aδ ⊂ Ωc.

Lemma 2.3.1. Under Assumptions 2.2.1, 2.2.2 and 2.3.2, if ∃ some an → 0 such that

∀δ > 0, P (θ ∈ Aδ|Xn) = op(an), then ∀ε > 0, P (θ ∈ (Ωc)−ε|Xn) = op(an).

Theorem 2.3.1. Under Assumptions 2.2.1, 2.2.2, and 2.3.1-2.3.3,

(1) ∀δ > 0, for some α > 0,

P (θ ∈ (Ωc)−δ|Xn) = op(e
−αn)

(2) ∀ nonempty open set Ξ ⊂ Ω, in probability

lim inf
n→∞

P (θ ∈ Ξ|Xn) > 0

Hence we are able to distinguish the asymptotic behavior of the posterior: for large value

of n, the posterior density is only supported on a neighborhood of the identified region, and the

posterior distribution drops to zero exponentially fast on any subset that is separated from Ω.

Based on these findings, we can construct consistent estimators for both Ω and its continuous

mappings. For the latter task we can now apply Theorem 2.2.1. Suppose g(.) is a continuous

real-valued function on Θ, let F−1
g (y) be the y−quantile of the posterior cdf of g(θ).

Theorem 2.3.2. Under Assumption 2.2.1-2.2.3 and 2.3.1-2.3.3, for any sequence πn =

op(1) satisfying ∀a > 0, e−an/πn → 0,

dH([F−1
g (πn), F−1

g (1− πn)], g(Ω))→ 0 in probability.
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It is also possible to consistently estimate Ω directly using the posterior density function.

The consistency is based on the fact that the posterior density attains its peak inside Ω and is

asymptotically supported on the entire identified region. In addition, it drops to zero outside Ω

at an exponential rate. Therefore, by properly choosing a cut off value εn, the region where the

log-posterior density function exceeds its peak subtracting εn should eventually converge to Ω.

Theorem 2.3.3. Under Assumptions 2.2.1-2.2.3, 2.3.1-2.3.3, let n � εn � 1. Define

An = {θ : max
ω∈Θ

ln p(ω|Xn)− ln p(θ|Xn) ≤ εn}

then

dH(An,Ω)→ 0 in probability

Remark 2.3.1. The estimation established in Theorem 2.3.3 is easy to implement, because:

(1) Note that

max
ω∈Θ

ln p(ω|Xn)− ln p(θ|Xn)

= max
ω∈Θ

(
ln p(ω)L(ω)− ln

∫
Θ

p(θ)L(θ)dθ

)
−
(

ln p(θ)L(θ)

− ln

∫
Θ

p(θ)L(θ)dθ

)
= max

ω∈Θ
ln p(ω)L(ω)− ln p(θ)L(θ)

Thus it’s no need to normalize p(θ)L(θ), avoiding numerically integrating p(θ)L(θ).

(2) Maximizing ln p(θ)L(θ) is computationally workable, since the maxima is attained

only inside Ω, where p(θ)L(θ) is quite smooth, hence Newton-Raphson’s algorithm

can carry out the maximization.



65

(3) Set an = maxω∈Θ ln p(ω|Xn) − εn, then An = {θ : ln p(θ) ≥ an}. The boundary

{θ : ln p(θ)− an = 0} is a closed curve with dimension d− 1.

2.4. Posterior Properties: When the Identified Region Has Empty Interior

When Ω has no interior, moment inequality models may contain exact moment conditions.

Em1j(X, θ0) ≥ 0, j = 1, ..., r

Em2j(X, θ0) = 0, j = 1, ..., p(2.10)

Moon and Schorfheide (2009b) have considered the estimation problem assuming θ0 is point

identified by the exact moment conditions. Let

m1(X, θ) = (m11(X, θ), ...,m1r(X, θ))
T ,m2(X, θ) = (m21(X, θ), ...,m2p(X, θ))

T

If p ≥ dim(θ0), and there doesn’t exist a pair of moment functions (m2i,m2j) such that {θ ∈

Θ : Em2i(X, θ) = 0} = {θ : Em2j(X, θ) = 0}, then θ0 is point identified by Em2(X, θ0) = 0.

Moon and Schorfheide (2009b) showed that by using the overidentifying information provided

by Em1(X, θ0) ≥ 0, the empirical likelihood estimators reduce the asymptotic mean squared

errors. In this section, I will relax this point identifying restriction, and allow θ0 to be partially

identified by model (2.10).

The identified region is defined by

Ω = {θ : Em1(X, θ) ≥ 0, Em2(X, θ) = 0}
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In our setting, Ω shrinks to a lower dimension sub-manifold of {θ : Em2(X, θ) = 0} with

boundaries defined by linear or nonlinear hyperplanes {θ : Em1(X, θ) = 0}. One of the prob-

lem one needs to take into account when considering the asymptotic behaviors of the posterior

distribution is that Ω has zero Lebesgue measure, due to the loss of dimensionality. Thus inte-

grating over Ω is always zero. The limit of posterior density is known as Dirac function:

lim
n→∞

p(θ|Xn) =


+∞ θ ∈ Ω

0, θ /∈ Ω

a.s.

Thus limn→∞ p(θ|Xn) is not a real valued function of θ.

However, it is still possible to study the large sample properties of the posterior distributions

completely on Θ. Like in int(Ω) 6= φ case, a dense subset in Ω plays an important role in

characterizing such behaviors. Define

(2.11) Ξ = {θ ∈ Ω : Em1(X, θ) > 0}

It is assumed that Ξ is dense in Ω.

2.4.1. Derivation for Limited Information Likelihood

SupposeXn = {X1, ..., Xn} is a stationary realization ofX . Define m̄j(θ) = 1
n

∑n
i=1 mj(Xi, θ),

for j = 1, 2. Like before, we introduce auxiliary parameter λ to moment inequalities and define

G(θ, λ) =

m̄1(θ)− λ

m̄2(θ)

 , θ ∈ Θ, λ ∈ [0,∞)r



67

For any positive definite r × r matrix V not depending on θ, define limited information likeli-

hood:

L(θ) =

∫
[0,∞)r

1√
det(2πV

n
)
e−

n
2
G(θ,λ)TV −1G(θ,λ)p(λ)dλ

Write V −1 into subblocks

V −1 =

Σ1 Σ3

ΣT
3 Σ2

 ,Σ1 : r × r,Σ2 : p× p

Let us still place an exponential prior: p(λ) = (
∏r

i=1 ψi)e
−ψTλ, ψ, λ ∈ [0,∞)r, then we have

L(θ) =

∫
[0,∞)r

1√
det(2πV

n
)

exp

−n
2

(m̄1(θ)− λ, m̄2(θ))

Σ1 Σ3

ΣT
3 Σ2


m̄1(θ)− λ

m̄2(θ)


 p(λ)dλ

=

∏r
i=1 ψi√

det(V2)
P (Z ≥ 0)eτ

where:

• Z follows multivariate normal distribution with mean µ, variance covariance matrix

Σ−1
1

n
, µ = m̄1(θ) + Σ−1

1 ΣT
3 m̄2(θ)− 1

n
Σ−1

1 ψ.

• V2 = (Σ2−ΣT
3 Σ−1

1 Σ3)−1. If V = V ar(m1,m2), then by the matrix inversion formula,

V2 = V ar(m2).

• τ = −n
2
m̄2(θ)TV −1

2 m̄2(θ)− ψT (Σ−1
1 ΣT

3 m̄2(θ) + m̄1(θ)) + 1
2n
ψTΣ−1

1 ψ

Roughly speaking, when θ /∈ Ω, either Em2(X, θ) 6= 0 or ∃Em1j(X, θ) < 0. When

Em2(X, θ) 6= 0, since V −1
2 is also positive definite, eτ → 0; when Em2(X, θ) = 0 but

Em1j(X, θ) < 0 for some j, then for large n, the jth component of µ < 0. Since the co-

variance matrix of Z has order O(n−1), P (Z ≥ 0)→ 0. Therefore, L(θ)→ 0 outside Ω. When
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θ ∈ Ω, by central limit theorem, m̄2(θ) = Op(n
−1/2), hence eτ = Op(1). In addition, for large

n, P (Z ≥ 0) ≈ 1. Thus L(θ) = Op(1).

2.4.2. Posterior Distribution

Let p(θ) denote the prior on θ, then p(θ|Xn) ∝ p(θ)L(θ).

Assumption 2.4.1. Ξ defined in (2.11) is dense in Ω.

This assumption states that if θ0 satisfies Em2(X, θ0) = 0 and Em1j(X, θ0) = 0 for some

j = 1, ..., r, then in any neighborhood of θ0 we can find θ1 such that Em1(X, θ1) > 0 and

Em2(X, θ1) = 0.

Suppose all the other components of Em1(X, θ0) except for j are positive. By continuity

of Em1(X, .), they remain to be positive in a small neighborhood of θ0. Suppose Assumption

2.4.1 does not hold, then within some neighborhood U of θ0, ∀θ ∈ U ∩ Ω, Em1j(X, θ) = 0,

and Em1i(X, θ) > 0, for i 6= j. Since Ω is connected, we argue that Em1j(X, θ) ≡ 0 on U ∩Ω.

Hence intuitively, Assumption 2.4.1 says that for each i, hyperplane {θ : Em1i(X, θ) = 0} has

no part that overlaps with {θ : Em2(X, θ) = 0}.

Example 2.4.1. This example shows that Assumption 2.4.1 is satisfied by the interval re-

gression model. Suppose we have moment inequalitiesE(Z1Y1) ≤ E(Z1X
T )θ ≤ E(Z1Y2) and

exact moment conditionEZ2(Y3−XT θ) = 0, where Zi, i = 1, 2 are r1 and r2 dimensional vec-

tors of instrumental variables respectively, with each instrument being positive almost surely,

and not sharing same components. Yi is scalar i = 1, 2, 3, and θ ∈ Rd. Y2 > Y3 > Y1 a.s. Let
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W = (Z1, Z2, X, Y1, Y2, Y3), then

m1(W, θ) =

Z1(Y2 −XT θ)

Z1(XT θ − Y1)

 ,m2(W, θ) = Z2(Y3 −XT θ)

Assume r2 < d so that θ can not be point identified by Em2(W, θ) = 0. Let us also assume

there exists a unit vector δ such that EZ2X
T δ = 0 but EZ11X

T δ < 0, where Z11 denotes the

first component of Z1. In this interval instrumental variable regression model,

Ξ = {θ : E(Z1Y1) < E(Z1X
T )θ < E(Z1Y2);EZ2Y3 = EZ2X

T θ}

We now show Ξ is dense.

For any θ ∈ Ω\Ξ, we have EZ2(Y3 − XT θ) = 0. For simplicity, let us assume the first

component of m1: EZ11(Y2 −XT θ) = 0, and for the jth component of m1: Em1j(W, θ) > 0,

for all j > 1. Then in a small neighborhood of θ, Em1j(W, .) > 0 for all j > 1. For small

enough ε > 0, let θ1 = θ + εδ, then

Em2(W, θ1) = EZ2(Y3 −XT θ)− εEZ2X
T δ = 0

Em11(W, θ1) = EZ11(Y2 −XT θ0)− εEZ11X
T δ = −εEZ11X

T δ > 0

Therefore θ1 ∈ B(θ, 2ε) ∩ Ξ.

Assumption 2.4.2. (i) Em1j(X, θ) is continuous on Θ for each j.

(ii) Em2j(X, θ) is Lipschitz continuous on Θ for each j.
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Assumption 2.4.3. w.p.a.1, for any βn →∞,

sup
θ∈Θ
||m̄2(θ)− Em2(X, θ)||2 ≤ ln βn

n

Assumption 2.4.4. p(θ) is continuous, and bounded away from zero and infinity on Ω.

Theorem 2.4.1. Under Assumptions 2.2.1,2.2.2, and 2.4.2-2.4.4,

(1) ∀δ > 0, for some α > 0,

P (θ ∈ (Ωc)−δ|Xn) = op(e
−αn)

(2) ∀ω ∈ Ξ, ∀δ > 0, for all βn →∞, we have in probability

P (θ ∈ B(ω, δ)|Xn) � 1

βn
n−d/2

where d = dim(θ0)

Like the case when int(Ω) 6= φ, let g(.) be a continuous real-valued function on Θ, let

F−1
g (y) be the y−quantile of the posterior cdf of g(θ).

Theorem 2.4.2. Under Assumptions of Theorem 2.4.1, if {πn}∞n=1 is such that e−αn ≺ πn ≺

n−β , for any α > 0 and some β > d
2
, then

dH([F−1
g (πn), F−1

g (1− πn)], g(Ω))→ 0 in probability.
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2.5. Monte Carlo Experiments

This section presents some Monte Carlo simulation results. I first provide evidence on the

finite sample behaviors of the consistent estimators described in the previous sections as well as

the posterior distribution. The models described in Example 1 and Example 2 in Chernozhukov

Hong and Tamer (2007) are simulated.

Example 2.5.1 (Interval data). Consider the interval censored data problem, where the pa-

rameter of interest θ = E(Y ) satisfies moment inequalities:

E(Y2 − θ) ≥ 0, E(θ − Y1) ≥ 0

Set Y1 ∼ N(0, 0.1) and Y2 ∼ N(5, 0.1), then Ω = [0, 5]. Y1 and Y2 are generated independently,

and observations with Y1 > Y2 are discarded. I also set ψ1 = 0.1, ψ2 = 0.5, V = I , the

identity matrix in the likelihood function. In addition, let us place flat prior on θ. The estimated

identified interval of θ described both in Theorem 2.3.2 with g(θ) = θ and in Theorem 2.3.3,

for sample size N = 500, 1000, 5000, and various choices of εn, πn are reported.

Table (2.1) reports the estimation of Ω given by Theorem 2.3.3. To compare the results

corresponding to the choices of εn, for each interval [a, b], we calculate γ = (a− 0)2 + (b− 5)2.

We find ε = ln lnn performs better than the other two choices, for it has a lower γ value.

To construct the estimator based on the posterior distribution function, I carried out the

Metropolis algorithm to draw B = 5000 samples from the posterior distribution, and calculated

the πn- quantile of the empirical cdf with various choices of πn. For the Metropolis algorithm,

the initial value was set to θ0 = 1 and a jump distribution θ̃ ∼ N(θj, 0.5). Table(2.2) reports

the findings with πn = e−
√
n, n−1, and 1/ lnn. As can be seen, πn = 1

n
appears to be a better
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choice compared with other two. It is also noticed that πn = 1/ lnn tends to zero too slow to

fully estimate the entire identified interval: the estimated interval shrinks too much inside Ω.

Table 2.1. Estimation based on posterior density

εn
√
n lnn ln lnn

n = 500 [-0.2841, 5.2634] [-0.123, 5.113] [-0.0389, 4.702]
n = 1000 [-0.2362, 5.2267] [-0.1135, 5.0977] [-0.0342, 4.9110]
n = 5000 [-0.1158, 5.1233] [-0.0477, 5.0476] [-0.0202, 4.9779]

Table 2.2. Estimation based on empirical cdf

πn e−
√
n 1

n
1

lnn

n = 500 [-0.0716, 5.0418] [-0.0498, 5.0069] [0.4048, 3.3447]
n = 1000 [-0.0422, 4.9983] [-0.0383, 5.0164] [0.3304, 3.2542]
n = 5000 [-0.0155, 5.0098] [-0.0063, 4.9927] [0.2717, 3.8012]

In addition, Figure 2.1 plots the posterior density function of θ with two choices of priors:

flat prior and N(0, 0.25) prior. Theoretically one needs to truncate the normal distribution

so that the priors are supported on a compact set. However, since the tail of normal density

function is very thin and we can choose a very large parameter space, we believe a normal prior

is workable here. We see that when a flat prior is used, the posterior density function is high

on the entire identified interval [0, 5], but when the prior is set to be N(0, 0.25), most posterior

mass falls in [0, 2], which tends to underestimating the true identified interval. However, with

this more informative prior, the posterior provides more information about the location of θ.

Example 2.5.2 (Interval outcomes in regression models). I simulated the instrumental in-

equality model

E(ZY1) ≤ E(ZXT )θ ≤ E(ZY2)
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Figure 2.1. The posterior density function of θ

where θ = (θ1, θ2)T , X = (X1, X2)T , Y = (Y1, Y2)T ∈ R2. Generate X ∼ N2((1, 1)T , I2). Let

Z1 = X1 + X2 and Z2 = X1 + 2X2. Generate Y1 ∼ N(3, 0.1), Y2 ∼ N(6, 0.1) independently.

We discard a stack of generated data if either Z1 or Z2 is negative. The identified region is

Ω = {θ : 2 ≤ θ1 + θ2 ≤ 4, 9 ≤ 4θ1 + 5θ2 ≤ 18}, a two dimensional region with parallelogram

boundary. To estimate this model, set ψ = (0.1, 0.1, 0.5, 0.5)T , V = I . Fixing sample size

n = 500, we conduct the Metropolis algorithm to draw B = 5000 samples from the posterior

distribution.

Let us first put a flat prior on θ. Figure 2.2 (left) displays the parallelogram boundary of Ω

as well as 5000 draws from the posterior distribution. Most of the draws fall uniformly inside

the identified set except for those close to the two opposite angels of the parallelogram. We can

see there is small “bias” at boundaries.

In order to show that when a more informative prior is applied, the posterior distribution

indeed provides more information about the location of the true parameter inside the identified

region, I repeated the same MCMC procedure but with prior distribution

(2.12) θ1 ∼ N(10, 122), θ2 ∼ N(−6, 122)
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where θ1 and θ2 are a priorily independent. This prior can be used when, for instance, a previous

study estimates that Eθ1 ≈ 10 and Eθ2 ≈ −6, with the same standard deviation 12. Figure 2.2

(right) displays 5000 MCMC draws from the posterior derived from prior (2.12). We see that

the draws mostly concentrate on the right bottom corner inside the identified region, which is

close to (10,−6), showing that our Bayesian approach indeed provides more information on θ

in this case than the frequentist method, which would only estimate the identified region and

provide confidence set, but not tell how θ is distributed inside it.
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Figure 2.2. The identified set and MCMC draws
Left: flat prior; Right: prior(5.1)

Example 2.5.3 (When int(Ω) is empty). In this example, I simulated an interval instrumen-

tal regression model with exact moment conditions. Consider,

E(Z1Y1) ≤ E(Z1X
T )θ ≤ E(Z1Y2), E(Z2X

T )θ = E(Z2Y3)
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Generate (X1, X2) ∼ N2((1, 1)T , I2), and Z1 = X1 + X2, Z2 = −2X1 + 2X2. (Y1, Y2)T ∼

N2((3, 6)T , 0.1I2), independent of X . Let Y3 = Z1 + 3. The identified region is then given by

Ω = {(θ1, θ2) : θ1 = θ2, 2θ1 + θ2 ≤ 4}

To estimate Ω, let us choose a positive definite weight matrix

V −1 =

 I2 Σ3

ΣT
3 6


where Σ3 = (1, 2)T .

Figure (2.3) displays the identified region as well as 10,000 draws using Metropolis algo-

rithm, with two choices of ψ1 = (0.5, 0.5)T , and ψ2 = (0.01, 0.01)T respectively.

The identified interval of θ1 was also estimated, which is [1, 2] theoretically. Table (2.3)

reports [F−1
e (πn), F−1

e (1 − πn)] based on the empirical cumulative distribution function Fe of

5000 draws from the posterior distribution.

Table 2.3. Estimation of Ω1 = [1, 2] based on the empirical cdf

πn e−
√
n 1√

n
1

lnn

n = 500 [1.1384, 2.0295] [1.0068, 1.9331] [1.0904, 1.6207]
n = 1000 [1.0809, 1.9425] [0.9620, 1.8844] [1.1183, 1.8874]
n = 5000 [1.1045, 1.8551] [0.9944, 1.9575] [1.1878, 1.9729]

2.6. An Empirical Missing Data Example with Fictitious Data

In this section I apply the proposed Bayesian approach to a simple missing data problem,

with fictitious data. Suppose we conduct a survey to estimate the employment rate in a certain

population. Let Yi = I(i is employment) indicate whether person i is employed. Because there
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Figure 2.3. The identified set and MCMC draws

are people who refused to answer the questionnaires, hence the nonresponse is where the miss-

ing data problem comes from. Let Zi = I(i is not missing) indicates whether Yi is not missing.

Suppose we draw a simple random sample from a population (Y, Z). We are interested in the

overall employment rate in this population θ = P (Y = 1), which is the parameter of interest.

Because in practice people who respond the questionnaires are more likely to be employed than

those who didn’t response, therefore we assign the following fictitious population parameter

values:

P (Y = 1|Z = 1) = 0.3, P (Y = 1|Z = 0) = 0.7, P (Z = 0) = 0.33
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The missing data assumption does not hold in this example. The true parameter is θ0 = 0.5,

which is the true employment rate in this specific population. By the discussion in Example

1.1.2, θ0 is not point identified, but satisfies the moment inequalities (1.5).

I simulated 5,000 data, of which 1,622 were missing. The proportion of employment among

people who responded is

P̂ (Y = 1|Z = 1) =
2, 355

5, 000− 1, 622
= 0.69.

Hence the missing-at-random assumption, although guarantees the point identification, tends

to over-estimate the employment rate. The confidence interval calculated based on missing-at-

random is [0.68, 0.71].

Suppose we make another survey study on another 25 people. With such a small sample

size, we are able to put additional effort to track all the surveyed 25 people such that none of

them are missing. It is then observed that the proportion of employment of this new sample

is 0.45, with standard error
√

0.45(1− 0.45)/25 = 0.1. We can then incorporate this as an

informative prior p(θ) ∼ N(0.45, 0.12), and then obtain the posterior based on p(θ). This

procedure is equivalent to combining both the original and the new data.

Figure (2.4) displays the posterior density curve of θ0 using either uniform prior on [0, 1] or

the informative prior p(θ) respectively. When the informative prior is used, the posterior density

is not flat within the identified region, which also achieves the peak around the true parameter

value. If the additional sampling is representative of the entire population, this informative prior

and therefore the corresponding posterior should be reliable.

Finally, we compare the Bayesian credible interval with the frequentist confidence interval

obtained by Imbens and Manski (2004). The Bayesian 95% credible interval [a, b] is defined
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Figure 2.4. The identified set and MCMC draws

such that P (θ ≤ a|Data) = 0.025, and P (θ ≤ b|Data) = 0.975; the frequentist 95% confi-

dence interval [c, d] converges uniformly such that limn infθ∈Θ P (θ ∈ [c, d]) ≤ 95%.

Table 2.4. 95% Confidence v.s. 95% Credible Interval

Method C.I. Length
Freq. Confidence [0.465, 0.801] 0.336

Imbens & Manski (2004)
Bayes. Credible [0.477, 0.792] 0.315

Uniform[0, 1] prior
Bayes. Credible [0.465, 0.679] 0.214
N(.45, 0.12) prior

Moon and Schorfheide (2009a) showed that in partially identified models, the Bayesian

interval is always smaller than the frequentist confidence interval. Our computed results are

consistent with their conclusion. Especially when the informative prior is used, the Bayesian

credible region is much smaller than that was obtained by Imbens and Manski (2004).
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2.7. Conclusions

In partially identified models, there are two different objects to make inferences: one is

the identified region and the other is the true parameter. The simulation results demonstrate

that when dealing with the first goal, a flat prior is appropriate; to achieve the second goal, an

informative prior is more preferable. Hence in this case one should include as much information

on the prior as possible. The Bayesian approach is specially attractive in dealing with the

second goal, since the posterior distribution can provide more information about the inside of

the identified region, because of the prior distribution.

Based on the posterior distribution, we can in principle construct a credible set for the true

parameter conditional on the data with a required coverage probability (This is out of the scope

of this chapter, but it is straightforward by using the posterior density function). Moon and

Schorfheide (2009a) derived a Bayesian credible set for the true parameter and compared it

with the frequentist confidence interval and concluded that while frequentist condence intervals

usually extend beyond the boundaries of the identified set, the Bayesian credible sets are located

in the interior of the identified set. In the framework of this chapter, it is also possible to derive a

Bayesian credible set for the identified region if one can express the identified region explicitly

in terms of θ and λ, which can be an interesting topic for future work.
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CHAPTER 3

Model and Moment Selection in Moment Inequality Models

3.1. Introduction

Similar to the selecting the moment conditions in GMM, there is a moment and model selec-

tion problem in moment inequality models. Suppose there are p candidate moment inequalities

Emj(X, θ) ≥ 0, j = 1, ..., p

with a k-dimensional parameter vector θ = (θ1, ..., θk)
T that belongs to the parameter space

Θ1×· · ·×Θk. The moment selection problem refers to selecting the best subset of the moment

inequalities among all the possible candidates, while the model selection procedure addresses

the problem of selecting the best model that is characterized by setting some components of the

parameter to be zero. Such a candidate model can be a parameter subspace like {0} × Θ2 ×

· · ·×Θk. Therefore, the moment/model selection procedure produces a combination of moment

inequalities and a parameter subspace. Consider the following example:

Example 3.1.1 (Interval censored regression). (See, e.g., Example 1 of CHT 2007.) Let Y

be a real valued random variable which lies in [Y1, Y2] almost surely; Y1 and Y2 are observed

random variables, but Y is not observed. (Sometimes one may assume that Y2 = Y1 + 1 as in

the case when Y1 is the recorded integer part of Y .) . Assume that

Y = XT θ + ε
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where X is a regressor vector. In addition, there exists a observable random vector Z such that

E(ε|Z) = 0. Here Z can be part of the regressors in X or a set of instrumental variables when

X is endogenous. It the follows that E(ZY ) = E(ZXT )θ. Due to Y1 ≤ Y ≤ Y2, we then have

moment inequalities

EZ(Y2 −XT θ) ≥ 0, EZ(XT θ − Y1) ≥ 0(3.1)

In this example, the moment selection problem can correspond to selecting the instrumental

variables (components ofZ), while the model selection problem is related to selecting the useful

explanatory variables (components of X) that have nonzero regression coefficients.

�

A similar selection problem in point identified case was previously considered by Andrews

and Lu (2001), where they applied their approach to dynamic panel data models. We provide a

similar example as follows.

Example 3.1.2 (Dynamic Panel Data). Consider a dynamic panel data model

yit = z′itθt + ηi + vit

Here yit is the dependent variable, censored between yLit ≤ yit ≤ yUit . Hence instead of yit,

econometricians can only observe yLit, y
U
it . Also, vit is an unobserved error, ηi is an unobserved

individual effect, and θt are unknown parameters of interest. The distributions of ηi and vit are

not specified, and hence the limited information likelihood based on some moment conditions

given below may be preferable. All of the random variables are assumed to be independent

across individuals i.
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The regressor zit = (Xit, wit) is an observed vector, where Xit = (xit−1, ..., xit−L) includes

L lags of some covariates that may be exogenous, predetermined, or endogenous, where L ≥ 0.

The true lag length L0 may be unknown. In addition, zit also includes exogenous variables wit,

which are contained in an observed vector Zit. The vector Zit may also contain variables that

do not enter the regression function. Such variables can be employed as instrumental variables.

The following assumptions are imposed to derive the moment conditions.

Eηi = Evit = 0,∀t = 1, ..., T.

EvitZit+1 = ... = EvitZiT = 0,∀t = 1, ..., T.

We may further partition Zit into variables that are either uncorrelated with ηi or not, and

achieve additional moment conditions. We do not do so here for simplicity. The moment

conditions implied are

EZit(yit − yit−1) = EZit(z
′
itθt − z′it−1θt−1),∀t = 1, ..., T

Eyit = Ez′itθt,∀t = 1, ..., T.

Assume {Zit : i = 1, ..., n, } is generated from a distribution with support supp(Zt), which

is compact for each t. Since one can always transform Zit into Zit − inf supp(Zt), hence

without loss of generality, we assume Zit ≥ 0. As yit is censored in [yLit, y
U
it ], we have moment

inequalities

EZit(y
L
it − yUit−1) ≤ EZit(z

′
itθt − z′it−1θt−1) ≤ EZit(y

U
it − yLit−1),∀t = 1, ..., T

EyLit ≤ Ez′itθt ≤ EyUit ,∀t = 1, ..., T.

Setting different lag coefficients to zero yields models with different number of lags in Xit.

Therefore, the model selection refers to selecting the lagged variables of Xit. In addition, θt
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also contains covariates of other variables wit. If the effects of some particular components of

wit are of special interest, we should always keep the corresponding coefficients in the model.

�

As illustrated by the previous example, by allowing the dimension of the parameter space

to change, we consider the case where the parameter vector may incorporate several models.

By setting different elements of θ equal to zero, one obtains different models. Andrews and Lu

(2001) also gave another example where a model may have structural breaks in the parameters.

For example, when t ≤ t0, θt = θ0, which is the pre-break value; when t > t0, θt = θ0 + dθ1,

which adds a post-break deviation to the pre-break value. Here t0 may be unknown. There may

be multiple time breaks, and one can stack the break values into a single vector of parameters

θ = (θ0, dθ1, ...). Different sets of post-break deviations can denote changes at different times.

If the post-break deviations are set equal to zero, then one obtains the model with no structural

breaks at that time.

3.2. Posterior Setup

Suppose we have p candidate moment inequalities

Emj(X, θ) ≥ 0, j = 1, ..., p

with a k-dimensional parameter vector θ = (θ1, ..., θk)
T ∈ Θ1 × · · · × Θk. Here the possible

moment inequalities and corresponding subsets of the parameter space are known. What is not

known is which ones are the best.

Instead of selecting the moment inequalities and the parameter subspace as two separate

procedures, I select them as a combination simultaneously. The selection procedure is based
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on the posterior probabilities. I assign prior probabilities to each candidate moment/model, and

then derive the posterior probabilities based on the limited information likelihood described

previously in Chapter 2, by integrating out the structural and nuisance parameters (θ, λ).

Let us define a combination Cs = (Ms1 ,Θs2), with a vector index s = (s1, s2), s1 ∈

{1, 2, ..., 2p − 1}, and s2 ∈ {1, ..., 2k}. Here Ms1 denotes a subset of moments, for instance,

Ms1 = {m1}, or Ms1 = {m1,m2}, etc. Then there are 2p − 1 number of such possible subsets.

In addition, we denote by Θs2 as the parameter subspace corresponding to the selected model.

By definition, Θs2 is the subset of vectors with one or more components fixed to be zero. There

are 2k possible Θs2’s. (Notice that we can select none of the parameters, in which case the

model is a reduced model, for example, in Cox proportional hazard model, if all the parameters

are set to be zero, we get the baseline model.) The combination Cs combines both the candidate

moment functions and the parameter subspace together. When selecting a subset of moment

inequalities, we also specify a subspace of the structural parameter.

Example 3.2.1 (Example 3.1.1 continued). Let Θ1×Θ2 be the parameter space for (θ1, θ2),

chosen large enough so that {(θ1, θ2) : 0.2 ≤ 1
3
θ1 + θ2 ≤ 0.4,−0.1 ≤ θ2 ≤ 0.1} ⊂ Θ1 ×Θ2. A

scope of candidate combinations can be any of the following:

{E(Z1X
T θ − Z1Y1)}, Θ1 ×Θ2

{E(Z1X
T θ − Z1Y1), E(Z1Y2 − Z1X

T θ)}, Θ1 ×Θ2

{E(Z2X
T θ − Z2Y1)}, {0} ×Θ2

{E(Z1X
T θ − Z1Y1), E(Z1Y2 − Z1X

T θ), E(Z2Y2 − Z2X
T θ)},Θ1 × {0}

...
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{E(Z2Y2 − Z2X
T θ)}, Θ1 ×Θ2

Definition 3.2.1. A combination Cs = (Ms1 ,Θs2) is compatible if and only if

inf
θ∈Θs2 ,λ∈[0,∞)m

||EMs1(X, θ)− λ||2 = 0

where m denotes the number of candidate moment functions in Ms1 .

Assumption 3.2.1. (i) Θ = Θ1 × ...×Θk is compact.

(ii) ∀j = 1, ..., p, Emj(X, .) : Θ→ R is continuous.

Lemma 3.2.1. Under Assumption 3.2.1, the following statements are equivalent.

(i) Cs is compatible.

(ii) Ωs = {θ ∈ Θs2 : EMs1(X, θ) ≥ 0} is not empty.

(iii) For all positive definite V0,

inf
θ∈Θs2 ,λ∈[0,∞)m

(EMs1(X, θ)− λ)TV0(EMs1(X, θ)− λ) = 0.

Let us partition the parameters θ and λ into “restricted” and “unrestricted” parts according

to the biases of the selected and unselected moment functions. Formally, let

λ = EM(X, θ)

where M(X, θ) = (m1(X, θ), ...,mp(X, θ))
T , the vector of all the candidate moments, and θ =

(θ1, ..., θk)
T , the vector of full parameters supported on Θ1 × ...× Θk. Suppose a combination

Cs = (Ms1 ,Θs2) selectsmmoment conditionsMs1 , and leaves the rest of the moments (denoted
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by M c
s1

unused). It also selects a submodel parameterized by θs ∈ Θs2 , setting all the other

components of θ, (which is denoted by θcs) to be zero.

One can view model selection as placing a restriction on θ, while moment selection can be

reviewed as placing a restriction on λ. Let λs be the subvector of λ corresponding to the selected

moments. Let λcs be the remaining components of λ corresponding to M c
s1

. Then we have

EMs1(X, θs) = λs, λs ≥ 0

EM c
s1

(X, θs) = λcs, λ
c
s ∈ Rp−m

The bias λs for the selected moments is restricted to be nonnegative, while the bias λcs for the

unselected moments is left unrestricted. We thus have partitioned the moment functions into

M(X, θs) = (Ms1(X, θs)
T , M c

s1
(X, θs)

T )T , and λ into λ = (λs, λ
c
s). We put prior:

p(λcs|Cs) ∼ Np−m(0,Σ)

p(λs|Cs) ∼ Exp(ψ)(3.2)

where Np−m denotes the p − m dimensional multivariate normal distribution, assumed to be

a priorily independent so that Σ = diag{σ2
1, ...σ

2
p−m}. Exp(ψ) is the exponential distribution

with parameter ψ, as in Chapter 2.

We include both selected Ms and unselected M c
s to construct the limited information likeli-

hood, which depends only on the unrestricted θs since θcs = 0.

(3.3) L(Xn|θs, λ, Cs) =
1√

det(2π
n
V )
e−

n
2

(M̄(θs)−λ)TV −1(M̄(θs)−λ)
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where M̄(θs) = 1
n

∑n
i=1M(Xi, θs). The prior of Cs is imposed. Then the posterior of Cs can

be obtained by integrating out θs and λ = (λTs , λ
cT
s )T , which is proportional to the “integrated

likelihood”:

p(Cs|Xn) ∝
∫∫

Θs2×[0,∞)m×Rp−m
L(Xn|θs, λ, Cs)p(θs|Cs)p(λs|Cs)p(λcs|Cs)

·p(Cs)dθsdλsdλcs(3.4)

3.3. Posterior Consistency of Liao and Jiang (2010)

This chapter is actually written based on the materials of my published paper Liao and

Jiang (2010, hereafter LJ), which considered the moment/model selection problem in interval

censored regression problem. Due to the limited space, in this section I only briefly go over the

main results, and details can be found in the published paper. The selection problems considered

in LJ consist of two parts: selecting the compatible combinations of moment /model, and among

the compatible combinations, selecting the “optimal” one. The optimal compatible combination

is defined as the one with maximal dim(Ms1)−dim(Θs2). This is because it is desirable that the

optimal combination should contain as many moment inequalities as possible, since intuitively

the more moment inequalities, the smaller the identified region, and hence the more information

we have about the parameter. Meanwhile, it is required that the model should be as simple as

possible, since simpler models are easier to interpret.

The selection procedure was known as the maximal posterior criterion (MPC), by maximiz-

ing the posterior of the combinations. In order for the MPC procedure to asymptotically select

the optimal combination, the variance covariance matrix Σ in prior (3.2) should depend on the
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sample size:

σ2
i = σ2

n, where σ2
n →∞ but not exponentially fast

p(θs|Cs) ∼ Nt(0, nσ
2
nIt), where t = dim(θ).(3.5)

Under further regularity assumptions (see LJ Assumptions 4.2-4.6), it can be shown that

Theorem 3.3.1 (LJ Theorem 4.3, MPC Consistency). Let

C∗ = arg max
Cs

p(Cs|Xn)

where p(Cs) > 0 does not depend on n for each Cs, and priors on specified by (3.2) and (3.5)

for interval censored regression model, with probability approaching one, C∗ = (Ms1 ,Θs2)

then is compatible and has the largest dim(Ms1)− dim(Θs2).

We can impose the following assumption which is similar to Assumption IDbc in Andrews

and Lu (2001):

Assumption 3.3.1. The true model and moment combination is the unique combination of

(M,Θ), such that it has the maximal dim(M)− dim(Θ).

If this assumption holds, the previous theorem implies that by maximizing the combination

posterior, we can asymptotically select the actual true combination of model and moments. In

particular, when the dimension of the true parameter is fixed, and we are only selecting the

corresponding moment inequalities that are satisfied by the true parameter of interest, Assump-

tion 3.3.1 becomes: There exists a unique set of maximal number of moment inequalities that
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are satisfied by the true parameter. In this case, MPC consistently selects all the true moment

inequalities.

3.4. More Reliable Setting

Note that Assumption 3.3.1 plays the central role of identifying the “true” moment inequali-

ties and the parameter space. When the parameter space is fixed, meaning that the true parameter

is assumed to exist, the selection problem then becomes to select the “true” moment inequalities

that are satisfied by the true parameter. In this case, MPC procedure in LJ asymptotically selects

the true moment inequalities.

However, in practice Assumption 3.3.1 is not satisfied naturally, and when it is not, MPC

may select a set of incorrect moment inequalities with probability approaching one. The prob-

lem is that, the moment inequalities that are not satisfied by the true parameters can still be

compatible.

Example 3.4.1. Suppose the true parameter θ0 = 1.7, with parameter space Θ = [0, 5].

Consider the following moment inequalities

θ ≥ EY1(= 1.5)(3.6)

θ ≤ EY2(= 2)(3.7)

θ ≥ EY3(= 3)(3.8)

θ ≥ EY4(= 3.5)(3.9)

Apparently, only (3.6) and (3.7) are satisfied by θ0, which correspond to interval [1.5, 2]. How-

ever, the MPC procedure will select all the other three inequalities (3.6), (3.8) and (3.9), because
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their combination has the maximal (3) number of inequalities, and the corresponding interval

in Θ is [3.5, 5]. In this example, the compatible interval defined by the maximal number of

inequalities does not contain the true parameter.

�

The following theorem shows that, when Assumption 3.3.1 is relaxed and priors (3.2) and

p(θs) are data-independent, the posterior probability of incompatible combinations (where the

corresponding identified region is empty) is still exponentially small, as opposed to compatible

combinations, whose posterior is proportional to a positive constant multiplied by the combina-

tion prior.

Assumption 3.4.1. For any compatibleCs(Ms1 ,Θs2), p(θ|Cs) is uniformly bounded on Θs2 .

Theorem 3.4.1. Under Assumption 3.2.1, 3.4.1, the parameter priors are given in (3.2),

and V > 0,Σ > 0 are fixed,

(1) If Cs is compatible and p(Cs) > 0, in probability

lim inf
n→∞

p(Cs|Xn) > 0

(2) If Cs is not compatible, then for some α > 0,

p(Cs|Xn) = op(e
−αn)p(Cs)

The MPC procedure consistently selects the maximal dim(M)−dim(Θ), because the data-

size-dependent priors (3.5) for unrestricted parameters (θs, λ
c
s), corresponding to unselected

moments and selected parameters, have very thick tails asymptotically, which force the posterior



91

of combinations with many unrestricted parameters to be very small. As illustrated in the previ-

ous example, however, the true parameter (if any) may satisfy only a few inequalities. Therefore

a more reliable setting is to use data-independent prior for unrestricted parameters. If the prior

of (θs, λ) is jointly specified as pθ,λ(θs, λ|Cs), which does not depend on the sample size n, the

selection among compatible combinations using posterior probabilities is no longer consistent

in terms of selecting the maximal dim(Ms1) − dim(Θs2), because when Assumption 3.3.1 is

relaxed, we fail to identify the true set of inequalities. Suppose Cs(Ms1 ,Θs2) is a compatible

combination. Write λ as the parameter that satisfies the moment condition λ = EM(X, θ),

and λ is ordered and partitioned as (λs, λ
c
s), then λ takes its value in Λ = [0,∞)m × Rp−m,

where m denotes the dimension of Ms1 , i.e., the number of selected moments. We impose the

following regularity conditions on the parameter prior. Note that Condition (i) can be achieved

if pθ,λ(θ, λ|Cs) is uniformly bounded by a constant k > 0 on Θs2×Λ, given that Θs2 is bounded.

Assumption 3.4.2. (i) For anyCs, and θ ∈ Θs2 , there exists g(θ) > 0 satisfying
∫

Θs2
g(θ)dθ <

∞, such that pθ,λ(θ, λ|Cs) ≤ g(θ) for all λ ∈ Λ.

(ii) For any fixed θ, pθ,λ(θ, λ|Cs) is continuous with respect to λ on Λ.

The following theorem shows that, in this case, the posterior heavily depends on the prior of

combinations p(Cs), which may be obtained by, if any, a priori information about some specific

moment inequalities/ submodels.

Let Ω(Θ,Λ) = {θ ∈ Θ : EM(X, θ) ∈ Λ}.

Theorem 3.4.2. Under Assumptions 3.2.1 and 3.4.2, with fixed V > 0, in probability,

(3.10) plimn→∞p(Cs|Xn) =
p(Cs)

∫
Ω(Θ,Λ)

pθ,λ(θs, EM(X, θ)|CS)dθ∑
Cs
p(Cs)

∫
Ω(Θ,Λ)

pθ,λ(θs, EM(X, θ)|CS)dθ
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We can see from this theorem, that asymptotically the posterior depends on p(Cs|Xn), the

combination’s prior, and on pθ,λ, which is the prior distribution of (θ, λ) on the identified region.

Therefore, the posterior is sensitive to the prior specification.

On the other hand, note that this is not a consistency result: Consider two compatible com-

binations C1 and C2 with the same parameter subspace but C1 is nested with C2 and contains

more moment inequalities than C2. Since C1 has smaller identified region Ω(Θ,Λ), by (3.10),

it may have smaller posterior, even asymptotically. Therefore, compatible combinations with

more inequalities do not necessarily have larger posteriors. This result is quite different from

those in regular moment selection procedures with point identification (for example, in Andrews

(1999)), which is reasonable, however, in moment inequalities problems, because of three rea-

sons:

(1) First, as we have seen, the posterior is sensitive to the choice of priors. The penalty term

against selecting fewer moment inequalities in the posterior is hidden in∫
Ω(Θ,Λ)

pθ,λ(θs, EM(X, θ)|CS)dθ, which does not involve the sample size.

(2) Second, unlike the moment selection problem with over-identification by moment equal-

ities (Andrews 1999, Andrews and Lu 2001), in moment inequalities models, compatible com-

binations may not be correct, meaning that if the true parameter of interest is assumed to be

fixed, some combinations may still be compatible even though they do not contain the true

parameter. Therefore, the true inequalities are not necessarily the maximal set of compatible

inequalities.

(3) Finally, by allowing the parameter space to change, we allow for the model uncertainty.

In this case, it is reasonable for the result to heavily reply on the prior beliefs of the useful

parameter components, and of the corresponding moment inequalities.
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In some special cases, however, it is possible that the posterior favors the maximal number

of inequalities. Consider the following example:

Example 3.4.2. Suppose the selected moment conditions satisfyEMs(X, θ) = λs ∈ [0,M ]m,

and the unselected moment conditions satisfyEM c
s (X, θ) = λcs ∈ [−M,M ]p−m, for some large

constantM > 0. Hence Λ = [0,M ]m×[−M,M ]p−m. Suppose q(λ), the prior of λ, is uniformly

distributed on [−M,M ]p, hence q(λ) = (2M)−pI(λ ∈ [−M,M ]p). Then

pλ(λ|Cs) =
q(λ)I(λ ∈ Λ)

q(λ ∈ Λ)
=

2mI(λ ∈ Λ)

(2M)p

In addition, suppose pθ,λ(θ, λ|Cs) = pθ(θ|Cs)pλ(λ|Cs). We have

∫
Ω(Θs,Λ)

pθ,λ(θ, EM(X, θ)|Cs)dθ = P (θ ∈ Ω(Θs,Λ)|Cs)
2m

(2M)p

Assume that P (θ ∈ Ω(Θs,Λ)|Cs) > 0 if Cs is compatible. Hence 2m is the reward of more

moment inequalities. However, such a reward term does not depend on the sample size n.

Q.E.D.

The moment equality condition case in the literature is significantly different than the prob-

lem considered here. For the sake of comparison, I briefly illustrate it here. Consider p-

dimensional candidate moment equalities EM(X, θ) = (Em1, ..., Emp) = 0. Suppose we

select m moment conditions EMs = 0, and partition the conditions into selected and unse-

lected pair M = (Ms,M
c
s ). As before, we use the limited information likelihood to construct
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the posterior:

L(Xn|λ, θ, Cs) = det(2πV/n)−1/2 exp

−n
2

(M̄s(θ)
T , M̄ c

s (θ)
T − λT )V −1

 M̄s(θ)

M̄ c
s (θ)− λ




Straightforward calculation yields that

(3.11)

p(Cs|Xn) ≈ Const× ndim(Ms)/2

∫
Θ

pθ,λ(θ, EM
c
s (θ) + ΣT

2 Σ3EMs(θ))e
−n

2
EMs(θ)TΣ1EMs(θ)dθ

where V −1 =

Σ1 Σ3

ΣT
3 Σ2

. WhenMs is incompatible, meaning that {θ ∈ Θ : EMs(X, θ) = 0}

is empty, e−
n
2
EMs(θ)TΣ1EMs(θ) < e−an for some a > 0. But when EMs(X, θ) over-identifies

some element θ in Θ, the posterior then replies on ndim(Ms)/2, which is a penalty term that

rewards the use of more moment conditions. Note that this penalty term depends on the sample

size, hence is not sensitive to the prior specification. In addition, by applying the Laplace

expansion to the integrand of the right hand side, the posterior criterion (3.11) can be shown to

be equivalent to Andrews(1999)’s MSC.
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CHAPTER 4

Bayesian Semi-Nonparametric Conditional Moment Restricted Models

4.1. Introduction

In this chapter, I consider conditional moment restricted model

(4.1) E(ρ(Z, g0)|W ) = 0

where (ZT ,W T ) is a vector of observable random variables, and W may or may not be in-

cluded in Z. Here ρ is a residual function known up to g0. The conditional expectation is taken

with respect to the conditional distribution of Z given W , assumed unknown. The parameter of

interest is g0, which is infinite dimensional. Model (4.1) is a very general setting, which encom-

passes many important classes of nonparametric and semiparametric models. Recently, Chen

and Pouzo (2009a) relaxed the compactness assumption on the parameter space as imposed in

Ai and Chen (2003), and established the consistency and the convergence rate using the penal-

ized sieve minimum distance estimator. In addition, Chen and Pouzo (2009b) considered the

root-n efficient estimation of θ0 as well as the asymptotic normality of the estimator. Note that

one of the most important special cases of conditional moment restricted model is nonparamet-

ric instrumental variable regression (Example 1.3.2). See Examples 1.3.1-1.3.3 and Section 1.3

in Chapter 1 for corresponding literature.

In the existing literature, there are generally two ways of regularization to overcome the

ill-posendess. One is to restrict g0 to a compact space, and then minimize a consistent estimate
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of the minimum distance criterion over some finite dimensional compact sieve space; see, e.g.,

Newey and Powell (2003), Ai and Chen (2003), and Blundell, Chen and Kristensen (2007). The

other way is to introduce a Tikhonov regularization tunning parameter, relaxing the compactness

assumption. The procedure is then equivalent to minimizing a consistent penalized estimate of

the minimum distance criterion over an infinite dimensional function space; see, e.g., Chen and

Pouzo (2009a, 2009b), Hall and Horowitz (2005), Darolles et al (2010). Other related works on

NPIV in the literature are: Blundell, Chen and Kristensen (2007), Chernozhukov, Gagliardini

and Scaillet (2008), Horowitz and Lee (2007), Florens and Simoni (2009a), among others.

I will first focus on the general setting (4.1), following the regularization approach by Newey

and Powell (2003) and Ai and Chen (2003), which assumes that the parameter space is com-

pact. The conditional moment restriction is transformed into infinite number of unconditional

moment restrictions as the first step. The problem then becomes the estimation under many

moment conditions, which was studied by Han and Phillips (2006). After establishing the

posterior consistency in the general conditional moment restricted model setting, we focus on

the nonparametric instrumental variable regression model. As an alternative regularization ap-

proach, I will also establish the posterior consistency without the compactness assumption for

nonparametric instrumental variable regression. To achieve the consistency, I propose a data-

size dependent objective prior for the purpose of regularization, whose variance converges to

zero. This technique is very common in the literature of Bayesian inverse problem and ridge

regression. Recently, Florens and Simoni (2009a), have proposed a quasi-Bayesian approach to

solve the ill-posed problem. They assumed a normal error term, and achieved consistency of

the regularized posterior distribution, regularizing an operator that defines the posterior mean.
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The contributions of this chapter are in at least five senses. First of all, I construct the

posterior of the nonparametric structural function, which provides a nonparametric Bayesian

interpretation of the estimation of the conditional moment restricted model. Second, g0 is not

assumed to be point identified, for the reasons to be explained in Section 4.2. Therefore the

consistency of the posterior of g0 means that, asymptotically, it converges into any small neigh-

borhood of the identified region, which extends model (4.1) to the partial identification setup

(Chernozhukov, Hong and Tamer 2007, and Santos 2007). Third, there is no need to assume

any specific distribution on the data generating process. Instead, we use the limited informa-

tion likelihood (Kim 2002) to construct the posterior distribution for g0. The use of the limited

information likelihood is similar to the Bayesian GMM (Yin 2009), which is more straightfor-

ward for models characterized by either moment conditions or estimating equations than the

common methos using Dirichlet process priors in the nonparametric Bayesian literature. I show

that by imposing only a few regularity conditions on the moment functions and priors, the pos-

terior distribution achieves the desired frequentist properties in the large sample sense. Fourth,

we extend the problem of GMM with many moment conditions in Han and Phillips (2006) to

nonparametric models, allowing the dimension of the parameter to increase with sample size.

Fifth, I study in detail the nonparametric IV regression model, and show that, by incorporating

a regularized prior to deal with the ill-posedness, the posterior distribution of the sieve approx-

imation can still be consistent even if the parameter space is relaxed to be noncompact. In

addition to these contributions, I also allow for the heterogeneity of the residual term, meaning

that E[ρ(Z, g0)2|W = w] can depend on w.

The remainder of this chapter is organized as follows: Section 4.2 constructs the posterior

distribution of the conditional moment restricted model, starting by transforming the conditional
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restriction into infinite number of unconditional restrictions, and then constructing the limited

information likelihood for the posterior, followed by deriving its frequentist properties in large

sample limit. Section 4.3 applies the consistency results to the single index model. Section

4.4 studies in detail the nonparametric instrumental variable regression model, relaxing the

compactness assumption on the parameter space. Section 4.5 presents a simple Monte Carlo

simulation result. Finally Section 4.6 concludes with further discussions. Proofs are given in

the appendix.

4.2. Conditional Moment Restricted Model

4.2.1. Limited Information Likelihood and Identification Functional

Consider a conditional moment condition

(4.2) E[ρ(Z, g0)|W ] = 0

where g0 is the true nonparametric structural function, and is assumed to be inside some space of

continuous functions Θ. For simplicity, throughout the paper, let us consider the case W ∈ R,

which is supported on a compact set W . The results can be naturally generalized to multi-

dimensional cases.

Following the setting of Ai and Chen (2003), let us approximate Θ by a sieve space Θq,

which is a finite-dimensional compact parameter space spanned by sieve basis functions{φ1, ..., φq}

such as splines, power series, wavelets or Fourier series, with q → ∞ as n → ∞, such that g0

can be approximated arbitrarily well by gq =
∑q

i=1 biφi for some coefficients {bi : i = 1, ..., q}.

Hence, instead of g0, we construct the posterior of gq, and show that ‖gq − g0‖H → 0 in the

posterior probability under some norm ‖.‖H .
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As the first step, we need to transform the conditional moment restriction into unconditional

moment restrictions. SupposeW = [a, b], with a < b. Let ∪kni=1R
n
i be a partition ofW , where

(4.3) Rn
j =

[
a+

j − 1

kn
(b− a), a+

j

kn
(b− a)

]
, j = 1, ..., kn.

We allow kn →∞ as n→∞. LetX = (Z,W ). For each j, definemnj(g,X) = ρ(Z, g)1(W∈Rnj ),

and mn(g,X) = (mn1(g,X), ...,mnkn(g,X))T , which is kn × 1 vector. Then equation (4.2)

implies

(4.4) Emn(g0, X) = 0

where the expectation is taken with respect to the joint distribution of X = (Z,W ). Note that

mn(g,X) is kn × 1, where kn increases as n increases to infinity. Hence (4.2) implies many

moment conditions with the number of moments increasing to infinity. It is straightforward to

verify that

V0 ≡ V ar(mn(g0, X)) =


E(ρ(Z, g0)21W∈Rn1 ) 0

. . .

0 E(ρ(Z, g0)21W∈Rnkn )


For each g ∈ Θ, and j = 1, ..., kn, write m̄nj(g) = 1

n

∑n
i=1mnj(g,Xi) and m̄n(g) =

(m̄n1(g), ..., m̄nkn(g))T . Under some regularity conditions, for each fixed k, m̄n(g0) would

satisfy the central limit theorem: for any α ∈ Rk, as n goes to infinity,

(4.5)

∣∣∣∣∣P (
√
nV
−1/2

0 m̄n(g0) ≤ α)−
k∏
i=1

Φ(αi)

∣∣∣∣∣→ 0
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where Φ(.) denotes the cumulative distribution function of standard normal.

We now construct the the posterior distribution of g0. Note that the true parameter space Θ

is infinite-dimensional, we thus need to parameterize g0 and approximate it on the finite dimen-

sional sieve space Θq. Therefore, instead of g0, we construct the posterior for the approximating

parameter of g0 inside Θq. The asymptotic result (4.5) motivates a likelihood function on the

sieve space Θq:

L(gq) ∝ exp
(
−n

2
m̄n(gq)

TV −1
0 m̄n(gq)

)
According to Kim (2002), the function L(gq) can be more appropriately interpreted as the best

approximation to the true likelihood function under the conditional moment restriction, by min-

imizing the Kullback-Leibler divergence, which is known as the limited information likelihood.

The right hand side of the likelihood function involves

(4.6) Ḡ(gq) ≡ m̄n(gq)
TV −1

0 m̄n(gq)

Hence it is important to study the asymptotic property of Ḡ first. Define

(4.7) Gkn(g) ≡ Emn(g, Z)TV −1
0 Emn(g, Z)

for all g ∈ Θq. Using a similar argument of Han and Philips (2006), under some regularity

conditions, we will show that

(4.8) sup
g∈Θq

|Ḡ(g)−Gkn(g)| →p 0
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Note that Gkn still depends on the sample size n. It can be shown that it uniformly converges to

some functional G(g) over g ∈ Θ, where

(4.9) G(g) =

∫ b

a

[E(ρ(Z, g)|W = w)]2

E(ρ(Z, g0)2|W = w)
dFW (w).

We call G(g) the identification functional since the identification of g0 is characterized by min-

imizing G. To be specific, define the identified region for g0:

ΘI = {g ∈ Θ : E(ρ(Z, g)|W ) = 0 for almost all w ∈ [0, 1]},

which is assumed to be nonempty, then ΘI = arg ming∈ΘG(g). If ΘI is a singleton, then

ΘI = {g0}. Otherwise g0 is partially identified on ΘI (See, e.g. Santos 2007).

Throughout this section, we do not assume ΘI is necessarily a singleton; therefore we allow

g0 to be only partially identified by the conditional moment restriction (4.2), for the following

two reasons. First, when the conditional moment restriction is given by the nonparametric

instrumental variable regression, the identification of g0 depends on the completeness of the

conditional distribution of X|W ; however, the completeness assumption is hard to verify if the

conditional distribution ofX|W does not belong to the exponential family. Severini and Tripathi

(2006) explored identification issues with these models and note that point wise identification

can easily fail (See Example 1.4.1 below). Another reason is that, sometimes instead of g0

itself, we are only interested in a particular characteristic of it, say its linear functional h(g0).

For example, in the nonparametric IV regression, if g0(x) is the inverse demand function, then

its consumer surplus at some level x∗ can be written as a functional h(g0) =
∫ x∗

0
g0(x)dx −

g0(x∗)x∗. In this case, the identification of g0 might not be necessary (see example 1.4.1).
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Severini and Tripathi (2006) have shown that without assuming g0 to be identified, it is still

possible to point identify its functional h(g0).

4.2.2. Uniform Convergence to the Identification Functional

We give the assumptions for the uniform convergence of Ḡ and Gkn , as well as the posterior

consistency.

Assumption 4.2.1. (i) The data Xn = (X1, ..., Xn) are independent and identically dis-

tributed.

(ii) There is a metric ‖.‖H such that the parameter space Θ is compact under ‖.‖H .

(iii) The support of X (denoted by X ) is compact.

Condition (i) assumes the data are independent and identically distributed. Condition (ii)

restricts the parameter space as well as the choice of the metric ‖.‖H . The compactness is a com-

monly imposed condition in the nonparametric and semiparametric statistical and econometric

literature, and is satisfied when the infinite-dimensional parameter space consists of bounded

and smooth functions (Gallant and Nychka 1987). In the nonparametric instrumental variable

regression model, the compactness of the parameter space is a way of “regularization” to deal

with the “ill-posed” problem (See Newey and Powell 2003). In this section, we impose prior

condition, equicontinuity and the sieve approximation assumptions to establish the posterior

consistency based on the norm ‖.‖H . When endowed with some specific norms, (Θ, ‖.‖H) be-

comes a Banach space. Specification of ‖.‖H as well as the parameter space are provided in

Sections 4.3 and 4.4, where we apply our results to nonparametric IV regression and the single

index model. Condition (iii) requires that the support of the data be compact.
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Assumption 4.2.2. (i) For all j = 1, 2, ..., kn, P (W ∈ Rn
j ) = O(k−1

n ), where Rn
j is define

by (4.3). (ii) kn = o(n2/5).

Condition (i) is satisfied if W has a continuous density function. Condition (ii) requires that

the number of moment conditions inmn(g,X) should not grow too fast, which is needed for the

pointwise convergence of |m̄n(g)TV −1
0 m̄n(g) − Emn(g,X)TV −1

0 Emn(g,X)|. This condition

is usually imposed in the literature of many moment condition problems (See Han and Phillips

2006).

Define Kg(w) = E(ρ(Z, g)|W = w), w ∈ [a, b], and denote Z as the support of Z.

Assumption 4.2.3. (i) E(ρ(Z, g0)2|W = w) is continuous and bounded away from zero on

w ∈ [a, b].

(ii) {Kg(.) : g ∈ Θ} is equicontinuous on [a, b].

(iii) ρ(z, .) satisfies: for any ε > 0, there exists δ > 0 such that

sup
z∈Z

sup
||g1−g2||H<δ

|ρ(z, g1)− ρ(z, g2)| < ε

Assumption 4.2.3 is used for the uniform convergence ofGkn to the identification functional

G over all g ∈ Θ. It imposes restrictions on the conditional second moment of the true residual

function. SinceW is supported on a compact set, condition (i) also implies the uniform continu-

ity of E(ρ(Z, g0)2|W = w). In addition, since E(ρ(Z, g0)2|W = w) depends on w, the residual

heterogeneity is allowed. This assumption also implies that sup(g,w)∈Θ×[a,b] |E(ρ(Z, g)|W )| is

bounded. Condition (iii) guarantees that G(g) is continuous on (Θ, ‖.‖H).

The following assumptions are needed for the uniform convergence of |Ḡ − Gkn|. Let

λmax(V ) denote the largest eigenvalue of matrix V .
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Assumption 4.2.4. The sequence of random process max1≤j≤kn
√
n|m̄nj(g)−Emnj(g,X)|

is stochastic equicontinuous.

This condition requires that the centered and rescaled moment functions should be uni-

formly continuous over Θ and n. The definition of stochastic equicontinuity can be found,

for instance, in Newey and McFadden (1994), which is commonly assumed in the probability

convergence theory and econometrics literature for the uniform convergence of stochastic func-

tions. It will be shown in Section 4.3 and 4.4 that Assumption 4.2.3 and 4.2.4 are satisfied by

the single index model and nonparametric instrumental variable regression model, with mild

assumptions on the data generating process.

Assumption 4.2.5. (i) supgq∈Θq λmax(V ar(mn(gq, X))) = O(kn).

(ii) For all gqn ∈ Θqn , for all j = 1, 2, ..., kn, for all kn, qn ≤ n and n, E[mnj(g,X) −

E(mnj(g,X))]4 ≤ B <∞.

Condition (i) and (ii) require that the fourth moments of mn(g,X) − E(mn(g,X)) exist

and that the second moment matrix has eigenvalues no larger than O(kn). In Han and Phillips

(2006), it was assumed that the eigenvalues of V ar(mn(g,X)) are bounded by a universal

constant uniformly over g and n, and a sufficient condition for their assumption was provided,

which assumed that the covariance structure is dominated:

sup
g∈Θ

V ar(mn(g,X)) ≤ aIkn + bknb
T
kn

where a is some large enough constant and bkn is a kn dimensional vector such that its elements

satisfy limn→∞
∑kn

i=1 b
2
i < ∞ (See Han and Phillips 2006, Assumption 1). Here, since the

number of moment conditions kn grows with n, with a nonparametric structural function, it is
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more reasonable for the eigenvalues also increasing with n. Therefore we relax this assumption

and allow the eigenvalues of V ar(mn(g,X)) to increase with the same rate of the number of

moment conditions. The payoff would be a slower rate of kn going to infinity.

Under these assumptions, we can show that Ḡ, the power term of the limited information

likelihood, converges uniformly to the identification functional.

Theorem 4.2.1. (i) Under Assumptions 4.2.1-4.2.3, for Gkn and G defined by (4.7) and

(4.9) respectively,

sup
g∈Θ
|Gkn(g)−G(g)| →p 0

(ii) Under Assumption 4.2.1-4.2.5, for Ḡ defined by (4.6), in probability

sup
g∈Θqn

|Ḡ(g)−Gkn(g)| →p 0

4.2.3. Posterior Consistency

We use the limited information likelihood described in Section 4.2.1 as the likelihood func-

tion: for all gq =
∑q

i=1 biφi ∈ Θq, L(gq) ∝ exp
(
−n

2
m̄n(gq)

TV −1
0 m̄n(gq)

)
. Let p(gq) be a prior

distribution of the sieve approximation of g0. Then Bayesian rule implies:

p(gq|Xn) ∝ p(gq)L(gq)

For any event A that is measurable with respect to the posterior distribution of, its posterior

distribution is given by

P (A|Xn) =

∫
A

p(gq|Xn)db
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A straightforward application of Jiang and Tanner (2008, Proposition 6) renders that for any

δ > 0,

E{P (G(gq)− inf
g∈Θq

G(g) > 5δ|Xn)} ≤ P ( sup
g∈Θq

|Ḡ(g)−G(g)| ≥ δ)

+
e−2nδ

P (G(gq)− infg∈Θq G(g) < δ)
(4.10)

By Theorem 4.2.1, supg∈Θq |Ḡ(g)−G(g)| →p 0 in the probability distribution ofXn as n→∞.

Hence G(gq) − infg∈Θq G(g) → 0 in the posterior probability of gq|Xn given that the prior

probability P (G(gq)− infg∈Θq G(g) < δ) is bounded away from zero. This requires a regularity

condition on the prior.

To proceed, we need to introduce some additional notation. Given the metric structure of

(Θ, ‖.‖H), for a set A ⊂ Θ, define d(g, A) = infa∈A‖g − a‖H . For any δ > 0, let Θδ
I = {g ∈

Θ : d(g,ΘI) < δ}, the δ- expansion of the identified region of g0. If g0 is point identified

(ΘI = {g0}), Θδ
I is an open ball centered at g0 with radius δ. In addition, for two sequences an

and bn, write an � bn if an
bn
→∞ as n→∞.

Assumption 4.2.6. (i) For any δ > 0 there exists c > 0, such that fall all large enough

q = qn, P (gq ∈ Θδ
I) � e−cqn .

(ii) qn
n
→ 0

Condition (i) means that the prior of gq cannot be exponentially small on the neighborhood

of ΘI . Condition (ii) imposes a restriction on qn, the number of terms in the sieve approxi-

mation. Recall that in Section 4.2.1 we have established that ΘI = arg ming∈ΘG(g). It will

also be shown in the Appendix that G : Θ → R is continuous. In addition, the sieve space
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Θq approximates Θ arbitrarily well. Therefore this assumption implies that for any δ > 0, the

second term of the right hand side of (4.10) is negligible.

Assumption 4.2.7. For each g ∈ Θ, there exists gq ∈ Θq such that ‖g − gq‖H = o(1).

This assumption is simply the definition of a sieve space. It is satisfied by the spaces that are

spanned by commonly used sieve basis functions such as splines, power series, wavelets and

Fourier series. We will specify the norm ‖.‖H in the subsequent sections.

We then have the posterior consistency for the estimation of g0:

Theorem 4.2.2 (Posterior Consistency). Under Assumptions 4.2.1-4.2.7, for any δ > 0, in

probability,

P (gq ∈ Θδ
I |Xn)→p 1.

In particular, if g0 is point identified, then in the probability of Xn,

P (‖gq − g0‖H < δ|Xn)→p 1.

Let h(g0) be a linear functional of g0, whose practical meaning may be of interest in many

applications. For example, if h(g0) = E[g0(X)ω(X)] for some weight function ω, then with

proper choices of ω, h can be used to test some special properties of g0 such as monotonicity,

convexity, etc. On the other hand, h itself may have interesting meanings. For example, when

g0 denotes the inverse demand function in nonparametric regression, h(g0) can be the consumer

surplus (See Santos 2007). Severini and Tripathi (2006) have provided conditions to point

identify h(g0) even if g0 itself is not identified.
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Example 4.2.1. In the application of economics, let g0 be the inverse demand function, and

we are usually interested in the change of consumer surplus
∫ x∗

0
g0(x)dx−g0(x∗)x∗, with some

observable x∗. Suppose the functional of interest is h(g0) =
∫ x∗

0
g0(x)dx =

∫
g0(x)v(x)dx,

where v(x) = I(0 < x < x∗). Assume that (X,W ) are supported on [0, 1]2, with joint density

function fXW (x,w) = 3|x − w|. By Severini and Tripathi (2006), h(g0) is point identified if

there exists p(w) ∈ L2(W ) such that
∫
p(w)fXW (w, x)dw = v(x) for almost all x ∈ [0, 1]. In

fact, let φ′ denote the derivative of the standard normal density function, and denote pt(w) =

1
t2

(
φ′(w−x

∗

t
)− φ′(w

t
)
)
, it can be shown that (see Polyanin and Manzhirov (1998) and Santos

(2008a)) limt→0

∫ 1

0
pt(w)fXW (x,w)dw = v(x) for almost all x ∈ [0, 1]. Therefore, h(g0) is

point identified.

Example 4.2.2. Suppose we want to test that the unknown function g0 is weakly increasing.

Note that any weakly increasing function g(x) must satisfy
∫ π
−π sin(x)g(x)dx ≥ 0. Hence the

functional of interest here is h(g0) =
∫ π
−π sin(x)g0(x)dx. Suppose the joint distribution of

(X,W ) is absolutely continuous, with density function fXW (x,w). By Severini and Tripathi

(2006), h(g0) is point identified, if there exists p(w) ∈ L2(W ) such that
∫
p(w)fX,W (w, x)dw =

sin(x) for almost all x on its support.

Theorem 4.2.2 implies a flexible way to consistently estimate h in a Bayesian approach,

without identifying g0. In the following assumption, condition (i) assumes the point identifica-

tion of h(g0). A sufficient and necessary condition can be found in Severini amd Tripathi (2006).

Condition (ii) requires the continuity of h, which is satisfied when h(g0) = E[g0(X)ω(X)] if

E|ω(X)| <∞.

Assumption 4.2.8. (i) {h(g) : g ∈ ΘI} = {h(g0)}. (ii) h : (Θ, ‖.‖H)→ R is continuous.
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Corollary 4.2.1. When g0 is not necessarily point identified, under Assumptions 4.2.1-4.2.7,

for any δ > 0, in probability,

P (|h(gq)− h(g0)| < δ|Xn)→p 1.

4.2.4. Bayesian Implementation

Note that the likelihood L(gq) is not feasible because V0 is unknown. Therefore we can

estimate V0 by V̂ if g0 is identified, where

V̂ =


1
n

∑n
i=1 ρ(Zi, ĝ)21Wi∈Rn1 0

. . .

0 1
n

∑n
i=1 ρ(Zi, ĝ)21Wi∈Rnk


and ĝ is a “preliminary” estimator of g0, which can be, for example, the sieve minimum distance

estimator (SMD) in Ai and Chen (2003). If g0 is not identifiable, meaning that ΘI is not a

singleton, we suggest use knI to replace V −1
0 , where I is the identity matrix. Because under

very weak assumptions, each diagonal element of V0 is of order O(1/kn), hence using knI will

not affect the consistency result, whether g0 is identified or not.

Given the basis functions {φ1, ..., φq}, the nonparametric function can be represented by

a linear combination gq(t) =
∑q

i=1 biφi(t), where φi is the ith basis function which can be

power series wavelets, or Fourier series. One can treat the basis coefficients {b1, ..., bq} to be

independent parameters, each with prior π(bj) ∼ N(0, j−α) for some α > 0, where the variance

is chosen such that the higher order terms has smaller variation around zero, which overcomes
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the potential over-fitting problem. The posterior of the sieve approximation is then given by

p(gq|Xn) ∝
q∏
j=1

π(bj) exp[−n
2
Ḡ(gq)]

One can then simulate {bj} from the posterior through the MCMC procedure.

4.3. Application: Single Index Model

In the single-index model,

ρ(Z, g0) = Y − h0(Wθ0)

where g0 = (h0, θ0). For this specific application, the parameter of interest consists of both

an infinite-dimensional parameter h ∈ H, and a finite dimensional parameter θ ∈ Ω. The

parameter space is written as Θ = H×Ω. We can approximate Θ by sieve space Θq = Hq×Ω,

where Hq is the sieve space approximation to H, as q = qn → ∞. Let {φ1, ..., φq} be an

orthonormal basis for Hq such that g0 can be approximated arbitrarily well by gq =
∑q

i=1 biφi

for some coefficients {bi : i = 1, ..., q}. Then the sieve approximation to g0 can be written as

(
∑q

i=1 biφi, θ0) ∈ Θq.

Define M = {wθ : w ∈ [a, b], θ ∈ Ω} ⊂ R. We use the Euclidean norm for θ, and

introduce the Hölder norm for h. Define

(4.11) ‖h‖s = sup
t∈M
|h(t)|+ sup

t1 6=t2

|h(t1)− h(t2)|
|t1 − t2|

Let H = {h : ‖h‖s < B} for some known, large positive constant B. Here H is a Hölder ball

of order one, a space of functions h : H → R such that the first derivative is bounded. It is

known that power series, splines, and Fourier series all can approximate functions in the Hölder
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ball well. For g = (h, θ) ∈ H × Ω = Θ, define

(4.12) ‖g‖H = |θ|+ ‖h‖s

Note that Ai and Chen (2003) used a Hölder norm with higher orders, and the norm in Newey

and Powell (2003) can be simplified to higher order Hölder norm if the data Z is supported on

a compact set.

We verify Assumption 4.2.2 by imposing more general conditions on the distribution of data

generating process.

Assumption 4.3.1. g0 = (h0, θ0) ∈ Θ = H× Ω, with norm ‖.‖H which satisfies:

(i)H = {h : ‖h‖s ≤ B}, where ‖.‖s is defined as (4.11).

(ii) Ω is compact.

(iii) ‖.‖H is defined as (4.12).

Assumption 4.3.2. The conditional distribution of W |Y and the marginal distribution of

W have continuous density function fW |Y (w|y) and fW (w) on [a, b] respectively, which satisfy:

(i) fW (w) is bounded away from zero on [a, b].

(ii) For any δ > 0, there exists d > 0 such that

sup
y

sup
|w1−w2|<d

|fW |Y (w1|y)− fW |Y (w2|y)| < δ

Proposition 4.3.1. Let ρ(Z, g) = Y −h(Wθ), whereEY 2 <∞ and sup(h,θ)∈Θ Eh(Wθ)2 <

∞, then Assumption 4.3.1 and 4.3.2 imply Assumptions 4.2.3 and 4.2.4.
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4.4. Nonparametric Instrumental Variable Regression

The nonparametric instrumental variable regression model is given by

Y = g0(X) + ε

where X is endogenous, which is correlated with ε. The parameter of interest is g0, which is

the nonparametric structural function. In addition, suppose we observe an instrumental variable

W ∈ [a, b] a.s., such that E(ε|W ) = 0. The nonparametric IV model is thus essentially a

conditional moment restriction E(Y |W ) = E(g0(X)|W ). Let Z = (Y,X), then ρ(Z, g) =

Y − g(X).

Define T : Θ→ L2(W ), such that T (g) = E(g(X)|W ), and E(Y |W = w) ≡ µ(w), then

(4.13) Tg0 = µ

The inference on g0 is difficult. The first difficulty comes from the identification, which depends

on the invertibility of T . If T is nonsingular, in which case it has no zero eigenvalue, g0 can

be point identified by g0 = T−1µ. Newey and Powell (2003) characterize the identification

of g0 in terms of the completeness of the conditional distribution of X given W . However, if

the distribution of X|W is not assumed to be parametric, neither the invertibility of T nor the

completeness is easy to verify. See Severini and Tripathi (2006) for a detailed description of the

identification issue of g0.

Even when g0 is identified, the second difficulty arises in estimation. As pointed out by

Newey and Powell (2003) and Hall and Horowitz (2005), there is an ill-posed problem. Note

that (4.13) is a Fredholm integral equation of the first kind. Since T−1 is not bounded, it is not
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continuous. Therefore, small inaccuracy in the estimation of µ can lead to large inaccuracy in

the estimation of g0, which is known as the ill-posed problem (Kress 1999). In the existing lit-

erature, there are generally two ways of regularization to overcome the ill-posendess. One is to

restrict g0 to a compact space, and then minimize a consistent estimate of the minimum distance

criterion over some finite dimensional compact sieve space; see, e.g., Newey and Powell (2003),

Ai and Chen (2003), and Blundell, Chen and Kristensen (2007). The other way is to introduce

a Tikhonov regularization tunning parameter, relaxing the compactness assumption. The proce-

dure is then equivalent to minimizing a consistent penalized estimate of the minimum distance

criterion over an infinite dimensional function space; see, e.g., Chen and Pouzo (2009a, 2009b),

Hall and Horowitz (2005), Darolles et al (2010), and references therein. Recently, Florens and

Simoni (2009a) proposed a quasi-Bayesian approach, which regularizes an operator that defines

the posterior mean of g0, assuming a normal error term in the regression.

In this section, we assume g0 be point identified by (4.13), and focus on the posterior dis-

tribution of g0. We will show the posterior consistency in two approaches. The first is the

natural application of the general consistency result established in Section 4.2, which assumes

that g0 lies in a known compact parameter space. Alternatively, we will relax the compactness

assumption, and impose a Tikhonov regularized prior instead.

4.4.1. Case with Compactness

This approach is similar to Newey and Powell (2003) and Santos (2007), focusing on the

case where g0 is known to belong to a compact set. The posterior distribution of g is restricted

to this set. This approach eliminates the ill-posed problem essentially because the inverse of an

integration operator is continuous on a compact set.
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Let ∪knj=1R
n
i be the partition of [a, b] defined in Section 2.1. Under this particular model

setting, mnj(g,X) = (Y − g(X))1W∈Rnj for each j = 1, ..., kn. Let m̄nj(g) be the sample

analog of Emnj(g,X), and Θq be the sieve space approximation to Θ. We then have the limited

information likelihood:

L(gq) ∝ exp
(
−n

2
m̄n(gq)

TV −1
0 m̄n(gq)

)
and the identification functional G : Θ→ R:

G(g) =

∫ b

a

[E(Y − g(X)|W = w)]2

E(ε2|W = w)
dFW (w)

A sufficient and necessary condition for point identification of g0 is that G(g) is minimized

uniquely at g0 on Θ.

When the parameter space is compact, we assume the metric ‖.‖H to be:

(4.14) ‖g‖H = sup
x
|g(x)|+ sup

x1 6=x2

|g(x1)− g(x2)|
|x1 − x2|

The parameter space Θ = {g : ‖g‖H ≤ B} for some known, large positive constant B. The

compactness of Θ under ||.||H was shown by Gallant and Nychka (1987). We verify that in

this model, Assumptions 4.2.3 and 4.2.4 are satisfied with a more general assumptions on the

distribution of data. Let Z be the support of (X, Y ).

Assumption 4.4.1. ‖.‖H is defined as (4.14), and Θ = {g : ‖g‖H ≤ B}.

Assumption 4.4.2. The conditional distribution of W |X, Y and the marginal distribution

of W have continuous density functions fW |X,Y (w|x, y) and fW (w) on w ∈ [a, b] respectively,

which satisfy:
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(i) fW (w) is bounded away from zero on [a, b], and

(ii) ∀ε > 0, there exists δ > 0, such that

sup
(x,y)∈Z

sup
|w1−w2|<δ

|fW |X,Y (w1|x, y)− fW |X,Y (w2|x, y)| < ε

This assumption provides sufficient conditions for the continuity of E(ε2|W = w) on [a, b]

and the equicontinuity of {Kg(.) : g ∈ Θ}. In fact we have the following proposition:

Proposition 4.4.1. Let ρ(Z, g) = Y − g(X), where EY 2 <∞ and

supg∈ΘEg(X)2 <∞, then Assumptions 4.4.1 and 4.4.2 imply Assumptions 4.2.3 and 4.2.4.

The posterior consistency for the nonparametric IV regression model then follows immedi-

ately from Theorem 4.2.2, which is stated as a corollary here.

Corollary 4.4.1. Assume that g0 is point identified. Under Assumptions 4.2.1, 4.2.2, 4.2.5,

4.4.1 and 4.4.2 , for any δ > 0, in the probability of Xn,

P (‖gq − g0‖H) < δ|Xn)→p 1

4.4.2. Relaxing the Compactness

In this subsection, we relax the compactness assumption on the parameter space, and assume

Θ = L2(X). As has been discussed earlier, in order to achieve the posterior consistency,

additional regularization procedure is needed to overcome the ill-posedness. For this purpose,

for the sieve approximation of gq, we use a regularized prior:

(4.15) p(gq) ∝ e−na
2
n||gq ||2
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where {an}∞n=1 is a sequence converging to zero as n increases, but not too fast (we require

na2
n → ∞). From the frequentist point of view, prior (4.15) is similar to the penalty term in

Chen and Pouzo (2009a, 2009b). Also, the regularization scheme through a penalty term on

the prior is commonly used in the Bayesian literature. For example, in the parametric case,

the penalty term in ridge regression can be viewed as a regularized prior from the Bayesian

perspective; see, e.g., Haitovsky and Wax (1980). In the nonparametric case, recently Florens

and Simoni (2009b) specified a regularized prior distribution that is an extension of Zeller’s

g-prior for the regularization.

We only consider the bivariate case of (X,W ), and assume both X and W are supported

on [a, b] without loss of generality. We still employ the limited information likelihood defined

in Section 2:

(4.16) L(gq) ∝ e−
n
2
m̄n(gq)TV

−1
0 m̄n(gq)

where

m̄n(g) =

(
1

n

n∑
i=1

(Yi − g(Xi))1(Wi∈Rn1 ), ...,
1

n

n∑
i=1

(Yi − g(Xi))1(Wi∈Rnk )

)′

The limited information likelihood is the best approximation to the true likelihood under the

moment conditions 4.2.3. Therefore the posterior distribution based on L(g) has an asymptotic

likelihood interpretation.

As in the compactness case, the large sample behavior of L(g) depends on the limit of

m̄n(g)TV −1
0 m̄n(g), which is G(g) =

∫ b
a

[E(Y−g(X)|W=w)]2

E(ε2|W=w)
dFW (w). By the earlier definition,

T (g)(w) = E(g(X)|W = w) for each w ∈ [a, b], and the relation T (g0) = E(Y |W ), we have:
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∀g ∈ L2(X),

G(g) =

∫ b

a

[T (g − g0)(w)]2(E(ε2|W = w))−1dFW (w).

For any g̃ ∈ L2(W ), define

||g̃||2W =

∫ b

a

g̃(w)2(E(ε2|W = w))−1dFW (w)

It then follows that G(g) = ‖T (g − g0)‖2
W .

Let us assume g0 is point identified, i.e.,G(g) = 0 if and only if g = g0. We also assume T is

compact, and hence has singular value system {|λ|j, φj, ψj}, where Tφj = |λj|ψj , and for each

g ∈ L2(X), we have the singular value decomposition g =
∑∞

j=1 bjφj +Q, where Q ∈ N (T ),

the null space of T . In the case of point identification, T is nonsingular, and therefore Q = 0.

Let the singular values |λj|, j=1,2,.. be ordered such that |λ1| ≥ |λ2| ≥ ... > 0, converging

to zero. In addition, {ψj} can be orthonormalized such that

∫ b

a

ψi(w)2

E(ε2|W = w)
dFW (w) = 1∫ b

a

ψi(w)ψj(w)

E(ε2|W = w)
dFW (w) = 0, i 6= j

We can then write g0(x) =
∑∞

i=1 giφi(x). For each q ∈ N, the sieve space Θq is defined as the

space spanned by {φ1, ..., φq}, with q = qn → ∞ as n increases. Therefore each gq ∈ Θq has

an expansion gq(x) =
∑q

i=1 biφi(x) with coefficients {bi}qi=1. In addition, let ‖g0‖ =
∑∞

i=1 g
2
i ,

and ‖gq‖ =
∑q

i=1 b
2
i .

The posterior distribution of the sieve approximation of g0 is then given by

(4.17) p(gq|Data) ∝ exp
(
−na2

n‖gq‖2 − n

2
m̄n(gq)

TV −1
0 m̄n(gq)

)
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We now give the regularity conditions for the posterior consistency.

Assumption 4.4.3. (i) T is nonsingular.

(ii) (X,W ) has joint density function fXW and marginal density functions fX and fW respec-

tively, which satisfy

(4.18)
∫∫

fXW (x,w)2

fX(x)fW (w)
dxdw <∞

Assumption 4.4.4. There exists α ∈ (0, 1) such that for any constant c > 0,

sup
‖gq‖≤c

|m̄n(gq)
TV −1

0 m̄n(gq)−G(gq)| = op(n
−α)

Assumption 4.4.5. (i) a2
n → 0, and na2

n →∞, as n→∞.

(ii) There exists {sn}∞n=1 ⊂ N, sn → ∞, such that
∑

j≥sn g
2
j = O(a2

n/λ
2
sn) = o(1), as n

increases.

(iii) n � qn � max{n1−α, na2
n/λ

2
sn , λ

−2
qn }.

Assumption 4.4.3 guarantees the point identification of g0, which was also assumed by Hall

and Horowitz (2005). Hence g0 can be recovered by g0 = T−1µ where µ(w) = E(Y |W =

w). Condition (ii) guarantees that T is a compact operator (See Carrasco, Florens and Renault

(2006), Section 2.2) ). Assumption 4.4.4 assumes the rate of the uniform convergence to G(g)

on any compact subset of L2(X). Assumption 4.4.5 imposes the rate of convergence restrictions

on the regularized parameter an, the singular values of T , the Fourier coefficients of g0, and the

dimension of the sieve space qn. Roughly speaking, neither an nor |λn| should converge to zero

too fast. Moreover, the Fourier coefficients of g0 should vanish at least as fast as O(a2
n/λ

2
sn).
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One can verify that Assumption 4.4.5 is satisfied, for example, if

sn = O(nr), for some r > 0

|λj| = O(j−p), for some 0 < p < min{1

2
,

1

2r
}

a2
n = O(n−k), for some 2pr < k < 1∑

j≥sn

g2
j = O(n−(k−2pr)), n � qn � max{n1−α, n1−(k−2pr)}.

Under these stated regularity conditions, the posterior distribution (4.17) is consistent when

the parameter space for g0 is not compact.

Theorem 4.4.1. When the parameter space of g0 is Θ = L2(X), under Assumptions 4.4.3,

4.4.4 and 4.4.5, assuming that the posterior distribution is given by (4.17), we have

E[‖gqn − g0‖2|Data] = op(1)

Before presenting the numerical examples, I would like to give some final words on the

regularized prior. The variance of the prior distribution (4.15) shrinks to zero, which is in

the spirit of Tikhonov regularization scheme to deal with the inverse problem. On the other

hand, it has a zero mean. Note that one of the attractiveness of the Bayesian approach for

nonparametric instrumental regression problem is that it can incorporate prior knowledge of the

structural function in the prior distribution. In fact, this can be achieved through a nonzero mean

term. For instance, suppose a priorly it is known that g0 is concave, one can choose a known

concave function g∗ as the mean in the prior. Hence the regularized prior becomes

(4.19) log p(g) ∝ −na2
n||g − g∗||2
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I conjecture that by using prior (4.19), the posterior of the sieve approximation is still consistent

because of the shrinkage of the prior variance. In addition, the posterior mean would be concave,

as the prior mean is a concave function.

Conjecture 4.4.1. If prior (4.19) is used, where g∗ is either concave (monotone), under As-

sumptions in Theorem 4.4.1, the posterior is consistent, and the posterior mean is also concave

(monotone).

If this conjecture actually holds, one can then incorporate the prior knowledge of g0 in the

regularized prior distribution.

4.5. Markov Chain Monte Carlo

I present a simple simulation example in this section. The simulated model is a nonpara-

metric IV regression, designed as:

y = g(x) + u = sin(x) exp(
√
|x|)

x = w + v

where the errors u and v and instrument w are generated as
u

v

w

 ∼ i.i.d.N

0,


1.09 0.6 0

0.6 1.09 0

0 0 1




One can verify that cov(x, u) = 0.6, and hence x is endogenous. In addition, cov(w, u) = 0

and cov(w, x) = 1, so w is a valid instrumental variable.
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I generated n = 1000 observations for (x,w, y). All the observations of w fall inside of

interval [−4, 4], so we partitioned [−4, 4] evenly into k = 50, 100 subintervals. To implement

the Bayesian procedure, V = k ∗ I was used as the weight matrix in the limited information

likelihood, to replace the unknown V0. We applied the Hermite series as the basis functions of

the sieve approximation, i.e.,H1(x) = 1, H2(x) = x, andHj(x) = Hj−1(x)x−(j−1)Hj−2(x),

with q = 4, 5, 6 terms (we will comment on practical choice of qn in next section).

For Approach 1, I placed the posterior in a compact set for the purpose of regularization.

I placed i,i,d, prior bj ∼ N(0, 0.5j−3) on each of the sieve approximation coefficients. The

variance gets small for large index j, so that the priors of higher order coefficients bj gradually

concentrate around zero, which is designed to deal with the potential over-fitting problem. The

simulation was carried out by conducting the Metropolis algorithm with B = 1000 replicates.

The first 300 draws were “warm-ups” and were discarded to ensure the MCMC draws became

stationary. Only the coefficients in the draw that satisfy
∑q

j=1 |bj| ≤ 100 were kept to ensure

the posterior distribution is within a compact space. The sample averages of the remaining

draws were calculated, treated as the estimated posterior mean of the sieve coefficients. Both

the estimated curve and the true structural function are plotted in Figure 4.1.

For Approach 2, I relaxed the compactness assumption, but used the regularized prior (4.15),

with an = 0.05 (small), 0.1 (moderate), and 0.8 (large). The estimated and the true curves are

plotted in Figure 4.2.

Both figures demonstrate that, when qn is moderate, the estimated curve capture the true

curve fairly well. However, when qn = 6, the finite sample bias is non-negligible, which may

due to the over-fitting. Comparably, this problem is not severe in Approach 1, as the prior

variances for higher order coefficients are decreasing to zer. Moreover, the finite sample bias
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Figure 4.1. Approach 1, solid: true structural function; dashed: the estimated function

for Approach 2 also comes from the choice of an. Finally, our result is less sensitive to the

choice of kn.

4.6. Conclusion and Discussion

I studied the nonparametric conditional moment restricted model in a Bayesian approach,

with a special focus on the frequentist properties of the posterior distribution. There was no any

specific distribution assumed on the data generating process. In stead, I derived the posterior

using the limited information likelihood, allowing the proposed procedure more flexible than

the traditional nonparametric Bayesian approach by assuming a normal distribution on the error

term, while the latter cannot avoid the risk of mis-specifying the underlying true distribution.
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Figure 4.2. Approach 2, solid: true structural function; dashed: the estimated function

The limited information likelihood is the best approximation to the true likelihood by minimiz-

ing the Kullback-Leibler divergence. In fact, there are other alternative moment condition-based

likelihood functions. For example, if we approximate the empirical distribution of the sampled

data instead of the true likelihood, we end up with the empirical likelihood (Owen 1990). If

additionally instead of Kullback-Leilber divergence, the chi-square distance is used as the met-

ric, we will then obtain the generalized empirical likelihood (Imbens et al. (1998), Newey and

Smith (2001) and Kitamura (2006)). It is still possible to establish the posterior consistency if

these alternative moment condition-based likelihoods are used as the likelihood function, which

is left as a future research direction.
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In addition, our proposed Bayesian procedure allows the partial identification of g0, which

is more flexible than the traditional approach if the practical objective of interest is a linear

continuous functional of g0 instead of g0 itself. This is because even if g0 is not point identified,

it is still possible to point identify h(g0) in many practical applications. The posterior of the

functional can be constructed from the posterior of g0, based on the MCM draws. It is also

possible to incorporate the prior π(h(g0)) for h(g0) directly, by transforming π(h(g0)) into

p(bi), the prior of the sieve coefficients in gq =
∑q

i=1 biφi, such that p(h(gq)) ≈ π(h(g0)) where

p(h(gq)) is derived from p(bi). We will leave this as a future work.

The compactness of the parameter space was the key assumption to achieve the consistency

for the general conditional moment restriction setting. We also showed that if the compactness

assumption is relaxed, by imposing a regularized prior whose variance converges to zero asymp-

totically, the posterior distribution based on the limited information likelihood is still consistent

in nonparametric IV regression. By imposing a regularized prior that depends on the tuning

parameter an, the ill-posed problem in nonparametric IV regression is overcome.

In applications, our results require a priori choices of kn, qn and an, where kn is the number

of partitions of the support of W , qn is the number of terms in the sieve approximation to

g0, and an is the tuning parameter in the regularized prior, to deal with the ill-posedness in

nonparametric IV regression. We point out that our results are robust to the choice of kn,

however, sensitive to qn. Although it is required qn should diverge to infinity as n increases,

it turns out that the sieve approximation with large value of qn may suffer from over-fitting.

It is for this reason Newey and Powell (2003) suggested choosing a small number for qn, and

Ai and Chen (2003) chose qn simply by its assumed rate, which is also small. In addition,
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as pointed out by Chen (2007), some existing data-driven selection methods such as cross-

validation, generalized cross-validation, and AIC may be used. Alternatively, it is possible to

impose a Poisson prior on qn with the mean parameter diverging to infinity, and then a proper

qn can be chosen from its posterior. The posterior consistency can also be achieved by such

a procedure, and we will leave this as the future work. Finally, the tuning parameter an was

used in our approach as well as in Hall and Horowitz (2005) to overcome the ill-posedness.

Development of methods for selecting an is another important research topic.
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CHAPTER 5

Bayesian Analysis for Classification Risk Using Empirical Likelihood

5.1. Introduction

One of the classical problem in data mining is to predict the unknown nature of a feature,

by classifying the data into subgroups. Suppose Y ∈ {0, 1} is a binary variable to be predicted,

which depends on a vector of covariates X . The classification and prediction are based on a

classification rule C(X, θ) ∈ {0, 1}, which is a function of X and a certain action parameter

θ. The action parameter θ is chosen such that under some risk function l, the expected risk

El(Y,C(X, θ)) is as small as possible. In the traditional classification problem, instead of

minimizing the expected risk, if there are i.i.d. realizations (Y1, X1), ..., (Yn, Xn), researchers

choose θ to minimize the empirical risk

(5.1) rn =
1

n

n∑
i=1

l(Yi, C(Xi, θ))

Minimizing the empirical risk to find a good classification rule is a classical problem, which

has been studied by a number of researchers, see for example, Devoye, Gyorfi and Lugosi

(1996). Mohammadi and Van de Geer (2005) defined the optimal action parameter θ as the

minimizer of the expected risk, and consistently estimated it by minimizing the empirical risk

over a class of actions. More recently, Jiang and Tanner (2008) constructed the Gibbs posterior

for the action parameter, and aimed at minimizing the risk function without modeling the data
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probabilistically. Other related works can be found, for example, in Koltchinskii and Panchenko

(2002), among others.

In this chapter, we consider a Bayesian approach to making joint probabilistic inference

on the action and the associated risk, without requiring a probability model for the underly-

ing data generating process. This approach is more robust than the traditional likelihood-based

method, which requires modeling the distribution of the data generating process. In Jiang and

Tanner (2008), the Gibbs posterior is constructed from an empirical risk function, which does

not require the probability distributional assumptions on the data. However, this approach lacks

a Bayesian probability interpretation, in the sense that the likelihood function used for con-

structing the posterior is neither the true likelihood nor its approximation. Therefore, the Gibbs

posterior cannot be interpreted as the posterior distribution of the action parameter in the tradi-

tional conditional probability sense. In this chapter, we overcome this difficulty by applying the

empirical likelihood (Owen 1990). Let r denote the theoretical risk that satisfies

(5.2) El(Y,C(X, θ)) = r

The empirical likelihood is derived from the moment condition (5.2), as a function of (θ, r).

It is well known that the empirical likelihood is the best approximation to the empirical dis-

tribution of the data in terms of the Kullback-Leibler distance subject to moment restrictions.

Therefore, with a proper prior, the posterior distribution derived from the empirical likelihood

has Bayesian interpretation asymptotically. Lazar (2003) provided simulation evidence in terms

of the posterior coverage probability to show that the empirical likelihood can be used as a valid

likelihood function for every absolutely continuous prior.
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One of the most important features of the moment restriction (5.2) is that the parameters

(θ, r) are only partially identified. That is, there are more than one pairs of (θ, r) in the parame-

ter space satisfying the moment restriction. Therefore the posterior distribution of (θ, r) will not

degenerate to any single point even asymptotically. In recent years, partially identified models

are receiving rapid attentions in both statistics and econometrics literatures, and there are many

works done in this growing area. In these models, the identified region, defined as the set of

parameters that satisfy the moment restriction (5.2), becomes the object of interest. See for

example, Chernozhukov, Hong and Tamer (2007). More recently, Liao and Jiang (2010) have

studied the properties of the posterior distribution of the parameters in a similar setting of the

moment restriction (5.2), where they used the limited information likelihood idea (Kim 2002)

to construct the likelihood function. In this chapter, we show that the posterior distribution, con-

structed based on the empirical likelihood, has similar asymptotic properties to those described

in Liao and Jiang (2010). To be specific, we will show that the joint posterior distribution

for (θ, r) will be asymptotically supported on an arbitrarily small neighborhood of the curve

{(θ, r) : El(Y,C(X, θ)) = r}. So far the posterior consistency of the empirical likelihood

for partially identified models has not been formally established, while the point identified case

was previously studied by Chernozhukov and Hong (2003) and Moon and Schorfheide (2004).

Therefore an important contribution of this chapter is that we show the consistency of the poste-

rior distribution, constructed based on the empirical likelihood, for the parameters that are only

partially identified by the moment condition of the form (5.2).

Note that the posterior distribution P (θ, r|Data) allows us to construct the conditional pos-

terior distribution P (θ|r,Data), which is the posterior distribution of the action to achieve a
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given tolerant risk level. To our best knowledge, the posterior distribution of the action con-

ditional on the theoretical misclassification risk has not been characterized before. The con-

sistency of P (θ, r|Data) implies that given r being controlled at a certain level r ≤ r0, and

θ is generated from P (θ|r ≤ r0, Data), the true expected risk El(Y,C(X, θ)) ≤ r0 + ε for

any ε > 0, with posterior probability approaching one, regardless of the distribution of the data

generating process.

We notice that, compared to the literature on the classical empirical risk minimization

(ERM) approach, there is disproportionally less work done on the inferential side of the classifi-

cation problem. The classical ERM approach obtains an optimal θ by minimizing the empirical

risk. However, in such an approach, neither the associated true risk nor the posterior distribution

for θ that achieves such a true risk are known to us (although we may be able to find an asymp-

totic confidence interval for the true risk based on the minimum empirical risk). An alternative

Bayesian approach is to model the probability P (Y = 1|X = x) either parametrically or non-

parametrically, and then use a likelihood-based posterior, see for example, Coram and Lalley

(2006). In comparison, our proposed method can describe, for example, the posterior distribu-

tion of the risk associated with any action θ, and on the other hand, the conditional posterior

of θ to achieve a certain tolerant risk level r0. Therefore, instead of improving the prediction

accuracy and the risk minimization, which has already been paid a huge amount of efforts in the

data mining literature, our contribution is to provide a new language for probabilistic inference

on both the risk and actions.

The remainder of this chapter is organized as follows. Section 5.2 will introduce the basic

model framework and the posterior distribution based on the empirical likelihood. Section 5.3

presents the main results of this chapter. Section 5.4 comments the possible extensions to a
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more general risk function in data mining. Section 5.5 provides some simulation examples to

illustrate the main ideas of this chapter and demonstrates how they are used in practice. Finally,

Section 5.6 illustrates an empirical application of the credit classification using the German

Credit Benchmark data.

5.2. Empirical Likelihood Posterior Distribution

Consider the following equation

(5.3) r = E[ρ(W, θ)|θ] =

∫
ρ(W, θ)P (dW )

where θ is a parameter used in the action of data mining and r is the resulting risk. Here W =

(Y,X) with Y ∈ {0, 1} being the label to be predicted and X as an input. The classification

loss ρ(W, θ) = |Y − C(X, θ)| where C(X, θ) ∈ {0, 1} is a classification rule labelled by θ.

The probability measure dF (W ) is based based on the (true) distribution of W . We assume the

action parameter θ belongs to an action space Θ, and therefore the parameter space for (θ, r) is

Θ× [0, 1].

We will regard (5.3) as a moment condition and base on this alone, without further mod-

eling the distribution of W , construct a posterior distribution jointly for the action-risk param-

eters (θ, r). This can be done by applying the empirical likelihood generated by the moment

condition. Assume that we observe a data set D = (W1, ...,Wn), which are assumed to be iid

realizations of W . The empirical likelihood based on (5.3) is defined by (Owen 1990, and Qin

and Lawless 1994):

PEL(D|θ, r) = sup
p1,...,pn

{
n∏
i=1

pi|pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pi[ρ(Wi, θ)− r] = 0}
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= exp{−max
µ∈R

n∑
i=1

log{1 + µ[ρ(Wi, θ)− r]}}.(5.4)

The empirical likelihood procedure has a good distribution interpretation using information

theory. Let P denote the space of probability measures on the Borel σ−field on Rdim(W ).

DefineM(θ, r) = {µ ∈ P :
∫
ρ(w, θ)dµ(w) = r}. It can be verified (see Kitamura 2001) that

the empirical likelihood (5.4) is the solution to

inf
P∈M(θ,r)

I(µn||P )

where µn denotes the empirical measure of D, and I(P1||P2) denotes the Kullback-Leibler dis-

tance between P1 and P2. Therefore, although (5.4) is not the true likelihood function based on

the data, it is the best approximation to the empirical distribution of the data under the moment

restriction (5.3), in terms of the Kullback-Leibler distance. This yields the Bayesian interpre-

tation of the posterior distribution based on the empirical likelihood of this chapter. Suppose a

prior distribution π(θ, r) is assigned in some sense, the resulting posterior then becomes (up to

a normalization factor):

(5.5) P (θ, r|D) ∝ exp

{
−max

µ∈R

n∑
i=1

log{1 + µ[ρ(Wi, θ)− r]}

}
π(r, θ).

Instead of achieving a better risk minimization, in this chapter we are aiming at providing a

new language for probabilistic inference on the risk and action. The posterior distribution is a

flexible formalism that allows us to derive a number interesting results, for example:

(1) P (r|θ,D), which is the posterior distribution of the resulting risk achieved by a given

action θ;
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(2) P (θ|r = r0, D) or P (θ|r ≤ r0, D), which is the posterior distribution of the action θ

needed to achieve a risk being r0 or at most r0 respectively;

(3) P (θ ∈ A1|r ≤ r0, D)/P (θ ∈ A2|r ≤ r0, D), which compares the posterior proba-

bilities of two ‘models’ A1,2 (or two sets of actions), in order to achieve risk at most

r0.

(4) P (r|D), which is the posterior distribution of the achievable risks by all possible ac-

tions θ from the support of the prior Θ.

Note that the risk r is defined by r = E[ρ(W, θ)|θ], which depends on the action parameter

θ and the underlying distribution PW , and therefore can be written as r = r(θ, PW ). Here r is

not fixed even if θ is, because PW is unknown and depends on the unknown parameters, and

therefore, from a Bayesian point of view, is random. A possible alternative way is to put prior

on (θ, PW ), and obtain the posterior of r from r = r(θ, PW ). However, it is then necessary

to model PW non-parametrically. Our proposed approach is more convenient: by putting the

joint prior on π(r, θ) directly, we can let the data tell the functional relationship between r and θ

through the joint posterior distribution. For example, in the simulation study of Section 5.5, the

priors of r and θ are assumed to be independent. However, the scatterplot of the MCMC draws

of (r, θ) from the posterior distribution (Figure 5.1) clearly illustrates a functional relationship

between them.

5.3. Main Results

In the classification problem when ρ = |Y −C(X, θ)| and Y,C(X, θ) ∈ {0, 1}, it is straight-

forward to verify that the empirical likelihood and the corresponding posterior distribution have
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explicit analytic expressions. Define the empirical risk

(5.6) R̂(θ) = n−1

n∑
i=1

|Yi − C(Xi, θ)|.

The following theorem says that, in the classification problem framework, the log-empirical

likelihood function is proportional (up to the scale −n) to the Kullback-Leibler distance be-

tween two Bernoulli distributions with success probabilities R̂(θ) and r respectively.

Theorem 5.3.1. When ρ = |Y − C(X, θ)| and Y,C(X, θ) ∈ {0, 1} R̂(θ), r ∈ [0, 1], where

R̂ is given in (5.6), then the posterior distribution for (θ, r) using the empirical likelihood is

given by

(5.7) P (θ, r|D) ∝ exp(−nK(R̂(θ), r))π(θ, r),

where

(5.8) K(p, q) =



p ln(p/q) + (1− p) ln{(1− p)/(1− q)}, if p, q ∈ (0, 1)

+∞, if p ∈ (0, 1], q = 0, or p ∈ [0, 1), q = 1

0 if q ∈ [0, 1), p = 0, or q ∈ (0, 1], p = 1.

PROOF. See the Appendix.

Note that (5.3) does not identify (θ, r) (nor necessarily θ|r). That is to say, the posterior

distribution of (θ, r) will not degenerate to any single point even asymptotically. Based on a

treatment similar to Liao and Jiang (2010), however, we can derive a posterior consistency result

for this partially identified framework. The following theorem is our main result of this chapter,
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which shows that the posterior P (θ, r|D) will cluster around the region of true parameters that

satisfy the momement condition (5.3).

Theorem 5.3.2. Consider the classification case, when ρ(W ) = |Y−C(X, θ)| and Y,C(X, θ) ∈

{0, 1}. Denote R(θ) = E[ρ(W, θ)|θ], R̂ = n−1
∑n

i=1 ρ(Wi, θ), and η(θ, r) = min{R, 1 −

R, r, 1− r}. Assume the following:

(i) The prior π(|R− r| ≤ δ, η ≥ τ) > 0 for any postive constants δ, τ ;

(ii) supθ∈Θ |R̂−R| →P∗ 0 in the probability of D as n→∞;

then for any ε > 0, we have: in the probability of D, as n→∞

P (R(θ)− ε ≤ r ≤ R(θ) + ε|D)→P∗ 1.

PROOF. See the Appendix.

Intuitively, a generalized posterior consistency theory implies that the posterior distribu-

tion should be asymptotically supported around the set of minimizers of nK(R̂(θ), r), the

power in the likelihood function. Since K(R̂(θ), r) is the Kullback-Leibler distance between

Bernoulli(R̂(θ)) and Bernoulli(r), it is minimized when R(θ) and r are close to each other.

This theorem indicates that the posterior of (r, θ) based on the empirical likelihood indeed

asymptotically clusters around the curve defined by the moment restriction {(r, θ) : r = R(θ)}.

Therefore, even though the posterior of the risk R(θ) is unknown (since it also depends on the

unknown distribution PW ), we can look at the posterior of r instead.

The following corollaries describe two useful implications. The first says that if we would

like to find actions to control the true risk to be at most some desired risk level r0, then we can

use actions randomly generated by the conditional posterior distribution P (θ|r ≤ r0, D), which
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will tend to generate actions θ that have resulting true risks R(θ) at most a little bit worse than

the desired level r0.

Corollary 5.3.1. Suppose that P (r ≤ r0|D) > ξ for some constant ξ > 0, then under

the regularity conditions in Theorem (5.3.2), for any ε > 0, P (E[ρ(W, θ)|θ] ≤ r0 + ε|D, r ≤

r0)→P ∗1 as n→∞.

PROOF. Denote R = E[ρ(W, θ)|θ]. Then P (R > r0 + ε|D, r ≤ r0) = P (R − r0 > ε, r ≤

r0|D)/P (r ≤ r0|D) ≤ P (|R− r| > ε|D)ξ−1→P ∗0 due to Theorem (5.3.2). Q.E.D.

Define r∗ = infθ∈ΘE[ρ(W, θ)|θ], the minimum expected risk over all the actions in Θ. The

next corollary states that the posterior distribution for r has no support below r∗ asymptotically.

Corollary 5.3.2. Under the regularity conditions in Theorem (5.3.2), for any ε > 0, P (r <

r∗ − ε|D)→P ∗0 as n→∞.

PROOF. P (r < r∗ − ε|D) = P (r + ε < infθ R|D)→P ∗ 0 due to Theorem (5.3.2).

Finally, for the sake of numerical computation, we point out that the Beta distribution is

a conjugate prior for the conditional posterior distribution of r|θ,D. To be more specific, if

the priors for θ and r are independent, and π(r) is Beta(a, b), then straightforward calculation

yields:

P (r|θ,D) ∼ Beta(nR̂(θ) + a, n(1− R̂(θ)) + b)

P (θ|D) ∝ π(θ)R̂(θ)−nR̂(θ)(1− R̂(θ))−n(1−R̂(θ))B(nR̂(θ) + a, n(1− R̂(θ)) + b)

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx.
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5.4. More general risk functions in data mining

It is noted that while we have focused on the classification risk, the current method and and

theoretical results can be easily generalized to other risk functions of the form R = E[ρ(W, θ)],

where ρ = f(Y,A) with Y ∈ {0, 1} and A = A(X, θ) ∈ {0, 1}. (One simple example is a

linear rule A = I(XT θ > 0) parameterized by θ.) For one example in a data mining context:

A marketing effort A = I[mail] of mailing out an advertisement with cost c = 1 will be

based on x (including, e.g., gender, age, ethnic group, education, ...). The outcome will be

Y = I[purchase] where a purchase will lead to net income g = 100. Then one would like to

maximize the expected profit E[(gY − c)A] or minimize a risk R = constant−E[(gY − c)A].

Here up to a constant, f(Y,A) = −(gY − c)A, so that f(0, 0) = f(1, 0) = 0, f(0, 1) = c = 1,

f(1, 1) = c − g = −99. Such profit-and-loss decision matrices are included in popular data

mining software such as SAS Enterprise Miner. We can apply the proposed method to construct

a posterior distribution jointly for the action parameter a and the resulting risk r.

5.5. Simple Monte Carlo Example

Let the data be generated from the following design

Y = I(3X−ε>0)

X ∼ N(0, 1), ε ∼ N(0, 3)

where X and ε are independent. We apply the classification rule C(X, θ) = I(X−θ>0). Let

ρ(θ) = |Y − C(X, θ)|, one can then show that the expected risk is given by

(5.9) E[l(θ)|θ] = EX{[1− Φ(
√

3X)]I(X>θ) + Φ(
√

3X)I(X≤θ)}
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where the expectation EX is taken with respect to the distribution of X , which is standard

normal. We generated n = 1000 data points (Y1, X1), ..., (Yn, Xn). The posterior for (θ, r) were

constructed according to (5.7) based on the empirical likelihood, with priors π(θ) ∼ N(0, 1),

π(r) ∼ U [0, 1], and π(θ, r) = π(θ)π(r). According to Theorem 5.3.2, the posterior distribution

should be clustered around the risk curve {(θ, E[l(θ)|θ])}. To illustrate this matter of fact,

B = 10, 000 MCMC draws were generated from the posterior. In each step of the Metropolis

algorithm, we used proposal density θt ∼ N(θt−1, 0.5), and rt ∼ U [0, 1]. The first quarter of

the draws were discarded to ensure that the MCMC procedure becomes stationary.
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Figure 5.1. Design 1: Expected risk curve and MCMC draws

Figure 5.1 plots the expected risk curveE[l(θ)|θ] against θ, and the scatterplot of the MCMC

draws of (θ, r) from the posterior distribution. It is clearly illustrated that the MCMC draws are

clustered around the true expected curve, supporting our posterior consistency result.

Our method also gives the posterior distribution of the action θ to achieve a certain risk

level. For example, if we want to control the classification risk to be at most 5% minimum
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quantile of the posterior distribution of r, let r0 be the 5% quantile of the MCMC draws of r,

r0 = 0.1795, then the desired posterior for θ is given by P (θ|D, r ≤ r0). If we want to control

the classification risk to be the at the minimized empirical risk level minθ R̂(θ) = 0.1748, then

the posterior is given by P (θ|D, r = minθ R̂(θ)). See Figure 5.2 as the plotted posteriors for θ

respectively.

Figure 5.2. Left: P (θ|D, r ≤ r0); Right: P (θ|D, r = min R̂)
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In addition, we can also plot P (r|D, θ = arg minθ R̂(θ)), which is the posterior of the

risk given the optimal action arg minθ R̂(θ). From the previous discussion we know that the

uniform prior is a conjugate prior for P (r|θ,D). Therefore, P (r|D, θ = arg minθ R̂(θ)) is

Beta(min R̂ + 1, n(1 −min R̂) + 1). Finally, note that in this design, minθ E[l(θ)|θ] = 0.168.

The marginal posterior of r is also plotted, which is obtained by numerically integrating out θ.

The plot indicates that the P (r|D) has not much support below the minimum expected risk. See

Figure 5.3 for these plots.

The final Figure 5.4 plots the theoretical risk E[l(θi)|θi] versus the controlled level of risk

r0, where each θi is from one of the MCMC draws (θi, ri), whose corresponding ri is less than

or equal to r0, and E[l(θi)|θi] is as given by (5.9). Therefore, one can think of the dots in Figure

5.4 with the same horizontal axis r0 as the distributions of the theoretical risk E[l(θ)|θ], where

θ is generated from P (θ|r ≤ r0, D). We can see that almost all the dots are below the identical
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Figure 5.3. Left: P (r|D, θ∗ = arg minθ R̂); Right: P (r|D)
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line y = r0. This indicates that, once the action parameter θ is generated from the conditional

posterior P (θ|r ≤ r0, D), with the risk being controlled under level r0, the theoretical L1 risk

will also be less than or equal to r0.

Figure 5.4. E[l(θ)|θ] : θ ∼ P (θ|r ≤ r0, D) versus r0
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5.6. German Credit Data: an Empirical Application

5.6.1. Data set and model specification

As an empirical example, we apply the proposed Bayesian empirical likelihood method to

the credit risk classification, using the German Credit Benchmark data set provided by Asuncion
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and Newman (2007). The data set consists of n =1,000 past applicants and their credit rating

(GOOD or BAD), which serves as the target variable Y . In addition, there are 24 attributes

served as input variables, which are used as the covariates X . The attributes are either ordered

categorical, such as “Credit History”, “Personal Status and Sex”, “Housing”, “Employment”,

or numerical, such as “Credit Duration”, “Credit Amount”, and “Age”. See Asuncion and

Newman (2007) for a complete description of the data set.

The classification rule using the jth observation isC(Xj, θ) = I(X1jθ0+θ1+
∑24

i=2Xijθi >

0). Here Xij denotes the realization of individual j on variable Xi, i = 1, 2, ..., 24. Note that

for the identifiability in regular binary response models, Horowitz (1992) suggested that X1

should be a continuous variable whose coefficient θ0 ∈ {−1,+1}, i.e., X1 is always kept in

the model. Therefore, the components of the covariates are arranged so that X1j denotes the

jth observation of “Credit Duration”, which is a continuous variable, and it is reasonable to

assume that it is related to each customer’s credit behavior. We also included an intercept term

θ1. In addition, to make sure the ranges of the covariates do not vary too much for the purpose

of comparison, the continuous attributes were normalized, i.e., subtracted mean and divided by

the standard deviation.

For the credit classification problem, the cost matrix is given by the following table.

Table 5.1. Cost Matrix

Classification
GOOD BAD

Target Variable GOOD 0 1
BAD 5 0

Note that the cost matrix is asymmetric, this is because the penalization for mis-classifying

a Bad target variable Y into Good should be more severe than the vice versa. Therefore the loss
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function is

ρ(Y,X; θ) = I(Y = Good, C(X, θ) = Bad) + 5I(Y = Bad,C(X, θ) = Good).

The method proposed in the previous sections can be applied for variable selection. Let ψ =

(ψ1, ..., ψ24) denote a vector of selection indicators such that for each i = 1, ..., 24, ψi = 1

if variable Xi is selected, and ψi = 0 otherwise. We then have the “entered” parameters

θψ = (θ1ψ1, ..., θ24ψ24). A zero component of θψ means that the corresponding covariate is

not included. The first component is set to ψ1 = 1 so that the intercept θ1 is always kept in

the model. Therefore the actual classification rule based on the “entered” parameters θψ is

C(Xj, θ
ψ) = I(X1jθ0 + θ1 +

∑
i=2Xijθiψi > 0).

The log-empirical likelihood function for (θ, r, ψ) is thus given by

logEL(θ, r, ψ) = −max
µ∈R

n∑
i=1

log{1 + µ[ρ(Yi, Xi, θ
ψ)− r]}.

Let |ψ| denote the number of nonzero components of ψ, and Ik denote the k×k identity matrix.

We specify the priors as follows: π(θ, r, ψ) = π(θ|ψ, r)π(ψ, r) = π(θψ|ψ)π(ψ)π(r), where

θ0 = 2γ − 1, γ ∼ Binomial(1, 0.5)

θψ|ψ ∼ N(0, 10I|ψ|), r ∼ Uniform[0, 5]

ψi ∼ Binomial(1, λ), i = 2, ..., 24 ψ = (1, ψ2, ..., ψ24)

λ is a pre-specified parameter, determined by the expected number of selected covariates. The

posterior distribution is then given by

p(θ, ψ, r|Data) ∝ EL(θ, r, ψ)e−
1
20

∑24
i=1 θ

2
i ψiλ|ψ|−1(1− λ)24−|ψ|I(0 < r < 5)
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log p(θ, ψ, r|Data) = logEL− 1

20

24∑
i=1

θ2
iψi + (|ψ| − 1) log λ+ (24− |ψ|) log(1− λ)

+ log I(0 < r < 5) + Constant

5.6.2. Algorithm description

The Metropolis-Hastings algorithm was conducted to obtain the MCMC draws from the

posterior distribution. Similar to the algorithm proposed by Chen, Jiang and Tanner (2009),

each iteration combines BETWEEN steps that propose changes between different models, with

the WITHIN steps that propose changes of θ within a fixed model. These steps are given as

follows: (in the algorithm below, denote q(θj) as the density of N(0, 0.5).)

BETWEEN Step Update θ to θ′ with model indices changing from ψ to ψ′.

(1) (Add/Delete) Randomly choose an index j ∈ {2, ..., 24}.

• If ψj = 1, propose ψ′j = 0 and let θ′j = 0 with all remaining components of θ

unchanged. This proposal is accepted with probability

min

{
1,
p(θ′, ψ′, r|Data)q(θj)

p(θ, ψ, r|Data)

}

• If ψj = 0, propose ψ′j = 1, and generate θ′j ∼ N(0, 0.5) with all remaining

components of θ unchanged. This proposal is accepted with probability

min

{
1,

p(θ′, ψ′, r|Data)

p(θ, ψ, r|Data)q(θ′j)

}

(2) (Swap) When 1 < |ψ| < 24, randomly choose two indices k, l ∈ {2, ..., 24}, such that

ψk = 0 and ψl = 1. Propose ψ′k = 1 and ψ′l = 0, and θ′k ∼ N(0, 0.5), θ′l = 0. This
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proposal is accepted with probability

min

{
1,
p(θ′, ψ′, r|Data)q(θl)

p(θ, ψ, r|Data)q(θ′k)

}

WITHIN Step Update θ′ to θ∗ with model indices fixed and with the nonzero values of θ′

changed: For each index j ≥ 1 such that ψ′j = 1, generate θ∗j ∼ N(θ′j, 0.5). Generate

γ ∼ Binomial(1, 0.5), and let θ0 = 2γ − 1. Generate r∗ ∼ Uniform[0, 1]. Accept θ∗

with probability

min

{
1,
p(θ∗, ψ′, r∗|Data)

p(θ′, ψ′, r|Data)

}
Each candidate model can be indexed by a specific realization of ψ, hence denoted by Mψ.

Let r0 denote the certain level at which the risk r is to be controlled. We compare the candidate

models by the conditional posterior probability P (Mψ|r ≤ r0, Data). For each realization of

ψ, let Bψ,r0 denote the number of appearances of ψ in the MCMC draws whose corresponding

r is less than or equal to r0, and let Br0 denote the number of draws with r less than or equal to

r0. Therefore P (Mψ|r ≤ r0, Data) can be estimated by

(5.10) P̂ (Mψ, r0) =
Bψ,r0

Br0

5.6.3. Result

The algorithm described previously was carried out for B = 2, 0000 iterations, with λ =

0.4. The first one fifth of the draws were discarded for the MCMC procedure to warmup. The

minimum sampled risk is 0.65 (note that the loss function ρ(Y,X; θψ) is continuously supported

on [0, 5]), and the 1%-percentile is about 0.68. When r0 ∈ [0.65, 0.68], only two sampled models
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have probability higher than 0.1. Table 5.3 summarizes the selected variables in the correspond-

ing models. In addition, Figure 5.5 plots the estimated posterior probabilities P̂ (M, r0) (5.10)

of thirty of the sampled models, as functions of r0. As r0 increases, the posterior probabilities

of the sampled models decrease, since there are more models sampled. This demonstrates that

if the level of the risk that is tolerable is large, many different types of models can achieve it.

To verify that the theoretical risk level r0 = 0.68 is actually achievable, the original data set

was then randomly divided into two groups: training (2/3) and validation (1/3). Both models in

Table 5.3 were first fitted with the training data. For each model Mj , we generated 10, 000

MCMC samples of the corresponding selected action parameters {θi}10,000
i=1 from P (θ|r ≤

r0, training data,Mj). These draws were then used to construct the classification rules with the

validation data (Y1, X1), ..., (Ynv, Xnv). The posterior expectation (based on the training data)

of the empirical risk (based on the validation data) is defined as E[ 1
nv

∑nv
k=1 ρ(Yk, Xk; θ)|r ≤

r0, training data,Mj], which is estimated by the MCMC sample analogue:

(5.11)

R̂j =
1

10, 000

1

nv

10,000∑
i=1

nv∑
k=1

ρ(Yk, Xk; θ
i) ≈ E[

1

nv

nv∑
k=1

ρ(Yk, Xk; θ)|r ≤ r0, training data,Mj]

In addition, for each Mj, j = 1, 2 in Table 5.3, we calculated the optimal action θ(j) by mini-

mizing the empirical risk based on the training data

θ(j) = arg min
θ

1

nc

∑
i∈Training

ρ(Yi, Xi, θ
′ψj)

where ψj corresponds to modelMj . The optimal action was then used to generate the classifica-

tion rule C(X, θ) for the validation data. The empirical risk of model j based on the validation
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data is given by

(5.12) min -ERj =
1

nv

∑
i∈V alidation

ρ(Yi, Xi; θ
′
(j)ψ

j)

To see whether model selection can lead a better prediction accuracy, we also compared R̂j and

ERj with the empirical risk based on the validation data without model selection ER-ALL,

where the classification rule was generated by minimizing the empirical risk of the training

data, using all the 24 covariates. Table 5.2 summarizes R̂j and min-ERj . We can see that

r0 = 0.68 is achieved by both models Mj : j = 1, 2. In addition, after minimizing the empirical

risk using the training data, the optimal action parameter for both models indeed have led to a

better empirical risk on the validation data (.682 and .679), compared to the empirical risk using

all the 24 covariates (.730). On the other hand, the selected models have better interpretability

of the rationale for the credit decision.

Table 5.2. Comparison of R̂ versus r0, min -ER versus ER-ALL

Model R̂ r0 min -ER ER-ALL
M1 0.679 0.680 0.682 0.730
M2 0.659 0.679

R̂, min-ER, and ER− ALL represent the posterior expectation of the empirical risk after
model selection (5.11) , the empirical risk after model selection (5.12), and the empirical risk
without model selection. All the action parameters are calculated based on training data, and

empirical risks are based on validation data.

Table 5.4 summarizes the accuracy for correctly classifying a good customer (Type I), bad

customer (Type II), and the overall classification in the validation data, defined as the ratio of

correct classifications (Type I, Type II and overall) over the total number of good, bad, and

overall customers respectively. The classification action is obtained by using the training data,

as arg minθ
1
nc

∑
i∈Training ρ(Yi, Xi, θ

′ψj), where ψj corresponds to model Mj : j = 1, 2 in
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Figure 5.5. Estimated P (Mψ|r ≤ r0, Data) versus r0
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Table 5.3. Since the loss function pays five times more penalization on mis-classifying BAD

customers than mis-classifying GOOD customers, the optimal classification rule under the se-

lected models yields very good Type II prediction accuracy, which protects against accepting

the BAD customers. Model M2 appears to yield a better classification: while maintaining a

high accuracy of the Type II classification, it performs much better in the Type I and overall

classification.

Finally, we point out that the selected variables in the optimal models are sensitive to the

choice of λ. Here λ denotes the prior expectation of the number of selected variables, which

was set to 0.4 in our application. Hence a priorily we expect around 10 variables to be selected.

If it is set to other values, the selected variables may be different. This fact is reasonable, since
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Table 5.3. Models with r ≤ 1%- percentile

Model Variables Posterior Probability
M1 Duration of Credit 0.5

Credit History
Credit Amount

Present Employment Since
Real Estate Property

Age
Num. of Existing Credits at Bank

Num. of People Being Liable
Other Debtors/ Guarantors

Credit Purpose
M2 Duration of Credit 0.5

Credit History
Credit Amount

Present Employment Since
Real Estate Property

Age
Num. of Existing Credits at Bank

Num. of People Being Liable
Other Debtors/ Guarantors

Telephone

Table 5.4. Classification Accuracy

Model Type I Type II Overall
M1 0.195 0.916 0.426
M2 0.478 0.841 0.595

different groups of variables, due to the collinearity, may have the same effect on the target

variable, and therefore yield to similar classification results.

5.7. Discussion

We considered a Bayesian joint probabilistic inference on the action and the associated risk

in the classification problem. The posterior probability is based on an empirical likelihood,
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which imposes a moment restriction relating the action to the resulting risk, but does not other-

wise require a probability model for the underlying data generating process. As there is no need

to assume the true likelihood function, such a Bayesian approach based on a moment-condition

likelihood is attractive and promising in huge amount of application areas. It has been shown

that this procedure works well when the sample size is large, since the empirical likelihood can

be interpreted as the approximation to the true underlying likelihood function asymptotically.

On the other hand, however, how our proposed posterior behaves in the finite sample case is

still an open and interesting question, which will be left in the future studies.

Another important feature of our approach is that the parameters (θ, r) are not fully identi-

fied, i.e., the posterior density does not degenerate to a point probability mass, but asymptot-

ically clusters around the curve {(θ, r) : E[ρ(W, θ)|θ] = r}. Therefore we can generate the

desired action θ from P (θ|r,Data), given a controlled level of risk r0. We illustrated by exam-

ples how this method is used to describe the posterior of the actions to take in order to achieve

a low risk, or conversely, to describe the posterior of the resulting risk for a given action. In

addition, this approach can also be applied to model selection.

Recently, there has been a rapidly growing frequentist literature on the models where the pa-

rameters of interest are not fully identified, whereas the literature on Bayesian approach is com-

paratively much less. Therefore our method is also an important contribution to the Bayesian

partial identification literature. However, there are many other important open questions to be

understood from a pure Bayesian perspective. For example, how do we construct an objective

prior when the parameter is not identified? In this case, nether the Jeffreys’ prior (1946) nor the

reference prior (Bernardo 1979) exist. The reason is that the information matrix is singular due

to the lack of identification. These problems, of course, deserve further careful research.
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APPENDIX A

Technical Proofs for Chapter 2

A.1. Proofs for Section 2.2: Theorem 2.2.1

PROOF. Let g(Ω)−ε = {x ∈ g(Ω) : d(x, g(Ω)c) ≥ ε}, and g(Ω)+ε = {x ∈ g(Θ) :

d(x, g(Ω)) ≤ ε}. Let inf g(Ω) = infθ∈Ω g(θ), and sup g(Ω) = supθ∈Ω g(θ). ∀ε > 0, we proceed

by two steps: first show ∃N ∈ N, when n > N , ∀ε > 0,

g(Ω)−ε ⊂ ĝ

and then show ∃N ∈ N, when n > N , ∀ε > 0, ĝ ⊂ g(Ω)+ε.

Step I-1: show g(Ω) = [inf g(Ω), sup g(Ω)]. Obviously, g(Ω) ⊂ [inf g(Ω), sup g(Ω)]. On

the other hand, ∀x ∈ [inf g(Ω), sup g(Ω)], since Ω is compact, ∃θ1, θ2 ∈ Ω, so that g(θ1) ≤ x ≤

g(θ2). By assumptions, Ω is connected and g is continuous. By the intermediate value theorem,

∃θ∗ ∈ Ω, x = g(θ∗). Hence x ∈ g(Ω).

Step I-2: show ∃θ∗ ∈ A, and a ball B(θ∗, R∗), so that B(θ∗, R∗) ⊂ {θ ∈ Θ : g(θ) ≤

infθ∈Ω g(Ω)−ε}: In fact, ∀ε > 0, it follows by step I-1, g(Ω)−ε = [inf g(Ω) + ε, sup g(Ω) − ε].

Hence infθ∈Ω g(Ω)−ε = inf g(Ω) + ε. Moreover, ∃θ1 ∈ Ω, g(θ1) < inf g(Ω) + ε. By the

continuity of g, there exists a ball B(θ1, R), such that ∀ω ∈ B(θ1, R), g(ω) < inf g(Ω) + ε.

Hence B(θ1, R) ⊂ {θ ∈ Θ : g(θ) ≤ infθ∈Ω g(Ω)−ε}.

If θ1 ∈ A, then let θ∗ = θ1, R∗ = R. If θ1 ∈ Ω\A, since A is dense in Ω, B(θ1,
R
2

)∩A 6= φ.

Pick up θ2 ∈ A ∩B(θ1,
R
2

), ∀θ ∈ B(θ2,
R
4

), then d(θ, θ1) ≤ d(θ, θ2) + d(θ2, θ1) ≤ R
4

+ R
2
< R.
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Hence θ ∈ B(θ1, R). It follows that B(θ2,
R
4

) ⊂ B(θ1, R) ⊂ {θ ∈ Θ : g(θ) ≤ infθ∈Ω g(Ω)−ε},

and θ2 ∈ A. Let θ∗ = θ2, R∗ = R
4

.

Step I-3: show g(Ω)−ε ⊂ ĝ for large n: By condition 2 in Theorem 2.2.1, for θ∗, there exists

Rθ∗ , and N ∈ N, such that when ρ < Rθ∗ and n > N , P (θ ∈ B(θ∗, ρ)|Xn) > πn w.p.a.1. Let

R1 = min{Rθ∗ , R
∗}, then B(θ∗, R1) ⊂ {θ ∈ Θ : g(θ) ≤ infθ∈Ω g(Ω)−ε}. Hence when n > N ,

∀x ∈ g(Ω)−ε,

Fg(x) = P (g(θ) ≤ x|Xn) ≥ P (g(θ) ≤ inf g(Ω)−ε|Xn) ≥ P (θ ∈ B(θ∗, R1)|Xn) > πn

Hence x ≥ F−1
g (πn). Likewise we can show x ≤ F−1(1 − πn). Therefore g(Ω)−ε ⊂

[F−1
g (πn), F−1

g (1− πn)].

Step II: show for large n, ĝ ⊂ g(Ω)+ε: Step I-1 implies g(Ω)+ε = [inf g(Ω)−ε, sup g(Ω)+ε].

∀x ∈ [g(Ω)+ε]c, either x < inf g(Ω)−ε, or x > sup g(Ω)+ε. If x < inf g(Ω)−ε, then {θ ∈ Θ :

g(θ) ≤ x} ⊂ {θ ∈ Θ : g(θ) ≤ inf g(Ω) − ε}. In addition, since g is continuous on Θ, ∃δ > 0

such that when d(θ,Ω) ≤ δ, g(θ) > inf g(Ω) − ε. Therefore ∀θ ∈ {θ : g(θ) ≤ inf g(Ω) − ε},

d(θ,Ω) > δ, which implies {θ : g(θ) ≤ inf g(Ω)− ε} ⊂ (Ωc)−δ. By condition 1 in the theorem,

∃N ∈ N, when n > N , P (θ ∈ (Ωc)−δ|Xn) < πn w.p.a.1. It follows that

P (g(θ) ≤ x|Xn) ≤ P (g(θ) ≤ inf g(Ω)− ε|Xn) ≤ P (θ ∈ (Ωc)−δ|Xn) < πn

Hence x ≤ F−1
g (πn). If x > sup g(Ω)+ε, by a similar argument we can show x ≥ F−1

g (1−πn).

Therefore, for n > N , if x ∈ [F−1
g (πn), F−1

g (1 − πn)], then x ∈ g(Ω)+ε. This implies ĝ ⊂

g(Ω)+ε.

Combining Step I, II, since ε is arbitrary, dH(ĝ, g(Ω))→ 0 in probability. �
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A.2. Proofs for Section 2.3

Throughout the proof, we denote ∅ as the empty set, and µ(A) as the Lebesgure measure of

set A.

A.2.1. Proof of Lemma 2.3.1

PROOF. Recall that (Ωc)−ε = {θ : d(θ,Ω) ≥ ε}, which is compact. ∀θ ∈ (Ωc)−ε,

minj
Emj(X,θ)√

vjj
< 0. ∃θ∗ ∈ (Ωc)−ε so that supθ∈(Ωc)−ε minj

Emj(X,θ)√
vjj

= minj
Emj(X,θ

∗)
√
vjj

< 0.

Let

δ = − sup
θ∈(Ωc)−ε

min
j

Emj(X, θ)√
vjj

> 0

then ∀θ ∈ (Ωc)−ε, minj
Emj(X,θ)√

vjj
≤ −δ < − δ

2
, which implies (Ωc)−ε ⊂ A δ

2
. Hence P (θ ∈

(Ωc)−ε|Xn) ≤ P (θ ∈ Aδ/2|Xn) = op(an).

A.2.2. Proof of Theorem 2.3.1

The following lemma is useful.

Lemma A.2.1. With probability 1,

(A.1) P (Z ≥ 0) ≥ 1− p · Φ

(
−
√
nmin

j

{
m̄j(θ)− (V ψ)j

n√
vjj

})

(A.2) P (Z ≥ 0) ≤ Φ

(
√
nmin

j

{
m̄j(θ)− (V ψ)j

n√
vjj

})
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PROOF. Let Z = (Z1, ..., Zp)
T .

(B.1):

P (Z ≥ 0) = 1−P (∪j≤pZj < 0) ≥ 1−
p∑
j=1

P (Zj < 0) ≥ 1−
p∑
j=1

Φ

(
−
√
n
m̄j(θ)− (V ψ)j/n√

vjj

)

≥ 1− p · Φ
(
−
√
nmin

j

{
m̄j(θ)− (V ψ)j/n√

vjj

})
(B.2):

P (Z ≥ 0) ≤ min
j
P (Zj ≥ 0) = Φ

(
√
nmin

j

{
m̄j(θ)− (V ψ)j

n√
vjj

})
Proof of Theorem 2.3.1

PROOF. (1) According to Lemma 2.3.1, it suffices to show that, for any δ > 0, P (θ ∈

Aδ|Xn) = op(e
−αn), for some α > 0. Define

Âδ =

{
θ : min

j

m̄j(X, θ)√
vjj

< −δ
}

Then

P (θ ∈ Aδ|Xn) ∝
∫
Aδ

p(θ)L(θ)dθ

=

∫
Aδ∩Âδ

p(θ)L(θ)dθ +

∫
Aδ∩Âcδ

p(θ)L(θ)dθ

≤
∫
Âδ

p(θ)L(θ)dθ +

∫
Aδ∩Âcδ

p(θ)L(θ)dθ

Aδ ∩ Âcδ =

{
θ : min

j

Emj(X, θ)√
vjj

< −δ
}⋂{

θ :
m̄i(X, θ)√

vii
≥ −δ, i = 1, ..., p

}
=

(
p⋃
j=1

{
θ :

Emj(X, θ)√
vjj

< −δ
})⋂{

θ :
m̄i(X, θ)√

vii
≥ −δ, i = 1, ..., p

}
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=

p⋃
j=1

({
θ :

Emj(X, θ)√
vjj

< −δ
}⋂{

θ :
m̄i(X, θ)√

vii
≥ −δ, i = 1, ..., p

})
= ∪pj=1Aj

where

Aj =

{
θ :

Emj(X, θ)√
vjj

< −δ
}⋂{

θ :
m̄i(X, θ)√

vii
≥ −δ, i = 1, ..., p

}

By weak law of large number, Aj → φ. Hence µ(Aj) = 0, for any j. Then µ(Aδ ∩

Âcδ) = µ(∪jAj) ≤
∑

j µ(Aj) = 0 w.p.a.1. Thus w.p.a.1, P (θ ∈ Aδ|Xn) ≤ Const
∫
Âδ
p(θ)L(θ)dθ.

In addition, w.p.a.1, for some ε > 0,

L(θ) = P (Z ≥ 0)e−ψ
T m̄(θ)+ 1

2n
ψTV ψ

∏
i

ψi

≤ Const · P (Z ≥ 0)e‖ψ‖(supθ∈Θ‖Em(X,θ)‖+ε)+ε

≤ Const · Φ
(√

nmin
j

m̄j(X, θ)√
vjj

+Op(
1√
n

)

)

Therefore w.p.a.1,

P (θ ∈ Aδ|Xn) ≤ Const ·
∫
Âδ

p(θ)Φ

(√
nmin

j

m̄j(X, θ)√
vjj

+Op(
1√
n

)

)
dθ

≤ Const · Φ(−δ
√
n+Op(

1√
n

))

≤ Const · Φ(−δ
2

√
n)

= op(e
− δ

2

8
n)

(2) For any integer k > 0, define

Ωk =

{
θ : min

j

Emj(X, θ)√
vjj

>
1

k

}
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Ω∞ =

{
θ : min

j
Emj(X, θ) > 0

}
For any Ξ ⊂ Ω, for any integer k > 0 and ∀ε > 0, by Lemma A.2.1, w.p.a.1,

∫
Ξ

p(θ)L(θ)dθ ≥
∫

Ξ∩Ωk

p(θ)L(θ)dθ

≥ Const

∫
Ξ∩Ωk

p(θ)

(
1− p · Φ

(
−
√
nmin

j

m̄j(θ)− (V ψ)j/n√
vjj

))
dθ

≥ Const

∫
Ξ∩Ωk

p(θ)

(
1− p · Φ

(
−
√
nmin

j

Emj(X, θ)− ε− (V ψ)j/n√
vjj

))
dθ

≥ Const

∫
Ξ∩Ωk

p(θ)

(
1− p · Φ

(
−
√
nmin

j

Emj(X, θ)

2
√
vjj

))
dθ

≥ Const

∫
Ξ∩Ωk

p(θ)

(
1− p · Φ

(
−
√
n

2k

))
dθ

≥ Const

2
P (θ ∈ Ξ ∩ Ωk)

Note that Ωk ⊂ Ωk+1, and
⋃∞
k=1 Ωk = Ω∞. Hence limk→∞ P (Ξ ∩ Ωk) = P (Ξ ∩ Ω∞),

which implies that, for some constant C > 0, w.p.a.1,
∫

Ξ
p(θ)L(θ)dθ ≥ CP (Ξ∩Ω∞).

P (θ ∈ Ξ ∩ Ω0) = P (Ξ ∩ Ω0) = P (Ξ ∩ Ω)− P (Ξ ∩ (Ω/Ω0))

= P (Ξ)− P (Ξ ∩ (Ω/Ω0)) ≥ P (Ξ)− P (Ω/Ω0) > 0

where P (Ω/Ω0) = P (minj Emj(X, θ) = 0) = 0.

�

A.2.3. Proof of Theorem 2.3.2

PROOF. In Theorem 2.2.1, let A = int(Ω), dense in Ω. ∀ω ∈ int(Ω), ∃R > 0, such that

B(ω,R) ⊂ Ω. Since πn → 0 but P (θ ∈ B(ω,R)|Xn) is bounded away from 0 according to
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theorem 3.1-2, hence for large n, P (θ ∈ B(ω,R)|Xn) > πn. Therefore, by Theorem 2.2.1,

[F−1
g (πn), F−1

g (1− πn)]→ g(Ω) in p.

�

A.2.4. Proof of Theorem 2.3.3

The following lemmas are useful:

Lemma A.2.2. In probability,

(A.3) lim sup
n→∞

max
θ∈Θ

ln p(θ|Xn) <∞

∀ε > 0,

(A.4) lim inf
n→∞

inf
θ∈Ω−ε

p(θ|Xn) > 0

PROOF. (A.3): For some ε > 0,

lim sup
n→∞

sup
θ∈Θ

L(θ) ≤
∏
j

ψje
‖ψ‖(supθ∈Θ‖Em(X,θ)‖+ε)+ε <∞

Thus

lim sup
n→∞

max
θ∈Θ

ln p(θ|Xn) = Const lim sup
n→∞

max
θ∈Θ

ln p(θ)L(θ) ≤ C·ln(sup
θ∈Θ

p(θ)·lim sup
n→∞

sup
θ∈Θ

L(θ)) <∞

(A.4): ∀ε > 0,

lim inf
n→∞

inf
θ∈Ω−ε

L(θ) ≥ Const · lim inf
n→∞

inf
θ∈Ω−ε

P (Zθ ≥ 0)e−‖ψ‖·(supθ∈Θ‖Em(X,θ)‖+ε)
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≥ C · lim inf
n→∞

inf
θ∈Ω−ε

P (Zθ ≥ 0) > 0

Here C denotes a positive constant. The last inequality follows since Zθ ∼ Np(m̄(θ) −

V ψ/n, V/n), and Ω−ε ⊂ Ω, and Em(X, θ) ≥ 0 on Ω.

Lemma A.2.3. In probability,

(1) ∀ε > 0,

lim sup
n→∞

sup
θ∈Ω−ε

|max
ω∈Θ

ln p(ω|Xn)− ln p(θ|Xn)| <∞

(2) If εn ≺ n, ∀ε > 0,
εn

infθ∈(Ωc)−ε | ln p(θ|Xn)|
→ 0

PROOF. (1) For each n,

sup
θ∈Ω−ε

|max
ω∈Θ

ln p(ω|Xn)− ln p(θ|Xn)| = max
θ∈Θ

ln p(θ|Xn)− inf
θ∈Ω−ε

ln p(θ|Xn)

The result follows immediate from Lemma A.2.2.

(2) w.p.a.1, ln p(θ|Xn) < 0 on (Ωc)−ε, hence

inf
θ∈(Ωc)−ε

| ln p(θ|Xn)| = − sup
θ∈(Ωc)−ε

ln p(θ|Xn)

≥ −Const · ln sup
θ∈(Ωc)−ε

L(θ)

≥ −C · ln sup
θ∈(Ωc)−ε

P (Zθ ≥ 0)

≥ −C · ln sup
θ∈(Ωc)−ε

Φ

(√
nmin

j

m̄j(θ)− (V ψ)j/n√
vjj

)
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As shown in the proof of Lemma 2.3.1, there exists some δ > 0 such that (Ωc)−ε ⊂

Aδ, where Aδ = {θ : minj
Emj(X,θ)√

vjj
< −δ}. Thus w.p.a.1,

inf
θ∈(Ωc)−ε

| ln p(θ|Xn)| ≥ −C · ln sup
θ∈Aδ

Φ

(√
nmin

j

m̄j(θ)− (V ψ)j/n√
vjj

)
≥ −C · ln sup

θ∈Aδ
Φ

(√
nmin

j

m̄j(θ)

2
√
vjj

)
≥ −C · ln Φ(−δ

2

√
n)

≥ −C1 · n+ C2 lnn+ C3

where C1 > 0, C2, C3 denote finite constants. This implies infθ∈(Ωc)−ε | ln p(θ|Xn)| =

Op(n). �

Proof of Theorem 2.3.3

∀ε > 0, since εn →∞, then by Lemma A.2.3-(1), ∃N ∈ N, when n > N , for any θ ∈ Ω−ε,

max
ω∈Θ

ln p(ω|Xn)− ln p(θ|Xn) < εn w.p.a.1.

Therefore when n > N , Ω−ε ⊂ An, which implies lim supn→∞ supθ∈Ω d(θ, An) ≤ ε.

On the other hand, let M = lim infn→∞maxθ∈Θ ln p(θ|Xn). By (A.3) in Lemma A.2.2,

M <∞. Moreover, by (A.4),

M ≥ lim inf
n→∞

inf
θ∈Ω−ε

ln p(θ|Xn) ≥ ln lim inf
n→∞

inf
θ∈Ω−ε

p(θ|Xn) > −∞

Hence M ∈ R, and by the definition of M , ∃N1 ∈ N, when n > N1,

max
θ∈Θ

ln p(θ|Xn) > M − ε
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In addition, ∀θ ∈ (Ωc)−ε, p(θ|Xn) → 0 in probability. Thus for large n, ln p(θ|Xn) < 0 on

(Ωc)−ε. ∃N2 ∈ N, when n > N2,

inf
θ∈(Ωc)−ε

| ln p(θ|Xn)| = − sup
θ∈(Ωc)−ε

ln p(θ|Xn) > εn − (M − ε)

where the inequality is followed by lemma A.2.3-(2). Therefore when n > N2.

(A.5) sup
θ∈(Ωc)−ε

ln p(θ|Xn) < −εn + (M − ε)

However, when n > max{N1, N2}, ∀θ ∈ An = {θ : maxω∈Θ ln p(ω|Xn)− ln p(θ|Xn) ≤ εn},

ln p(θ|Xn) ≥ maxω∈Θ ln p(ω|Xn)− εn > M− ε− εn. Compared to (A.5), θ /∈ (Ωc)−ε. In other

words, d(θ,Ω) < ε. It follows that

lim sup
n→∞

sup
θ∈An

d(θ,Ω) ≤ ε

Since ε is arbitrary, dH(An,Ω)→ 0 in probability.

�

A.3. Proofs for Section 2.4

Define Aδ = {θ : Em2(X, θ)TV −1
2 Em2(X, θ) > δ}, and

A2 =

{
θ : Em2(X, θ) = 0,min

j
Em1j(X, θ) < 0

}

Lemma A.3.1. ∀δ > 0, for some a > 0

∫
Aδ∪A2

p(θ)L(θ)dθ = op(e
−an)
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PROOF. Define Âδ = {θ : m̄2(θ)TV −1
2 m̄2(θ) > δ},

∫
Aδ

p(θ)L(θ)dθ =

∫
Aδ∩Âδ

p(θ)L(θ)dθ +

∫
Aδ∩Âcδ

p(θ)L(θ)dθ

≤
∫
Âδ

p(θ)L(θ)dθ +

∫
Aδ∩Âcδ

p(θ)L(θ)dθ

Aδ ∩ Âcδ = {θ : Em2(X, θ)TV −1
2 Em2(X, θ) > δ}∩ {θ : m̄2(θ)TV −1

2 m̄2(θ) ≤ δ} → φ w.p.a.1.

Hence for large n, µ(Aδ ∩ Âcδ) = 0. Then ∃N , when n > N , w.p.a.1,

∫
Aδ

p(θ)L(θ)dθ ≤
∫
Âδ

p(θ)

∏
i ψi√

det(V2)
e−

n
2
m̄2(θ)TV −1

2 m̄2(θ)−ψT (Σ−1
1 ΣT3 m̄2(θ)+m̄1(θ))+ 1

2n
ψTΣ−1

1 ψdθ

For some ε > 0, for large n,

e−ψ
T (Σ−1

1 ΣT3 m̄2(θ)+m̄1(θ))+ 1
2n
ψTΣ−1

1 ψ ≤ e‖ψ‖(supθ∈Θ‖Σ
−1
1 ΣT3 Em2(X,θ)+Em1(X,θ)‖+ε)+ε <∞

Thus for some positive constant C, and large n,

∫
Aδ

p(θ)L(θ)dθ ≤ C ·
∫
Âδ

p(θ)e−
n
2
m̄2(θ)TV −1

2 m̄2(θ)dθ ≤ C · e−
δ
2
n

In addition, µ(A2) = 0 and p(θ)L(θ) is bounded on Θ, hence

∫
Aδ∪A2

p(θ)L(θ)dθ ≤
∫
Aδ

p(θ)L(θ)dθ +

∫
A2

p(θ)L(θ)dθ = Op(e
− δ

2
n)

�

Lemma A.3.2. ∀δ > 0, for some a > 0,

∫
(Ωc)−δ

p(θ)L(θ)dθ = op(e
−an)
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PROOF. : ∀θ ∈ (Ωc)−δ, then either ∃δ(θ) > 0, θ ∈ Aδ(θ), or θ ∈ A2, hence θ ∈ Aδ(θ) ∪ A2.

Thus (Ωc)−δ ⊂
⋃
θ∈(Ωc)−δ [Aδ(θ) ∪A2]. Note that (Ωc)−δ = {θ : d(θ,Ω) ≥ δ} is compact, hence

∃ {Aδ1 ∪ A2, ..., AδN ∪ A2} ⊂ {Aδ(θ) ∪ A2 : θ ∈ (Ωc)−δ} such that

(Ωc)−δ ⊂
N⋃
i=1

[Aδi ∪ A2]

Let δ∗ = min{δi, i = 1, ..., N}. For a > b > 0, Aa ⊂ Ab, hence (Ωc)−δ ⊂ Aδ∗ ∪A2. Therefore

∫
(Ωc)−δ

p(θ)L(θ)dθ ≤
∫
Aδ∗∪A2

p(θ)L(θ)dθ = op(a
−an)

�

Lemma A.3.3. If Zθ follows Nr(m̄1(θ) + Σ−1
1 ΣT

3 m̄2(θ) − 1
n
Σ−1

1 ψ, 1
n
Σ−1

1 ), then ∀ω ∈ Ξ,

∃R > 0, in probability

lim inf
n→∞

inf
θ∈B(ω,R)

P (Zθ ≥ 0) > 0

PROOF. Let ξn(θ) = m̄1(θ) + Σ−1
1 ΣT

3 m̄2(θ) − 1
n
Σ−1

1 ψ. ∀ω ∈ Ξ, Em1(X,ω) > 0. Since

Em1(X, θ) is continuous on Θ, there exist ε > 0, and an open ball B(ω,R1), such that

infθ∈B(ω,R1) Em1(X, θ) > ε,where the inequality is taken coordinately. Moreover,Em2(X,ω) =

0; hence by the continuity ofEm2(X, .), ∃R < R1 such that supθ∈B(ω,R) |Σ−1
1 ΣT

3Em2(X, θ)| <

ε, where |.| denotes the absolute value, taken coordinately. Therefore, infθ∈B(ω,R)(Em1(X, θ)+

Σ−1
1 ΣT

3Em2(X, θ)) > 0. ∃N , when n > N , w.p.a.1, coordinately.

inf
θ∈B(ω,R)

(m̄1(θ) + Σ−1
1 ΣT

3 m̄2(θ)− 1

n
Σ−1

1 ψ) = inf
θ∈B(ω,R)

ξn(θ) > 0
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Let σ2
1j denote the jth diagonal element in Σ−1

1 , and ξnj(θ) denote the jth element of ξn(θ).

Then

inf
θ∈B(ω,R)

P (Zθ ≥ 0) ≥ 1− r · Φ

−√n inf
θ∈B(ω,R)

min
j

ξnj(θ)√
σ2

1j


≥ 1− r · Φ

−√nmin
j

infθ∈B(ω,R) ξnj(θ)√
σ2

1j


>n 0

Lemma A.3.4. For any βn →∞, ∀ω ∈ Ξ, ∃R > 0, ∀δ < R, w.p.a.1,

∫
B(ω,δ)

p(θ)L(θ)dθ � 1

βn
n−d/2

where d = dim(θ).

PROOF. ∀ω ∈ Ξ, it can be shown that (using Lemma A.3.3), ∃R > 0, and a positive con-

stant C, such that
∫
B(ω,R)

p(θ)L(θ)dθ ≥ C
∫
B(ω,R)

p(θ)e−
n
2
m̄2(θ)TV −1

2 m̄2(θ)dθ. For deterministic

V −1
2 , and a vector α, write weighted norm ‖α‖2

V = αTV −1
2 α. Then we have

1

2
‖m̄2(θ)‖2

V ≤ ‖Em2(X, θ)‖2
V + ‖m̄2(θ)− Em2(X, θ)‖2

V

By Assumption 2.4.3, for any βn →∞, choose β‖V
−1‖−1

n , so that

e−n‖m̄2(θ)−Em2(X,θ)‖2V ≥ e− lnβ
‖V−1‖−1

n ‖V −1‖ = β−‖V
−1‖−1·‖V −1‖

n =
1

βn
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For some constant α > 1, let U = {θ : ‖Em2(X, θ)‖2
V < lnα

n
}. By Assumption 2.4.4,

∃R′ < R, such that for any 0 < δ < R′, infθ∈B(ω,δ) p(θ) > 0. Then

∫
B(ω,δ)

p(θ)L(θ)dθ ≥ C

∫
B(ω,δ)∩U

1

αβn
p(θ)dθ ≥ Const

βn
µ(B(ω, δ) ∩ U)

To derive a lower bound for the Lebesgue measure of B(ω, δ) ∩ U , note that Em2(X, θ) is

Lipschitz continuous, and Em2(X,ω) = 0, ∃ λ > 0, such that ∀θ ∈ B(ω, δ), ‖Em2(X, θ)‖2 ≤

λ‖θ − ω‖2. Then

‖Em2(X, θ)‖2
V ≤ ‖Em2(X, θ)‖2 · ‖V −1‖2

≤ λ‖V −1‖2 · ‖θ − ω‖2

≤ λ‖V −1‖2|θ − ω|2∞

where |θ− ω|∞ = maxj |θj − ωj|. Hence {θ : |θ− ω|2∞ < lnα
λ‖V −1‖2n} ⊂ U . Moreover, for large

enough n, {θ : |θ − ω|2∞ < lnα
λ‖V −1‖2n} ⊂ B(ω, δ), thus µ(B(ω, δ) ∩ U) ≥ µ({θ : |θ − ω|2∞ <

lnα
λ‖V −1‖2n}) = (2

√
lnα

λ‖V −1‖2 )dn−d/2. Hence
∫
B(ω,δ)

p(θ)L(θ)dθ � 1
βn
n−d/2.

Proof of Theorem 2.4.1

(1) Let βn = nd/2. Lemma A.3.4 implies that
∫

Θ
p(θ)L(θ)dθ � n−d. Thus by Lemma A.3.2,

for some α > 0,

P (θ ∈ (Ωc)−δ|Xn) =

∫
(Ωc)−δ

p(θ)L(θ)dθ∫
Θ
p(θ)L(θ)dθ

≺ op(e
−αn)

n−d
= op(e

−α
2
n)

(2) The result follows immediately from Lemma A.3.4 and that
∫

Θ
p(θ)L(θ)dθ is bounded.

Q.E.D.

Proof of Theorem 2.4.2: It follows immediately from Theorem 2.4.1 and Theorem 2.3.2.
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APPENDIX B

Technical Proofs for Chapter 3

B.1. Proof of Lemma 3.2.1

I proceed by proving (ii)⇒ (iii)⇒ (i)⇒ (ii).

(ii) ⇒ (iii): By (ii), there exists θ1 such that EMs(X, θ1) ≥ 0. Let λ1 = EMs(X, θ1),

then (EMs(X, θ1)− λ1)TV0(EMs(X, θ1)− λ1) = 0. (iii) follows immediately.

(iii)⇒ (i): ∀V0 > 0, if (iii) holds, then there exists θn and λn ≥ 0 such that (EMs(X, θn)−

λn)TV0(EMs(X, θn) − λn) = o(1). Since V0 > 0, we have EMs(X, θn) − λn = o(1), which

implies (i).

(i) ⇒ (ii): Since Cs is compatible, there exist {θn} and λn ≥ 0 for all n, such that

‖EMs(X, θn) − λn)‖ = o(1). Since EMs(X, θ) is continuous on Θs and Θs is compact,

{EMs(X, θn)}n≥1 is bounded, which implies that {λn}n≥1 is also bounded. Therefore there

exist subsequences {θnk} and {λnk} and λ0 ≥ 0, θ0, such that θnk → θ0, and λnk → λ0.

Since Θ is compact, θ0 ∈ Θs. It follows from continuity that EMs(X, θnk) → EMs(X, θ0).

Therefore, for all ε > 0, for all large enough k,

||EMs(X, θ0)−λ0|| ≤ ||EMs(X, θ0)−EMs(X, θnk)||+||EMs(X, θnk)−λnk ||+||λnk−λ0|| < ε

Since ε is arbitrary, EMs(X, θ0) = λ0 with θ0 ∈ Θs and λ0 ≥ 0, which yields (ii). Q.E.D.
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B.2. Proof of Theorem 3.4.1

Let

L(Xn|θs, λs, Cs) =

∫
Rp−m

L(Xn|θs, λ, Cs)p(λcs|Cs)dλcs(B.1)

L(Xn|θs, Cs) =

∫
[0,∞)m

L(Xn|θs, λs, Cs)p(λs|Cs)dλs(B.2)

For any candidate Cs,

p(Cs|Xn) ∝ p(Cs)

∫∫∫
Θs×[0,∞)m×Rp−m

L(Xn|θs, λ, Cs)p(θs|Cs)p(λs|Cs)p(λcs|Cs)dθsdλsdλcs

∝ p(Cs)

∫
Θs

∫
λs≥0

L(Xn|θs, λs, Cs)p(λs|Cs)dλsdθs(B.3)

∝ p(Cs)

∫
Θs

L(Xn|θs, Cs)p(θs|Cs)dθs(B.4)

A tedious calculation shows that

L(Xn|θs, λs, Cs) = (2π)−p/2 det(S)−1/2 exp

−1

2
(M̄s(θ)− λs, M̄ c

s (θ))S
−1

M̄s(θ)− λs

M̄ c
s (θ)




where

S =
V

n
+

0 0

0 Σ

 write S−1 = n

Σ1 Σ3

ΣT
3 Σ2


Assume ‖V ‖ = O(1), ‖Σ‖ = O(1). It follows that ‖Σ1‖ = O(1), ‖Σ3‖ ≤ O(n−1), and

‖Σ2‖ = O(n−1).

When Cs is incompatible, since Σ1 is positive definite, hence there exits τ > 0, w.p.a.1,

infλs≥0,θs∈Θs(M̄s(θs)−λs)TΣ1(M̄s−λs) > 2τ . By (B.3), there exists a constantC > 0, w.p.a.1,

p(Cs|Xn) ≤ Cnm/2e−nτ
∫

Θs
exp(−n

2
M̄ cT

s (θs)Σ
T
3 M̄s(θs))

∫
λs≥0

e−
n
2
M̄s

c
(θs)ΣT3 λsp(λs|Cs)dλsdθs.
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Since Θ is compact, Em(X, θ) is continuous on Θ, ‖Σ3‖ ≤ O(n−1), and p(λs|Cs) is exponen-

tial with fixed parameter ψ, p(Cs|Xn) = Op(n
m/2e−nτ ), which is exponentially small.

When Cs is compatible, we can then calculate (B.2), and use (B.4):

L(Xn|θs, Cs) = (2π)(m−p)/2n(p−m)/2 det(V2 + nΣ)−1/2P (Zθ ≥ 0)eτ(θ)
∏

ψi, where

• V2 is the lower diagonal block of V .

• Zθ ∼ Nm(M̄s(θ) + Σ−1
1 ΣT

3 M̄
c
s (θ)− 1

n
Σ−1

1 ψ,
Σ−1

1

n
)

• τ(θ) = −n
2
M̄ c

s (θ)(V2 + nΣ)−1M̄ c
s (θ)− ψT [Σ−1

1 Σ3M̄
c
s (θ) + M̄s(θ)] + 1

2n
ψTΣ−1

1 ψ

Note that det(V2 + nΣ) = O(np−m), hence for some constant C = O(1), we can write

L(Xn|θs, Cs) = CP (Zθ ≥ 0)eτ(θ).

Lemma B.2.1. For any Cs = (Ms,Θs), let Ωs = {θ ∈ Θs : EMs(X, θ) ≥ 0} (for

simplicity, write (Ms,Θs) to represent (Ms1 ,Θs2)). In probability,

(B.5) lim
n→∞

p(Cs|Xn) = Cp(Cs)

∫
Ωs

p(θs|Cs)e−ψ
TEMs(θ)− 1

2
EMc

s (θ)Σ−1EMc
s (θ)dθ

PROOF. p(Cs|Xn) = Cp(Cs)
∫

Θs
p(θ|Cs)p(Zθ ≥ 0)eτ(θ)dθ. Let RHS denote the right-

hand side of (B.5).

|p(Cs|Xn)−RHS| ≤ Cp(Cs)

∫
Θs

p(θ|Cs)
∣∣∣1Ωse

−ψTEMs(θ)− 1
2
EMc

s (θ)Σ−1EMc
s (θ) − p(Zθ ≥ 0)eτ(θ)

∣∣∣ dθ
Denote ∆(θ) = p(θ|Cs)

∣∣∣1Ωse
−ψTEMs(θ)− 1

2
EMc

s (θ)Σ−1EMc
s (θ) − p(Zθ ≥ 0)eτ(θ)

∣∣∣. Write |p(Cs|Xn)−

RHS| ≤ Cp(Cs)
(∫

U1
∆(θ)dθ +

∫
U2

∆(θ)dθ +
∫
U3

∆(θ)dθ
)

, where

U1 = {θ ∈ Θs : EMs(X, θ) > 0}
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U2 = {θ ∈ Θs : EMs(X, θ) ≥ 0, Emj(X, θ) = 0 for some mj ∈Ms}

U3 = {θ ∈ Θs : for some mj ∈Ms, Emj(X, θ) < 0}

We look at the integrations on Ui, i = 1, 2, 3 subsequently.

U1: Note that Ωs = {θ ∈ Θs : EMs(X, θ) ≥ 0}, andZθ ∼ Nm(M̄s(θ)+Σ−1
1 ΣT

3 M̄
c
s (θ)−

1
n
Σ−1

1 ψ,
Σ−1

1

n
). Note that ‖Σ1‖ = O(1), and ‖Σ3‖ ≤ O(n−1). For any ε > 0, by uni-

form weak law of large number, w.p.a.1, supθ∈U1
|P (Zθ ≥ 0) − 1| < ε. Hence for

large n w.p.a.1, supθ∈U1

∣∣∣1Ωse
−ψTEMs(θ)− 1

2
EMc

s (θ)Σ−1EMc
s (θ) − p(Zθ ≥ 0)eτ(θ)

∣∣∣ < ε. It

follows that ∫
U1

∆(θ)dθ ≤ ε

∫
U1

p(θ|Cs)dθ ≤ ε

U2: The Lebesgue measure of U2 = 0.

U3: ∀θ ∈ U3, 1θ∈Ωs = 0, hence ∆(θ) = p(θ|Cs)P (Zθ ≥ 0)eτ(θ). ∀ε > 0, w.p.a.1,

supU3
P (Zθ ≥ 0) < ε, thus for large n,

∫
U3

∆(θ)dθ ≤ ε
∫
U3
p(θ|Cs)eτ(θ)dθ ≤ εOp(1).

Therefore |p(Cs|Xn)−RHS| < Const · p(Cs)ε, w.p.a.1, with arbitrarily small ε. �

Now back to the proof of Theorem 3.4.1. When Cs is compatible, by the previous lemma,

w.p.a.1, p(Cs|Xn) ≥ Cp(Cs)e
− 1

2
supθ∈Θs

(‖EM(X,θs)‖2‖Σ−1‖+‖ψ‖‖EM(X,θs)‖)P (θ ∈ Ωs|Cs). As-

suming P (θ ∈ Ωs|Cs) > 0, it follows that p(Cs|Xn) = Const× p(Cs) for some Const > 0.

B.3. Proof of Theorem 3.4.2

Let W be a p-dimensional random vector whose conditional distribution given (Xn, θ)

is Np(M̄(θ), V/n). It then follows that L(Xn|θs, λ, Cs) is equal to the density function of

W |Xn, θ. Therefore
∫
λ∈Λ

L(Xn|θs, λ, Cs)p(θs, λ|Cs)dλ = EW [p(θs,W |CS)I(W ∈ Λ)|Xn, θ].
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Define Z =
√
nV −1/2(W − M̄(θ)). It then follows that Z|Xn, θ ∼ Np(0, I). Hence

EW [p(θs,W |CS)I(W ∈ Λ)|Xn, θ]

= EZ [pθ,λ(θs, n
−1/2V 1/2Z + M̄(θ)|CS)I(n−1/2V 1/2Z + M̄ ∈ Λ)|Xn, θ]

≡ Ξn(Xn, θ)

Let Ω(Θ,Λ) = {θ ∈ Θ : EM(X, θ) ∈ Λ}, and EXn(.) denote the expectation operator

taken with respect to the distribution of Xn.

Lemma B.3.1. For any xn = (x1, .., xn) in the support of Xn,

limn

∫
Θ

Ξn(xn, θ)dθ =
∫

Ω(Θ,Λ)
pθ,λ(θs, EM(X, θ)|CS)dθ.

PROOF. Define An(θ, z) = pθ,λ(θs, n
−1/2V 1/2z + M̄(θ)|CS)I(n−1/2V 1/2z + M̄ ∈ Λ).

Hence Ξn(Xn, θ) = EZ [An(θ, Z)|Xn, θ] =
∫
An(θ, z)

∏
φ(zi)dz, where φ(zi) is the probabil-

ity density function of standard normal distribution, and z = (z1, ..., zp). By Assumption 3.4.2,

for all fixed xn, An(θ, z) ≤ g(θ) for all z, and
∫∫

g(θ)
∏
φ(zi)dzdθ < ∞. Since pθ,λ(θ, λ) is

continuous with respect to λ, limnAn(θ, z) = pθ,λ(θ, EM(X, θ)|Cs)I(EM(X, θ) ∈ Λ). Apply

the dominated convergence theorem with fixed xn:

lim
n

∫
Θ

Ξn(xn, θ)dθ = lim
n

∫∫
An(θ, z)

∏
φ(zi)dzdθ =

∫
Ω(Θ,Λ)

pθ,λ(θs, EM(X, θ)|CS)dθ

Q.E.D.

Finally, since

p(Cs|Xn) ∝ p(Cs)

∫∫
Θs,λ∈Λ

L(Xn|θs, λ, Cs)p(θs, λ|Cs)dθsdλ = p(Cs)

∫
Θs

Ξn(Xn, θs)dθs
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and ∀xn, p(Cs|Xn = xn) ≤ Const×p(Cs)
∫
g(θ)dθ, we can apply the dominated convergence

theorem again to obtain:

EXn

∣∣∣∣p(Cs|Xn)− Const× p(Cs)
∫

Ω(Θ,Λ)

pθ,λ(θs, EM(X, θ)|CS)dθ

∣∣∣∣→ 0

which implies p(Cs|Xn) →p Const × p(Cs)
∫

Ω(Θ,Λ)
pθ,λ(θs, EM(X, θ)|CS)dθ in probability.

Q.E.D.
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APPENDIX C

Technical Proofs for Chapter 4

C.1. Proofs for Section 4.2

C.1.1. Proof of Theorem 4.2.1

(i) By definition, Gkn(g) = Emn(g, Z)TV −1
0 Emn(g, Z). Since V0 is diagonal, it is straight-

forward to show that

Gkn(g) =
kn∑
j=1

[E(ρ(Z, g)1W∈Rnj )]2

E(ρ(Z, g0)21W∈Rnj )
=

kn∑
j=1

∫
Rnj

[E(ρ(Z, g)1W∈Rnj )]2

E(ρ(Z, g0)21W∈Rnj )P (W ∈ Rn
j )
dFW (w)

Also,

G(g) =

∫ b

a

[E(ρ(Z, g)|W = w)]2

E(ρ(Z, g0)2|W = w)
dFW (w) =

kn∑
j=1

∫
Rni

[E(ρ(Z, g)|W = w)]2

E(ρ(Z, g0)2|W = w)
dFW (w)

It follows that for all g ∈ Θ

|Gkn(g)−G(g)| ≤
kn∑
j=1

∫
Rnj

∣∣∣∣∣ [E(ρ(Z, g)1W∈Rnj )]2

E(ρ(Z, g0)21W∈Rnj )P (W ∈ Rn
j )
− [E(ρ(Z, g)|W = w)]2

E(ρ(Z, g0)2|W = w)

∣∣∣∣∣ dFW (w)

≤ sup
1≤j≤kn

sup
w∈Rnj

∣∣∣∣∣ [E(ρ(Z, g)1W∈Rnj )]2

E(ρ(Z, g0)21W∈Rnj )P (W ∈ Rn
j )
− [E(ρ(Z, g)|W = w)]2

E(ρ(Z, g0)2|W = w)

∣∣∣∣∣
≤ sup

1≤j≤kn
sup
w∈Rnj

∣∣∣∣∣∣ E(ρ(Z, g)1W∈Rnj )√
E(ρ(Z, g0)21W∈Rnj )P (W ∈ Rn

j )
+

E(ρ(Z, g)|W = w)√
E(ρ(Z, g0)2|W = w)

∣∣∣∣∣∣
× sup

1≤j≤kn
sup
w∈Rnj

∣∣∣∣∣∣ E(ρ(Z, g)1W∈Rnj )√
E(ρ(Z, g0)21W∈Rnj )P (W ∈ Rn

j )
− E(ρ(Z, g)|W = w)√

E(ρ(Z, g0)2|W = w)

∣∣∣∣∣∣
= A(g)×B(g), say.
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Show supg∈ΘA(g) <∞:

sup
g∈Θ

A(g) ≤ sup
g∈Θ

sup
1≤j≤kn

sup
w∈Rnj

 |E(ρ(Z, g)1W∈Rnj )|√
E(ρ(Z, g0)21W∈Rnj )P (W ∈ Rn

j )
+
|E(ρ(Z, g)|W = w)|√
E(ρ(Z, g0)2|W = w)


≤ sup

g∈Θ
sup

1≤j≤kn

|E(ρ(Z, g)1W∈Rnj )|/P (W ∈ Rn
j )√

E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn
j )

+ sup
g∈Θ

sup
w∈[0,1]

|E(ρ(Z, g)|W = w)|√
E(ρ(Z, g0)2|W = w)

By Assumption 4.2.1 and 4.2.2, supg∈Θ supw∈[0,1] |E(ρ(Z, g)|W = w)| <∞, and

infw∈[0,1]E(ρ(Z, g0)2|W = w) > 0, hence the second term is finite. As for the first term,

note that for each n,

sup
g∈Θ

sup
1≤j≤kn

|E(ρ(Z, g)1W∈Rnj )|
P (W ∈ Rn

j )
= sup

g∈Θ
sup

1≤j≤kn

|
∫
Rnj
E(ρ(Z, g)|W = w)dFW (w)|

P (W ∈ Rn
j )

≤ sup
g∈Θ

sup
w∈[0,1]

|E(ρ(Z, g)|W = w)| <∞

Also for each Rn
j in the partition and each n,

E(ρ(Z, g0)21W∈Rnj )

P (W ∈ Rn
j )

=

∫
Rnj
E(ρ(Z, g0)2|W = w)dFW (w)

P (W ∈ Rn
j )

≥ inf
w∈[0,1]

E(ρ(Z, g0)2|W = w) > 0

These yield that supg∈ΘA(g) <∞. It is left to show supg∈Θ B(g)→ 0.

sup
g∈Θ

B(g) = sup
g

sup
1≤j≤kn

sup
w∈Rnj

∣∣∣∣∣∣ E[ρ(Z, g)1W∈Rnj ]/P (W ∈ Rn
j )√

E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn
j )
− E(ρ(Z, g)|W = w)√

E(ρ(Z, g0)2|W = w)

∣∣∣∣∣∣
≤ sup

g
sup

1≤j≤kn
sup
w∈Rnj

∣∣∣∣∣∣E[ρ(Z, g)1W∈Rnj ]/P (W ∈ Rn
j )− E(ρ(Z, g)|W = w)√

E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn
j )

∣∣∣∣∣∣
+ sup

g
sup

1≤j≤kn
sup
w∈Rnj

∣∣∣∣∣∣ E(ρ(Z, g)|W = w)√
E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn

j )
− E(ρ(Z, g)|W = w)√

E(ρ(Z, g0)2|W = w)

∣∣∣∣∣∣
= C +D, say
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We have shown that the denominator in C is bounded below by
√

infw E(ρ(Z, g0)2|W = w),

which is bounded away from zero. Hence

C ≤ Const sup
g

sup
1≤j≤kn

sup
w∈Rnj

∣∣∣∣∣E[ρ(Z, g)1W∈Rnj ]

P (W ∈ Rn
j )

− E(ρ(Z, g)|W = w)

∣∣∣∣∣
= Const sup

g
sup

1≤j≤kn
sup
w∈Rnj

P (W ∈ Rn
j )−1|

∫
Rnj

E(ρ(Z, g)|W = t)dFW (t)−∫
Rnj

E(ρ(Z, g)|W = w)dFW (t)|

≤ Const sup
j≤kn

P (W ∈ Rn
j )−1

∫
Rnj

sup
g

sup
w∈Rnj

|Kg(t)−Kg(w)|dFW (t)

≤ Const× δ, for any δ > 0, and large n.

The first equality is due toE[ρ(Z, g)1W∈Rnj ] =
∫
Rnj
E(ρ(Z, g)|W = t)dFW (t), andE(ρ(Z, g)|W =

w)P (W ∈ Rn
j ) =

∫
Rnj
E(ρ(Z, g)|W = w)dFW (t). The second inequality follows by putting

supg supw∈Rnj inside and rewrite E(ρ(Z, g)|W ) into Kg(.). The last inequality follows by As-

sumption 4.2.2, and that {Kg(.) : g ∈ Θ} is uniformly equicontinuous on Θ given Θ is compact.

Also, for large enough n, the size of Rn
j is arbitrarily small. In addition, for any Rn

j , we have∫
Rnj
dFW (t) = P (W ∈ Rn

j ).

Finally,

D ≤ sup
g,w
|E(ρ(Z, g)|W = w)|

× sup
j≤kn

sup
w∈[0,1]

∣∣∣∣∣∣ 1√
E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn

j )
− 1√

E(ρ(Z, g0)2|W = w)

∣∣∣∣∣∣
Note that supg,w |E(ρ(Z, g)|W = w)| <∞, and

1√
E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn

j )
− 1√

E(ρ(Z, g0)2|W = w)
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=

√
E(ρ(Z, g0)2|W = w)−

√
E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn

j )√
E(ρ(Z, g0)21W∈Rnj )E(ρ(Z, g0)2|W = w)/P (W ∈ Rn

j )

≤ Const×
E(ρ(Z, g0)2|W = w)− E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn

j )√
E(ρ(Z, g0)2|W = w) +

√
E(ρ(Z, g0)21W∈Rnj )/P (W ∈ Rn

j )

≤ Const

P (W ∈ Rn
j )
×
∫
Rnj

[E(ρ(Z, g0)2|W = w)− E(ρ(Z, g0)2|W = t)]dFW (t)

By Assumption 4.2.1, E(ρ(Z, g0)2|W = w) is uniformly continuous on [a, b]. Hence for any

δ > 0, there existsN , when n > N , for anyRn
j , |Rn

j | is small enough, and
∫
Rnj
|E(ρ(Z, g0)2|W =

w)−E(ρ(Z, g0)2|W = t)|dFW (t) < δP (W ∈ Rn
j ). HenceD < Const×δ. Since δ is arbitrary,

supg∈Θ)B(g)→ 0.

(ii) Define ξnj(g,X) = mnj(g,X)−Emnj(g,X), j = 1, ..., kn, ξn(g,X) = (ξn1, ..., ξnkn)T =

mn(g,X)−Emn(g,X), and ξ̄n(g) = 1
n

∑n
i=1 ξn(g,Xi) = m̄n(g)−Emn(g,X) = (ξ̄n1, ..., ξ̄nkn)T .

Then

Ḡ(g)−Gkn(g) = [Emn(g,X) + ξ̄n(g)]TV −1
0 [Emn(g,X) + ξ̄n(g)]− Emn(g,X)TV −1

0 Emn(g,X)

= 2Emn(g,X)TV −1
0 ξ̄n(g) + ξ̄n(g)TV −1

0 ξ̄n(g)

= W 1
n(g) +W 2

n(g), say

It suffices to show W i
n(g)→ 0 uniformly on Θ in probability, i = 1, 2.

For W 1
n(g) : Step I: show W 1

n(g) →p 0 for each g. In fact, EW 1
n(g) = 0 since Eξ̄n(g) = 0

for each g ∈ Θ. Now for any g,

V ar(W 1
n(g)) = E(W 1

n(g)2) = 4Emn(g,X)TV −1
0 E(ξ̄n(g)ξ̄n(g)T )V −1

0 Emn(g,X)
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Note that E(ξ̄n(g)ξ̄n(g)T ) = V ar(ξ̄n(g)) = 1
n
V ar(ξn(g)) = 1

n
V ar(mn(g,X)). Hence by

Assumption 4.2.3, E(ξ̄n(g)ξ̄n(g)T ) = O(kn
n

). In addition,

λmax(V −1
0 ) =

1

min1≤j≤kn E(ρ(Z, g0)21W∈Rnj )
=

1

min1≤j≤kn E(E(ρ(Z, g0)2|W )1W∈Rnj )

≤ 1

min1≤j≤kn P (W ∈ Rn
j )

= O(kn)

The inequality and the last equality are due to Assumption 4.2.2 (i) and Assumption 4.2.4 (i).

Therefore, V ar(W 1
n(g)) = O(k

2
n

n
)Gkn(g) = O(k

2
n

n
) = o(1).

Step II, show {W 1
n(g)} is stochastic equicontinuous on Θ. In fact,

|W 1
n(g)| = 2|Emn(g,X)TV −1

0 ξ̄n(g)| ≤ 2√
n
‖Emn(g,X)TV −1

0 ‖‖
√
nξ̄n(g)‖

=
2√
n

(Emn(g,X)TV −2
0 Emn(g,X))

1
2 (

kn∑
j=1

(
√
nξ̄nj(g))2)

1
2

≤ 2√
n

(λmax(V −1
0 )Gkn(g))

1
2 ×

√
kn

(
1

kn

kn∑
j=1

(
√
nξ̄nj(g))2

) 1
2

≤ O

(
kn√
n

)
max

1≤j≤kn
|
√
nξ̄nj(g)|

By Assumption 4.2.3(iii), max1≤j≤kn |
√
nξ̄nj(g)| is stochastic equicontinuous. Hence {W 1

n(g)}

is stochastic equicontinuous.

Step III: By Newey and McFadden (1994) Lemma 2.8, it follows from that {W 1
n(g)} is

stochastic equicontinuous and pointwise converges to zero, and that Θ is compact, W 1
n(g)→ 0

uniformly on Θ.
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For W 2
n(g), we proceed in the same arguments. Step I: show W 2

n(g) converges pointwise to

zero. In fact

W 2
n(g) = ξ̄n(g)TV −1

0 ξ̄n(g) =
kn∑
j=1

ξ̄nj(g)2

E(ρ(Z, g0)21W∈Rnj )

≤ Const
kn∑
j=1

ξ̄nj(g)2

P (W ∈ Rn
j )

= O(kn)
kn∑
j=1

(
1

n

n∑
i=1

ξnj(g,Xi)

)2

= O(1)

[(
kn
n2

) kn∑
j=1

n∑
i=1

ξ2
nj(g,Xi) +

(
kn
n2

) kn∑
j=1

∑
i 6=l

ξnj(g,Xi)ξnj(g,Xl)

]
= O(1)[Wn1(g) +Wn2(g)], say

Step I-1: show Wn1(g) →p 0 for each g. It suffices to show E|Wn1(g)|2 →p 0 for any g. In

fact,

E|Wn1(g)|2 =
k2
n

n4
E

(
kn∑
j=1

n∑
i=1

ξ2
nj(g,Xi)

)2

≤ k4
nn

2

n4
B = O

(
k4
n

n2

)
= o(1)

where the inequality and the last equality are due to Assumption 4.2.5 (ii) and Assumption 4.2.2

(ii).

Step I-2: show Wn2(g)→p 0 for each g. Since ∀j and g, Eξnj(g,X) = 0, and ξnj(g,Xi) and

ξnj(g,Xl) are independent if i 6= l, thus EWn2(g) = 0. To show V ar(Wn2(g)) → 0 for each

g ∈ Θ, we apply the following result:

Lemma C.1.1. If X1, ..., Xn are uncorrelated with means all equal to zero, then

V ar(
∑
i 6=j

XT
i Xj) = 2

∑
i 6=j

tr[E(XiX
T
i )E(XjX

T
j )]

PROOF. Straightforward but tedious calculations yield that both left and right hand side

equal 2
∑

i 6=j E(XT
i Xj)

2. �
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Back to Step I-2: Applying Lemma A.1 to Wn2(g) = kn
n2

∑
i 6=l ξn(g,Xi)

T ξn(g,Xl), and

noting that tr(AB) ≤
√
tr(A2)tr(B2), we have

V ar(Wn2(g)) =
2k2

n

n4

∑
i 6=j

tr[E(ξn(g,Xi)ξn(g,Xi)
T )E(ξn(g,Xj)ξn(g,Xj)

T )]

≤ 2k2
n

n4

∑
i 6=j

√
tr[E2(ξn(g,Xi)ξn(g,Xi)T )]× tr[E2(ξn(g,Xj)ξn(g,Xj)T )]

For each i = 1, ..., n and g ∈ Θ,E(ξn(g,Xi)ξn(g,Xi)
T ) = V ar(ξn(g,Xi)) = V ar(mn(g,X)) =

O(kn), hence tr[E2(ξn(g,Xi)ξn(g,Xi)
T )] = O(k3

n). Therefore V ar(Wn2(g)) = O(k5
n/n

2) =

o(1).

Step II: show {W 2
n(g)} is stochastic equicontinuous on Θ. In fact,

W 2
n(g) = ξ̄n(g)TV −1

0 ξ̄n(g) =
kn∑
j=1

ξ̄nj(g)2

E(ρ(Z, g0)21W∈Rnj )

≤ Const
kn∑
j=1

ξ̄nj(g)2

P (W ∈ Rn
j )

= O(kn)
kn∑
j=1

ξ̄nj(g)2

= O

(
k2
n

n

)
1

kn

kn∑
j=1

[
√
nξ̄nj(g)]2

≤ O

(
k2
n

n

)
max

1≤j≤kn
|
√
nξ̄nj(g)|2

Note that if {|Qn(g)|} is stochastic equicontinuous, then so is {Qn(g)2}. Therefore {W 2
n(g)} is

stochastic equicontinuous. Q.E.D.

C.1.2. Proof for Theorem 4.2.2

The following lemmas are useful.

Lemma C.1.2. G : Θ→ R is continuous
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PROOF. By Assumption 4.2.3, there exists σ2 > 0 such that infw∈[0,1]E(ρ(Z, g0)2|W =

w) ≥ σ2 > 0. In addition, given Θ× [0, 1] is compact, by Assumption 4.2.3 (ii),

sup(g,w)∈Θ×[0,1] |E(ρ(Z, g)|W = w)| <∞. Hence for any g1, g2 ∈ Θ,

|G(g1)−G(g2)| ≤
∫ b

a

|E[ρ(Z, g1)|W = w]2 − E[ρ(Z, g2)|W = w]2|
E(ρ(Z, g0)2|W = w)

dFW (w)

≤ 2

σ2
sup

(g,w)∈Θ×[0,1]

|E[ρ(Z, g)|W = w]|

×
∫ b

a

E(|ρ(Z, g1)− ρ(Z, g2)||W = w)dFW (w)

≤ Const sup
z∈Z
|ρ(z, g1)− ρ(z, g2)|

The continuity follows since {ρ(z, .) : z ∈ Z} is equicontinuous on Θ.

Lemma C.1.3. For any δ > 0, lim infn→∞ P (G(gq)− infg∈Θqn G(g) < δ) � e−cqn

PROOF. Write q = qn (depending on n). By Lemma C.1.2, G is continuous on Θ. Hence

for any ε > 0, there exists δ > 0, for gq ∈ Θδ
I , |G(gq) − supg∈ΘI

G(g)| < ε. Note that

ΘI = arg ming∈ΘG(g), hence G(gq) − infg∈Θ G(g) < ε. In addition, for any q, G(gq) −

infg∈Θq G(g) ≤ G(gq)−infg∈ΘG(g) < ε, which implies {gq ∈ Θδ
I} ⊂ {G(gq)−infg∈Θq G(g) <

ε}. Then Assumption 4.2.6, implies that for any ε > 0, for all large q, P (G(gq)−infg∈Θq G(g) <

ε) ≥ P (gq ∈ Θδ
I) � e−cqn .

Proof of Theorem 4.2.2:

The posterior of g0
q is given by

p(gq|Xn) ∝ p(gq) exp
(
−n

2
Ḡ(gq)

)
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A straightforward application of Jiang and Tanner (2008, Proposition 6) renders that ∀δ > 0,

P (G(gq)− inf
g∈Θq

G(g) > 5δ|Xn) ≤ P ( sup
g∈Θq

|Ḡ(g)−G(g)| ≥ δ)

+
e−2nδ

P (G(gq)− infg∈Θq G(g) < δ)
(C.1)

By Theorem 4.2.1, supg∈Θq |Ḡ(g)−G(g)| → 0 in the probability distribution ofXn as n→∞.

Also, Lemma C.1.3 implies that for any δ > 0,

e−2nδ

P (G(gq)− infg∈Θq G(g) < δ)
≤ e−2nδ+cqn = o(1)

provided that qn/n → 0. It then follows from C.1 that G(gq) − infg∈Θq G(g) → 0 in the

posterior probability. Note that infg∈Θ = G(g0), and infΘq G(g) ≥ G(g0), g0
q ∈ Θq, which

implies 0 ≤ G(g0
q )− infg∈Θq G(g) ≤ G(g0

q )−G(g0), hence by the triangular inequality,

G(gq)− inf
g∈Θ

G(g) ≤ G(gq)− inf
g∈Θq

G(g) + | inf
g∈Θq

G(g)−G(g0
q )|+ |G(g0

q )−G(g0)|

≤ G(gq)− inf
g∈Θq

G(g) + 2(G(g0
q )−G(g0))

Since ‖g0
q − g0‖ → 0 and G(g) is continuous on Θ, G(gq) − infg∈ΘG(g) → 0 in the posterior

probability, meaning that in the probability of the distribution of Xn, for any ε > 0,

P (G(gq)− inf
g∈Θ

G(g) > ε|Xn)→ 0(C.2)

By definition ΘI = arg minΘG(g), hence for any δ > 0, ε0 ≡ infg∈Θ∩(ΘδI)c G(g)−infg∈ΘG(g) >

0. C.2 then yields with probability approaching 1, G(gq) < infg∈Θ∩(ΘδI)c G(g), which implies

gq ∈ Θδ
I with the posterior probability approaching 1. Q.E.D.
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C.2. Proofs for Section 4.3

C.2.1. Proof for Proposition 4.3.1

PROOF. (i) When ρ(Z, g) = Y − h(Wθ), then

|E(ρ(Z, g0)2|W = w1)− E(ρ(Z, g0)2|W = w2)| ≤ 1

fW (w1)fW (w2)

×
∫
|(y − h0(w1θ0))2fW (w2)fW |Y (w1|y)− (y − h0(w2θ0))2fW (w1)fW |Y (w2|y)|dFY (y)

≤ Const · [
∫

(y − h0(w1θ0))2|f(w1|y)− f(w2|y)|dFY (y)

+|fW (w1)− fW (w2)|
∫

(y − h0(w1θ0))2fW |Y (w2|y)dFY (y)

+|h0(w1θ0)− h0(w2θ0)|
∫
fW |Y (w2|y)|2y + h0(w1θ0) + h2(w2θ0)|dFY (y)

≤ A+B + C, say

For any δ > 0, ‖w1 − w2‖ is small implies A < δ, provided that ∀ε > 0, ∃δ, such that

supy sup‖w1−w2‖<δ |fW |Y (w1|y) − fW |Y (w2|y)| < ε, and that supt |h(t)| < ∞. Also B < δ

provided that fW is continuous on [a, b], and sup(w,y)∈Z fW |Y (w|y) < ∞. Finally, C < δ

follows from the continuity of h0(.).

(ii) For anyw1 6= w2, supg∈Θ |E(ρ(Z, g)|W = w1)−E(ρ(Z, g)|W = w2)| = sup(h,θ)∈Θ |h(w1θ)−

h(w2θ)|. Since h ∈ H is compact under Hölder norm, there exists a constant such that for any

h ∈ H, and t1 6= t2,
|h(t1)− h(t2)|
|t1 − t2|

≤ Const

Hence suph∈H |h(w1θ) − h(w2θ)| ≤ Const · |w1 − w2|‖θ‖. Note that Const does not depend

on h and θ is in a compact set, it follows that for any ε > 0, exists δ, as long as |w1 − w2| < δ,

sup(h,θ)∈Θ |h(w1θ)− h(w2θ)| < ε, which yields the equicontinuity of {E(ρ(Z, g)|W = .) : g ∈

Θ}.
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(iii) For any w1, w2 and h1, h2, |ρ(z, g1) − ρ(z, g2)| = |h1(wθ1) − h2(wθ2)| ≤ |h1(wθ1) −

h1(wθ2)|+ |h1(wθ2)− h2(wθ2)| ≤ ‖h1‖s|w|‖θ1 − θ2‖+ ‖h1 − h2‖s. This is because,

|h1(wθ1)− h1(wθ2)| ≤ sup
t1 6=t2

|h1(t)− h1(t2)|
|t1 − t2|

|wθ1 − wθ2| ≤ ‖h1‖s|wθ1 − wθ2|

and |h1(wθ2) − h2(wθ2)| ≤ supt |h1(t) − h2(t)|. Recall that H = {h : ‖h‖s < B} for some

known constant B. Hence as long as ‖θ1−θ2‖ < ε/2B, and ‖h1−h2‖ < ε/2, supw |h1(wθ1)−

h2(wθ2)| ≤ ε. Q.E.D.

C.2.2. Proof for Proposition 4.3.1: Assumption 4.2.4

Lemma C.2.1. For all j = 1, ..., kn, let ξ̄nj(g) = m̄nj(g) − Emnj(g,X), then Assumption

4.2.4 holds on (Θ, ‖.‖H) if ∀ε > 0, ∃δ > 0, such that

(C.3) lim sup
n→∞

max
j≤kn

P

(
sup

‖g1−g2‖H≤δ

√
n|ξ̄nj(g1)− ξ̄nj(g2)| > ε

)
< ε

PROOF. For any g1, g2 ∈ Θ, let j1 and j2 be such that

max
1≤j≤kn

√
n|m̄nj(g1)− Emnj(g1, X)| =

√
n|m̄nj1(g1)− Emnj1(g1, X)|.

max
1≤j≤kn

√
n|m̄nj(g2)− Emnj(g1, X)| =

√
n|m̄nj2(g2)− Emnj2(g2, X)|.

Let Qn(g) = max1≤j≤kn
√
n|m̄nj(g)− Emnj(g,X)|, then

Qn(g1) =
√
n|ξ̄nj1(g1)|, Qn(g2) =

√
n|ξ̄nj2(g2)|

By definition,Qn(g1) ≥
√
n|ξ̄nj2(g1)|, andQn(g2) ≥

√
n|ξ̄nj1(g2)|. It follows that

√
n|ξ̄nj2(g1)|−

Qn(g2) ≤ Qn(g1) − Qn(g2) ≤ Qn(g1) −
√
n|ξ̄nj1(g2)|. Note that if y ≤ x ≤ z, then
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|x| ≤ |y|+ |z|. Hence by the triangular inequality,

|Qn(g1)−Qn(g2)| ≤
√
n|ξ̄nj1(g1)− ξ̄nj1(g2)|+

√
n|ξ̄nj2(g1)− ξ̄nj2(g2)|

By the definition in Andrews (1992), Qn(g) is stochastic equicontinuous if (C.3) holds. Q.E.D.

Now Emnj(g,X) = E[(Y − h(Wθ))1(W ∈ Rj)] = E[1(W ∈ Rj)E(Y − h(Wθ)|W )].

Since E(Y − h(Wθ)|W = w) is continuous on w ∈ [a, b] for all h by Proposition 4.3.1,

therefore Emnj(g,X) ≤ supw E(Y − h(Wθ)|W = w)P (W ∈ Rj) = O(1/k) for all g. By

weak law of large number, km̄nj(g) = Op(kEmnj(g,X)) = Op(1). Hence by Proposition 3

in Jiang (2009), for any small γ > 0, for compact Θ, supg∈Θ |km̄nj(g) − kEmnj(g,X))| =

op(n
−1/2+γ), which implies implies

√
n supg∈Θ ξ̄nj(g) = Op(n

γ/k) = op(1) for all j ≤ k.

Therefore for all j ≤ k, for large enough n,

P

(
sup

‖g1−g2‖H≤δ

√
n|ξ̄nj(g1)− ξ̄nj(g2)| > ε

)
≤ P

(
sup
g∈Θ

√
nξ̄nj(g) >

ε

2

)
< ε

Q.E.D.

C.3. Proofs for Section 4.4

C.3.1. Proof for Proposition 4.4.1

PROOF. (i) First note that for all w ∈ [0, 1], and ρ(Z, g) = Y − g(X)

E(ρ(Z, g0)2|W = w) =

∫
(y − g0(x))2dFY,X|W (y, x|w)

=

∫
(y − g0(x))2

fW (w)
fW |Y,X(w|y, x)dFY,X(y, x)
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Hence for any w1, w2,

|E(ρ(Z, g0)2|W = w1)− E(ρ(Z, g0)2|W = w2)|

≤
∫

(y − g0(x))2

∣∣∣∣fW |Y,X(w1|y, x)

fW (w1)
−
fW |Y,X(w2|y, x)

fW (w2)

∣∣∣∣ dFY,X(y, x)

≤ 1

fW (w1)fW (w2)

∫
(y − g0(x))2×

|fW |Y,X(w1|y, x)fW (w2)− fW |Y,X(w2|y, x)fW (w1)|dFY,X(y, x)(C.4)

Note that |fW |Y,X(w1|y, x)fW (w2) − fW |Y,X(w2|y, x)fW (w1)| ≤ |fW |Y,X(w1|y, x)fW (w2) −

fW |Y,X(w2|y, x)fW (w2)|+|fW |Y,X(w2|y, x)fW (w2)−fW |Y,X(w2|y, x)fW (w1)| ≤ supw∈[0,1] fW (w)·

|fW |Y,X(w1|y, x)−fW |Y,X(w2|y, x)|+supw∈[0,1] fW |Y,X(w, |y, x)·|fW (w2)−fW (w1)| ≤ Const·

supx,y |fW |Y,X(w1|y, x)− fW |Y,X(w2|y, x)|+ Const · |fW (w1)− fW (w2)|.

By Assumption 4.4.2, ∀δ > 0, ∃d > 0, such that when |w1 − w2| < d,

|fW |Y,X(w1|y, x)fW (w2)−fW |Y,X(w2|y, x)fW (w1)| < δ for all x, y. In addition, fW is bounded

away from zero. Hence C.4≤ Const ·E(ε2)δ, which yields the continuity of E(ρ(Z, g0)2|W =

w) on [0, 1].

(ii) For all w1, w2, and g ∈ Θ,

|Kg(w1)−Kg(w2)| = |E(Y − g(X)|W = w1)− E(Y − g(X)|W = w2)|

≤
∫
|y − g(x)|

∣∣∣∣fW |Y,X(w1|y, x)

fW (w1)
−
fW |Y,X(w2|y, x)

fW (w2)

∣∣∣∣ dFY,X(y, x)

Using a similar argument as in (i), we see that for any δ > 0, as long as |w1−w2| < d for some

d, |Kg(w1)−Kg(w2)| < δ ·Const ·E|Y −g(X)|. Then Assumption 4.2.3 (ii) follows provided

that EY 2 <∞ and g ∈ Θ.
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(iii) Condition (iii) follows immediately given that ρ(Z, g) = Y − g(X), and supx |g1(x)−

g2(x)| = ‖g1 − g2‖H .

Finally, Assumption 4.2.4 can be proved using the same argument in the proof of Proposition

4.3.1, using Lemma C.2.1. Q.E.D.

C.3.2. Proof of Theorem 4.4.1

First, we apply the singular representation of T . Since T is compact, let {|λi|, φj, ψj}i≥1 be

the singular system of T , where |λ1|, |λ2|..., are the singular values of T such that Tφi = |λi|ψi.

For any g ∈ L2(X), we have the singular value decomposition g(x) =
∑∞

i=1 biφi(x)+Q, where

Q ∈ N (T ). Since we assume in this case g0 is identified, therefore the null spaceN (T ) = {0}.

Hence Q = 0. Also, (Tg)(w) =
∑∞

i=1 bi|λi|ψi(w). Define T ∗ : L2(X)→ L2(X), such that for

any g =
∑∞

i=1 biφi(x),

(T ∗g)(x) =
∞∑
i=1

bi|λi|φi(x)

with norm ||T ∗g||2 =
∑∞

i=1 b
2
i |λi|2. In addition, the inner product of L2(W ) is defined as

< ψi, ψj >=

∫
ψi(w)ψj(w)E(ε2|w)−1dFW (w)

and {ψi} are orthonormalized such that < ψi, ψj >= δij , the Kronecker delta. Therefore the

norm of Tg is

‖Tg‖2
W =

∫ b

a

[(Tg)(w)]2(E[ε2|W = w])−1dFW (w) =
∞∑
i=1

b2
iλ

2
i = ||T ∗g||

Therefore G(g) = ||T (g − g0)||2W = ‖T ∗(g − g0)‖2.
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Let gq =
∑q

i=1 biφi(x). The proof is carried out by deriving an upper bound of
∫
‖gq −

g0‖2L(gq)p(gq)db, and a lower bound of
∫
L(gq)p(gq)db. For some sequence ε2n = O(a4

n/λ
2
sn) =

o(1), define

An = {(b1, ..., bq) ∈ Rq : G(gq) + a2
n‖gq‖2 ≤ ε2n}

The following lemmas are useful:

Lemma C.3.1.

∫
An

‖gq − g0‖2L(gq)p(gq)db = Op

((
ε2n
a2
n

+
a2
n

λ2
sn

+
∑
j≥sn

g2
j

)
(
εn
an

)qn

)

PROOF. Note that on An, G(gq) + a2
n‖gq‖2 ≤ ε2n. Let ξ = gq − g0 + an(T ∗ + an)−1g0.

Hence

‖(T ∗ + an)ξ‖2 = ‖(T ∗ + an)(gq − g0) + ang0‖2 = ‖T ∗(gq − g0) + angq‖2

≤ 2(‖T ∗(gq − g0‖2 + a2
n‖gq‖2) ≤ 2ε2n

Let ξ(x) =
∑∞

i=1 ηiφi(x) be the spectrum expansion of ξ. ‖(T ∗ + an)ξ‖2 =
∑∞

i=1(|λi| +

an)2η2
i ≥ a2

n‖ξ‖2. Therefore, ||ξ||2 ≤ 2ε2/a2
n. It follows that

‖gq − g0‖2 ≤ 2a2
n‖(T ∗ + an)−1g0‖2 + 4

ε2n
a2
n

= 2
∞∑
j=1

(
an

|λj|+ an

)2

g2
j +

4ε2n
a2
n

≤ 2a2
n

λ2
sn

‖g0‖2 + 2
∑
j≥sn

g2
j +

4ε2n
a2
n

In addition, An ⊂ A∗n = {b ∈ Rqn : a2
n‖b‖2 ≤ ε2n}. We have

∫
An

‖gq − g0‖2L(gq)p(gq)db ∝
∫
An

‖gq − g0‖2e−nan‖gq‖
2−n

2
m̄n(gq)TV

−1
0 m̄n(gq)db
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≤
∫
An

‖gq − g0‖2db ≤

(
2a2

n

λ2
sn

‖g0‖2 + 2
∑
j≥sn

g2
j +

4ε2n
a2
n

)
µ(A∗n)

= Op

((
2a2

n

λ2
sn

‖g0‖2 + 2
∑
j≥sn

g2
j +

4ε2n
a2
n

)
(
εn
an

)qn

)

Q.E.D.

Let T ∗g0(x) =
∑∞

i=1 µiφi(x) be the spectrum expansion of T ∗g0(x). For q = qn, define

A1c = {b ∈ Rq : a2
n‖gq‖2 > ε2n}

A2c = {b ∈ Rq : ‖T ∗(gq − g0)‖2 + a2
n‖gq‖2 > ε2n, a

2
n‖gq‖2 ≤ ε2n}

Recall that Acn = {b ∈ Rq : ‖T ∗(gq − g0)‖2 + a2
n‖gq‖2 > ε2n}, which then follows that

Acn ⊂ A1c ∪ A2c. We evaluate A1,2c respectively.

Lemma C.3.2.

∫
A2c

‖gq − g0‖2L(gq)p(gq)db = Op

(
exp(n1−α − nε2n)

(
ε2n
a2
n

)q/2)

PROOF. A2c ⊂ Ball(0, |εn|/an), a ball centered at zero with radius |εn|/an = o(1). By

Assumption 4.4.4, we have uniform convergence on A2c:

supgq∈A2c
|m̄n(gq)

TV −1
0 m̄n(gq)−G(gq)| < n−α. Therefore

∫
A2c

‖gq − g0‖2L(gq)p(gq)db ≤
∫
A2c

‖gq − g0‖2 exp(−nG(gq)− na2
n‖gq‖2

+n|G(gq)− m̄(gq)
′V −1

0 m̄(gq)|)db

≤ exp(n1−α − nε2n)

∫
A2c

‖gq − g0‖2db

≤ 2 exp(n1−α − nε2n)

(
‖g0‖2µ(Ball(0, |εn|/an)) +

∫
Ball(0,|εn|/an)

‖gq‖2db

)
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≤ 2 exp(n1−α − nε2n)

(
ε2n
a2
n

)q/2(
‖g0‖2 +

ε2n
a2
n

)
= Op

(
exp(n1−α − nε2n)

(
ε2n
a2
n

)q/2)

The equality follows from that ε2n/a
2
n = O(a2

n/λ
2
sn) = o(1). Q.E.D.

Lemma C.3.3. For some constant c > 0,

∫
A1c

‖gq − g0‖2L(gq)p(gq)db = Op

(
e−nε

2
n(

π

nλ2
q

)q/2
(

1 +
q

nλ2
q

))

PROOF.
∫
A1c
‖gq − g0‖2L(gq)p(gq)db ≤ e−nε

2
n
∫
A1c
‖g1 − g0‖2e−nm̄(gb)

TV −1
0 m̄(gb)db. Define

the following matrix notion:

H = (hij)n×n, where hij =
k∑
l=1

I(Wi ∈ Rl,Wj ∈ Rl)

Ψq = (φi(Xj))q×n , y = (Y1, ..., Yn)T , V = ΨqHΨT
q

Write gq(x) =
∑q

i=1 biφi(x), and m̄j(gq) = n−1
∑n

i=1(Yi − gq(Xi))I(Wi ∈ Rj). It is then

straightforward to verify that
∑k

j=1 m̄j(gq)
2 has the following matrix representation:

k∑
j=1

m̄j(gq)
2 =

1

n2
(bT − yTHΨT

q V
−1)V (b− V −1ΨqHy)

+
1

n2
(yTHy − yTHΨT

q V
−1ΨqHy)

≥ 1

n2
(bT − yTHΨT

q V
−1)V (b− V −1ΨqHy)

Note that m̄(gq)
TV −1

0 m̄(gq) =
∑k

j=1 m̄j(gq)
2E[ε2I(W ∈ Rj)]

−1, and for all j = 1, ..., k,

E[ε2I(W ∈ Rj)] = O(k−1). Thus there exist two positive constants c1 and c2 such that
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c1k
∑k

j=1 m̄j(gq)
2 ≤ m̄(gq)

TV −1
0 m̄(gq) ≤ c2k

∑k
j=1 m̄j(gq)

2. Therefore, without loss of gen-

erality, we will only consider the simplified case there there exists a universal constant c such

that m̄(gq)
TV −1

0 m̄(gq) = ck
∑k

j=1 m̄j(gq)
2.

Let Z = (Z1, ..., Zq) be a multivariate normal random vector, such that Z ∼ MVN(µ,Σ),

where µ = yTHΨT
q V
−1, and Σ = n

2ck
V −1. The joint density function of (Z1, ..., Zq) is

fZ(b1, ..., bq) = (2π)−q/2 det(Σ)−1/2e−
1
2

(b−µ)TΣ−1(b−µ). Hence e−cnk
∑k
j=1 m̄j(gq)

2

= (2π)q/2 det(Σ)1/2fZ(b1, ..., bq),

which yields

∫
A1c

‖gq − g0‖2L(gq)p(gq)db ≤ e−nε
2
n

∫
A1c

‖gq − g0‖2e−nm̄(gb)
TV −1

0 m̄(gb)db

≤ exp(−nε2n)

∫
A1c

‖gq − g0‖2e−cnk
∑k
j=1 m̄j(gq)

2

db

≤ exp(−nε2n)(2π)q/2 det(Σ)1/2

∫
A1c

‖gq − g0‖2fZ(b1, ..., bq)db

≤ exp(−nε2n)(2π)q/2 det(Σ)1/2

(
2‖g0‖2 + 2

∫
A1c

q∑
i=1

b2
i fZ(b1, ..., bq)db

)

≤ exp(−nε2n)(2π)q/2 det(Σ)1/2

(
2‖g0‖2 + 2

q∑
i=1

E[Z2
i |Data]

)

Let Z̃1, .., Z̃q be independent normal variables such that Z̃i ∼ N(µi/|λi|, (2nλ2
i )
−1). The

joint density function of (Z̃1, ..., Z̃q) is

fZ̃(b1, ..., bq) = (n/π)q/2
∏q

i=1 |λi| exp(−n
∑q

i=1(bi|λi| − µi)2). Since G(gq) = ‖T ∗(gq −

g0)‖2 =
∑q

i=1(bi|λi|−µi)2+
∑

i≥q µ
2
i , hence e−nG(gq) ∝ fZ̃(b1, ..., bq). In addition, e−nm̄(gq)TV

−1
0 m̄(gq) ∝

fZ(b1, ..., bq), and note that ∀gq ∈ Θq, we have pointwise convergence limn→∞ m̄(gq)
TV −1

0 m̄(gq) =

G(gq).Hence it follows thatE(Z2
i |Data) = Op(E(Z̃2

i |Data)) = Op(
µ2
i

λ2
i
+ 1

2nλ2
i
), and det(Σ)1/2 =

Op((2n)−q/2
∏q

i=1 |λi|−1). We have

∫
A1c

‖gq − g0‖2L(gq)p(gq)db
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≤ Op

(
e−nε

2
n(π/n)q/2

q∏
i=1

|λi|−1

(
‖g0‖2 +

q∑
i=1

(
µ2
i

λ2
i

+
1

2nλ2
i

)))
= Op

(
e−nε

2
n(

π

nλ2
q

)q/2
(

1 +
q

nλ2
q

))

where the last equality follows from that
∑q

i=1 µ
2
i /λ

2
i ≤

∑∞
i=1 µ

2
i /λ

2
i = ‖g0‖2 = O(1), and that

λ2
1 ≥ λ2

2 ≥ ... ≥ λ2
q . Q.E.D.

Lemma C.3.4.

∫
L(gq)p(gq)db ≥ Op

(
exp(−n1−α − q/2− na2

n)
( q

2n

)q/2)

PROOF. A result to be used later is,

max
cn≥1

1

cn

(
ln cn
n
− a2

n

)q/2
= e−(q/2+na2

n)
( q

2n

)q/2
with optimal c∗n = eq/2+na2

n . Define ‖T ∗‖ = sup‖g‖=1‖T ∗g‖2, ηn(b) = n‖T ∗‖2‖gq − g0‖2 +

nan‖gq‖2, and Bn = {b ∈ Rq : ηn(b) < ln c∗n}. It can be shown that Bn ⊂ Rq is a ball centered

at a = (a1, ..., aq) with radius r, where

ai =
‖T ∗‖2gi

a2
n + ‖T ∗‖2

= O(1),

r2 =
1

na2
n + n‖T ∗‖2

(
ln c∗n −

n‖T ∗‖2a2
n

a2
n + ‖T ∗‖2

)
= O

(
ln c∗n
n
− a2

n

)
Therefore µ(Bn) = Op(r

q). Note that with optimal c∗, r2 = O(q/n) = o(1). By Assumption

4.4.4, supgq∈Bn |G(gq)− m̄(gq)
TV −1

0 m̄(gq)| < n−α. We have

∫
L(gq)p(gq)db =

∫
exp(−nm̄(gq)

TV −1
0 m̄(gq)− na2

n‖gq‖2)db
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≥
∫
Bn

exp(−nG(gq)− na2
n‖gq‖2 − n|G(gq)− m̄(gq)

TV −1
0 m̄(gq)|)db

≥ exp(−n1−α)

∫
Bn

exp(−n‖T ∗(gq − g0)‖2 − na2
n‖gq‖2)db

≥ exp(−n1−α)

∫
Bn

exp(−ηn(b))db

≥ exp(−n1−α)c∗−1
n µ(Bn)

≥ Op

(
exp(−n1−α)

1

c∗n

(
ln c∗n
n
− a2

n

)q/2)
= Op

(
exp(−n1−α − q/2− na2

n)
( q

2n

)q/2)

Q.E.D.

Proof for Theorem 4.4.1

∫
‖gq − g0‖2p(gq|Data)db =

∫
An
‖gq − g0‖2L(gq)p(gq)db+

∫
Acn
‖gq − g0‖2L(gq)p(gq)db∫

L(gq)p(gq)db

By Lemma C.3.1, C.3.4, Assumption 4.4.5, and the definition of ε2n,
∫
An
‖gq−g0‖2L(gq)p(gq)db =

Op(ε/an)q+2. Therefore∫
An
‖gq − g0‖2L(gq)p(gq)db∫

L(gq)p(gq)db
= Op

((
2eε2nn

a2
nq

)q/2(
ε2n
a2
n

))
= op(1)

The last equality follows from that ε2n/a
2
n = O(a2

n/λ
2
sn) = o(1), and ε2nn/(qa

2
n) = O(na2

n/qλ
2
s) =

o(1), since q � na2
n/λ

2
s by Assumption 4.4.5.

By Lemma C.3.2,∫
A2c
‖gq − g0‖2L(gq)p(gq)db∫

L(gq)p(gq)db
= Op

(
exp(2n1−α + q/2 + na2

n − nε2n)

(
2nε2n
qa2

n

)q/2)

= Op

(
2eε2nn

a2
nq

)q/2
= op(1)



196

By Lemma C.3.3,∫
A1c
‖gq − g0‖2L(gq)p(gq)db∫

L(gq)p(gq)db
= Op

(
exp(n1−α + q/2 + na2

n − nε2n)

(
2π

qλ2
q

)q/2
(1 +

q

nλ2
q

)

)

≤ Op

((
2πe

qλ2
q

)q/2
(1 +

q

nλ2
q

)

)
= op(1)

The last equality follows from the fact that: at one hand, 2πe/(qλ2
q) = o(1) since q � λ2

q by

assumption. On the other hand, define dn =
(

2πe
qλ2
q

)q/2
q
nλ2

q
. It’s left to show dn = o(1). In fact,

since q = qn →∞, then for some constant C > 0,

ln dn = −
(q

2
− 1
)

ln q −
(q

2
+ 1
)

lnλ2
q +

q

2
C − lnn

= O
(
−q

2
ln q − q

2
λ2
q +

q

2
C − lnn

)
≤ O(−q ln q − q lnλ2

q + qC) = O(−q(ln q − C)− q lnλ2
q)

= O(−q ln q − q lnλ2
q) = O(−q ln qλ2

q)

We have −q ln qλ2
q → −∞ since q � λ−2

q . Therefore ln dn → −∞, which implies dn = o(1).

Q.E.D.
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APPENDIX D

Technical Proofs for Chapter 5

D.1. Proof of Theorem 5.3.1

PROOF. Define L(µ) =
∑n

i=1 log[1 + µ(|Yi − C(Xi, θ)| − r)]. Let n1 be the number of i

such that |Yi − C(Xi, θ)| = 0, and n2 be the number of i such that |Yi − C(Xi, θ)| = 1. Note

that R̂ = n−1
∑n

i=1 |Yi−C(Xi, θ)| = n−1n2, and n1 + n2 = n. Since |Yi−C(Xi, θ)| ∈ {0, 1},

we have

L(µ) =
∑

i:|Yi−C(Xi,θ)|=0

log(1− µr) +
∑

i:|Yi−C(Xi,θ)|=1

log(1 + µ(1− r))

= n1 log(1− µr) + n2 log(1 + µ(1− r))

Differentiating L(µ) and setting to zero, it is straightforward to verify that the optimal µ∗ =

n2−nr
nr(1−r) , with maxµ L(µ) = (n−n2) log n−n2

n(1−r)+n2 log n2

nr
. Replacing n2 by nR̂ yields maxµ L(µ) =

nK(R̂, r). Finally, we verify that the second derivative L′′(µ∗) = −n3(1−r)2r2

n2n1
< 0 when

r ∈ (0, 1). Q.E.D.

D.2. Proof of Theorem 5.3.2

The following lemmas establish some relationships between the expression in the log em-

pirical likelihood and the square (or absolute value) distances. The first lemma is for the special

case of classification and the second one is more general.
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Lemma D.2.1. For p, q ∈ [0, 1], and K(p, q) as defined in (5.8),

(D.1) 0.5(q − p)2 ≤ K(p, q) ≤ {min(p, q, 1− p, 1− q)}−20.5(p− q)2.

PROOF. This is straightforward by a second order Taylor expansion of− ln(1+δ1,2), where

δ1 = q/p− 1 and δ2 = (1− q)/(1− p)− 1. Q.E.D.

Lemma D.2.2. Let mi, i = 1, ..., n, be iid random variables. Suppose positive constants

δ+, δ−,M are such that P (m1 > δ+) > 0, P (m1 < −δ−) > 0, and P (|m1| ≤ M) = 1. Then,

with probability P ∗ at least 1− πn for some πn > 0 exponentially small in n, we have

(D.2) (min{δ+, δ−})−1|m̄| ≥ max
µ

{
ln(1 + µm)

}
≥ (7/36)M−2(m̄)2,

where overlines represent sample averages.

Proof of Theorem 5.3.2

Denote R = E∗ρ(W,a) and ∆ = supa |R̂−R|, then

P ∗[|R − r| > ε|D] ≤
∫
I(|R − r| > ε)I(∆ ≤ ε/2)e−nK(R̂,r)dπ/

∫
e−nK(R̂,r)dπ + I(∆ >

ε/2). The numerator of the first term is less than e−nε2/8 since |R̂ − r| ≥ |R − r| − ∆ > ε/2

and this implies K(R̂, r) > ε2/8 due to a previous lemma.

The denominator is bounded by∫
e−nK(R̂,r)dπ ≥

∫
I(|R− r| ≤ δ)I(∆ ≤ δ/2)I(η ≥ τ)e−nK(R̂,r)dπ

≥ e−n(τ−δ/2)−2(9/8)δ2
π(|R− r| ≤ δ, η ≥ τ)I(∆ ≤ δ/2), where η = min(R, 1−R, r, 1− r)

and δ and τ are some positive constants. Here we used again a previous lemma to bound

K(R̂, r) ≤ {min(R̂, 1 − R̂, r, 1 − r)}−20.5(R̂ − r)2 ≤ (τ − δ/2)−20.5(R̂ − r)2 ≤ (τ −

δ/2)−20.5(δ + δ/2)2.
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Combining these we obtain: the event ∆ ≤ min{δ/2, ε/2} implies the event

P (|R− r| > ε|D) ≤ e−nε
2/8+(9n/8)(δ/(τ−δ/2))2

p(|R− r| ≤ δ, η ≥ τ)
.

Note that p(|R − r| ≤ δ, η ≥ τ) > 0 by assumption. Choose constants τ and δ suitably, then

the right hand side can be made arbitrarily close to zero (and exponentially small in n). This

happens with P ∗, the probability in D being at least P ∗(∆ ≤ min{δ/2, ε/2}), which converges

to 1 by assumption. Q.E.D.



200

Vita

Yuan Liao

PERSONAL INFORMATION

• Date of Birth: October 1st, 1982

• Place of Birth: Beijing, China

• Marital Status: Single

EDUCATION

• 2005 B.S. in Mathematics, Tsinghua University, Beijing

• 2010 Ph.D. (expected) in Statistics, Northwestern University, Evanston, IL

PUBLICATION

• Bayesian analysis in moment inequality models (with Wenxin Jiang)

(2010) The Annals of Statistics. 38 275-316.

PROFESSIONAL AFFILIATIONS

• Member of American Statistical Association. 2006-Present

• Member of Econometric Society. 2009-Present


	ABSTRACT
	Acknowledgements
	Preface
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Examples of Loss of Identifiability
	1.2. Literature Review on Partially Identified Models
	1.3. Literature Review on Conditional Moment Restricted Models
	1.4. Nonparametric Instrumental Variable Regression
	1.5. Bayesian GMM and Bayesian Empirical Likelihood
	1.6. Structure of this Dissertation
	Chapter 2. Bayesian Analysis in Moment Inequality Models
	2.1. Introduction
	2.2. Moment Inequality Models
	2.3. Posterior Properties: When the Identified Region Has Nonempty Interior
	2.4. Posterior Properties: When the Identified Region Has Empty Interior
	2.5. Monte Carlo Experiments
	2.6. An Empirical Missing Data Example with Fictitious Data 
	2.7. Conclusions
	Chapter 3. Model and Moment Selection in Moment Inequality Models
	3.1. Introduction
	3.2. Posterior Setup
	3.3. Posterior Consistency of Liao and Jiang (2010)
	3.4. More Reliable Setting
	Chapter 4. Bayesian Semi-Nonparametric Conditional Moment Restricted Models
	4.1. Introduction
	4.2. Conditional Moment Restricted Model
	4.3. Application: Single Index Model
	4.4. Nonparametric Instrumental Variable Regression
	4.5. Markov Chain Monte Carlo
	4.6. Conclusion and Discussion
	Chapter 5. Bayesian Analysis for Classification Risk Using Empirical Likelihood
	5.1. Introduction
	5.2. Empirical Likelihood Posterior Distribution
	5.3. Main Results
	5.4. More general risk functions in data mining
	5.5. Simple Monte Carlo Example
	5.6. German Credit Data: an Empirical Application
	5.7. Discussion

	References

	Appendix A. Technical Proofs for Chapter 2
	A.1. Proofs for Section 2.2: Theorem 2.2.1
	A.2. Proofs for Section 2.3
	A.3. Proofs for Section 2.4
	Appendix B. Technical Proofs for Chapter 3
	B.1. Proof of Lemma 3.2.1
	B.2. Proof of Theorem 3.4.1
	B.3. Proof of Theorem 3.4.2
	Appendix C. Technical Proofs for Chapter 4
	C.1. Proofs for Section 4.2
	C.2. Proofs for Section 4.3
	C.3. Proofs for Section 4.4
	Appendix D. Technical Proofs for Chapter 5
	D.1. Proof of Theorem 5.3.1
	D.2. Proof of Theorem 5.3.2
	Vita








