1. The following is **Question #3 from the first midterm examination:**

The random variable X is from the exponential distribution having the probability density function (pdf):

$$f(x) = \begin{cases} \frac{1}{b} \exp \left(-\frac{x}{b} \right) & x \geq 0 \\ 0 & \text{otherwise} \end{cases}, \quad b > 0 \quad (1)$$

It can be shown that the moment generating function, $M(t)$, is given by

$$M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx = \frac{1}{1 - bt}, \quad t < \frac{1}{b}. \quad (10)$$

(a) Using $M(t)$ show that the r-th moment about the origin, $E X^r$, is given by

$$E X^r = r! b^r.$$

Hence,

$$EX = b,$$

$$EX^2 = 2! b^2 = 2 b^2,$$

$$\sigma^2 \equiv \text{Var}(X) = EX^2 - (EX)^2 = b^2,$$

$$EX^3 = 3! b^3 = 6 b^3,$$

$$EX^4 = 4! b^4 = 24 b^3.$$

(b) Let x_1, x_2, \cdots, x_n be a random sample from the exponential distribution (3). Suppose that the estimator of parameter b, \hat{b}, is given by the sample mean:

$$\hat{b} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Show that \hat{b} is unbiased, that is

$$E(\hat{b}) = b.$$
(10) (c) Since $\text{Var}(X) = b^2$, we may estimate the variance by \hat{b}^2:

$$\hat{\sigma}^2 = \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^2$$

Show that $\hat{\sigma}^2$ is biased:

$$E(\hat{\sigma}^2) = b^2 + \frac{b^2}{n}.$$

But the bias disappears as $n \to \infty$.

Hint:

(i) $\sum x_i = \sum (x_i - b) + nb$. Hence

$$E\left(\sum_{i=1}^{n} x_i^2\right) = E\left\{\sum_{i=1}^{n} (x_i - b) + nb\right\}^2.$$

(ii) Since (x_1, \cdots, x_n) is a random sample we have

$$\text{Cov}(x_i, x_j) = E(x_i - b)(x_j - b) = 0 \text{ for all } i \neq j.$$

Questions:

(10) (i) Show that \bar{x} is the MLE.

(10) (ii) Obtain the variance of \bar{x}.

(10) (iii) Obtain the Cramér-Rao bound, and show that the variance of \bar{x} attains the Cramér-Rao bound.

(10) (iv) Show that the estimator of the variance of the exponential distribution:

$$\hat{w} = (\bar{x})^2$$

is the MLE of the variance of the exponential distribution.

Estimate
• Linear Probability Model:

\[y_i = \alpha + \beta x_i + u_i \]

where

\[y_i = \begin{cases} 1.0 \quad & \text{if disease is absent} \\ 0 \quad & \text{if disease is present at a site three years after treatment} \end{cases} \]

and \(x_i = \) Days (The data is given in the handout.)

• Logit Model:

\[P_i = \frac{\exp(\alpha + \beta x_i)}{1 + \exp(\alpha + \beta x_i)}. \]

• Probit Model:

\[P_i = \int_{-\infty}^{\alpha + \beta x_i} \frac{1}{\sqrt{2\pi}} \exp \left(\frac{1}{2} t^2 \right) \, dt. \]

using Eviews. (Data will be sent to you.) In this Eviews data set \(y_i = \) resp, and \(x_i = \) days.

The Eviews command for Logit and Probit models are

- \text{binary(d=l) resp c days}
- \text{binary(d=n) resp c days}

or

- \text{equation eq_name.binary(d=n) resp c days}
- \text{equation eq_name.binary(d=l) resp c days}

Note: In “d=l”, “l” is “ℓ” not one. “ℓ” for Logit, and “n” for Probit (normal distribution). To learn more on the probit and logit estimation using Eviews, do

\text{Help} \rightarrow \text{Eviews Help Topics} \rightarrow \text{Index} \rightarrow \text{type “binary” and click the highlighted “binary.”}