Back to Sovereign Debt

Roberto Chang

Rutgers

April 2013
A lot of work in the 1980s, following Eaton and Gersovitz (1980) and the Latin American debt crisis.
A lot of work in the 1980s, following Eaton and Gersovitz (1980) and the Latin American debt crisis.

Focus: why do governments repay their debts?
A lot of work in the 1980s, following Eaton and Gersovitz (1980) and the Latin American debt crisis.

Focus: why do governments repay their debts?

Debate: reputation versus direct sanctions
A lot of work in the 1980s, following Eaton and Gersovitz (1980) and the Latin American debt crisis.

Focus: why do governments repay their debts?

Debate: reputation versus direct sanctions

Also: renegotiation, debt overhang and restructuring
A lot of work in the 1980s, following Eaton and Gersovitz (1980) and the Latin American debt crisis.

Focus: why do governments repay their debts?

Debate: reputation versus direct sanctions

Also: renegotiation, debt overhang and restructuring

Much work in the last decade, starting with Arellano (2008) and Aguiar and Gopinath (2006) have instead focused on the ability of sovereign debt models to rationalize stylized business cycle facts.
Eaton-Gersovitz: reputation can *by itself* provide sufficient incentives for repayment
Eaton-Gersovitz: reputation can *by itself* provide sufficient incentives for repayment

Illustration: OR ch 6 (a very good reference)
Eaton-Gersovitz: reputation can *by itself* provide sufficient incentives for repayment

Illustration: OR ch 6 (a very good reference)

Small country has output

\[Y_t = \bar{Y} + \varepsilon_t \]

where \(\varepsilon_t \) is i.i.d. with \(E(\varepsilon) = 0 \)
Eaton-Gersovitz: reputation can *by itself* provide sufficient incentives for repayment

Illustration: OR ch 6 (a very good reference)

Small country has output

\[Y_t = \bar{Y} + \varepsilon_t \]

where \(\varepsilon_t \) is i.i.d. with \(E(\varepsilon) = 0 \)

The representative agent has preferences

\[E \sum_{t=0}^{\infty} \beta^t u(C_t) \]
Feasible Allocations

- Right before each period t, and as long as the country is in good standing, it can purchase insurance contracts to pay $P_t(\varepsilon)$ if $\varepsilon_t = \varepsilon$ (or, if negative, to receive $-P_t(\varepsilon)$)

$$E_t = 0$$

The country's budget constraint is

$$B_{t+1} + Y_t C_t P_t(\varepsilon_t)$$

where $\beta(1+r) = 1$

If the country reneges on its debt, it is permanently excluded from the world market.
Right before each period t, and as long as the country is in good standing, it can purchase insurance contracts to pay $P_t(\varepsilon)$ if $\varepsilon_t = \varepsilon$ (or, if negative, to receive $-P_t(\varepsilon)$)

Zero profit:

$$E_{t-1} P_t(\varepsilon) = 0$$
Feasible Allocations

- Right before each period t, and as long as the country is in good standing, it can purchase insurance contracts to pay $P_t(\varepsilon)$ if $\varepsilon_t = \varepsilon$ (or, if negative, to receive $-P_t(\varepsilon)$).
- Zero profit:
 \[E_{t-1}P_t(\varepsilon) = 0 \]
- The country’s budget constraint is
 \[B_{t+1} = (1 + r)B_t + Y_t - C_t - P_t(\varepsilon_t) \]
 where $\beta(1 + r) = 1$
Feasible Allocations

- Right before each period t, and as long as the country is in good standing, it can purchase insurance contracts to pay $P_t(\varepsilon)$ if $\varepsilon_t = \varepsilon$ (or, if negative, to receive $-P_t(\varepsilon)$)
- Zero profit:
 \[E_{t-1}P_t(\varepsilon) = 0 \]
- The country’s budget constraint is
 \[B_{t+1} = (1 + r)B_t + Y_t - C_t - P_t(\varepsilon_t) \]
 where $\beta(1 + r) = 1$
- If the country reneges on its debt, it is *permanently excluded* from the world market
Intuitively, the best that the country can do is to consume its mean endowment every period:

\[C_t = \bar{Y} \]
Intuitively, the best that the country can do is to consume its mean endowment every period:

\[C_t = \bar{Y} \]

To do this, the country must choose a sequence of contracts such that:

\[P_t = \varepsilon_t \]
Intuitively, the best that the country can do is to consume its mean endowment every period:
\[C_t = \bar{Y} \]

To do this, the country must choose a sequence of contracts such that:
\[P_t = \varepsilon_t \]

The question: is this self enforcing?
Consider *any* period t, after having observed ε_t.
Consider any period t, after having observed ε_t

The value of continuation is

$$\sum_{s=t}^{\infty} \beta^{s-t} u(\bar{Y}) = \frac{1}{1-\beta} u(\bar{Y})$$
Incentive Constraints (the one shot no deviation principle)

- Consider any period t, after having observed ε_t
- The value of continuation is
 \[
 \sum_{s=t}^{\infty} \beta^{s-t} u(\bar{Y}) = \frac{1}{1 - \beta} u(\bar{Y})
 \]
- If the country defaults,
 \[
 u(Y_t) + E \sum_{s=t+1}^{\infty} \beta^{s-t} u(Y_s) = u(Y_t) + \frac{\beta}{1 - \beta} Eu(\bar{Y} + \varepsilon_s)
 \]
Incentive Constraints (the one shot no deviation principle)

Consider any period t, after having observed ε_t

The value of continuation is

$$\sum_{s=t}^{\infty} \beta^{s-t} u(\bar{Y}) = \frac{1}{1-\beta} u(\bar{Y})$$

If the country defaults,

$$u(Y_t) + E \sum_{s=t+1}^{\infty} \beta^{s-t} u(Y_s) = u(Y_t) + \frac{\beta}{1-\beta} E u(\bar{Y} + \varepsilon_s)$$

The country will never default if the former is always greater than the latter
So the critical condition is

$$\frac{1}{1 - \beta} u(\bar{Y}) \geq u(Y_t) + \frac{\beta}{1 - \beta} E u(\bar{Y} + \varepsilon_s)$$
So the critical condition is

\[\frac{1}{1 - \beta} u(\bar{Y}) \geq u(Y_t) + \frac{\beta}{1 - \beta} E u(\bar{Y} + \varepsilon_s) \]

Rewrite it as

\[u(Y_t) - u(\bar{Y}) \leq \frac{\beta}{1 - \beta} [u(\bar{Y}) - E u(\bar{Y} + \varepsilon_s)] \]
So the critical condition is

\[
\frac{1}{1-\beta} u(\bar{Y}) \geq u(Y_t) + \frac{\beta}{1-\beta} Eu(\bar{Y} + \varepsilon_s)
\]

Rewrite it as

\[
u(Y_t) - u(\bar{Y}) \leq \frac{\beta}{1-\beta} [u(\bar{Y}) - Eu(\bar{Y} + \varepsilon_s)]
\]

This says that the short run gain from default must be more than compensated with the long run gain from consumption smoothing.
An infinite horizon is essential

1
An infinite horizon is essential

The temptation is highest when Y_t is highest. This seems counterfactual
Remarks

1. An infinite horizon is essential
2. The temptation is highest when Y_t is highest. This seems counterfactual
3. The gains from consumption smoothing are bound to be small
Remarks

1. An infinite horizon is essential
2. The temptation is highest when Y_t is highest. This seems counterfactual
3. The gains from consumption smoothing are bound to be small
4. Default is never observed
Bulow-Rogoff: The reputation argument is based on strong implicit assumptions about creditor rights and incentives
Bulow-Rogoff: The reputation argument is based on strong implicit assumptions about creditor rights and incentives.

For instance, it is assumed that a country in default cannot save abroad.
Bulow-Rogoff: The reputation argument is based on strong implicit assumptions about creditor rights and incentives.

For instance, it is assumed that a country in default cannot save abroad.

Suppose that this fails: that is, the country can hold assets abroad and use foreign assets to fully collateralize insurance contracts.
Bulow-Rogoff: The reputation argument is based on strong implicit assumptions about creditor rights and incentives.

For instance, it is assumed that a country in default cannot save abroad.

Suppose that this fails: that is, the country can hold assets abroad and use foreign assets to fully collateralize insurance contracts.

Then Bulow-Rogoff show that no positive lending is possible in this context.
Bulow-Rogoff: The reputation argument is based on strong implicit assumptions about creditor rights and incentives.

For instance, it is assumed that a country in default cannot save abroad.

Suppose that this fails: that is, the country can hold assets abroad and use foreign assets to fully collateralize insurance contracts.

Then Bulow-Rogoff show that no positive lending is possible in this context.

"Proof": suppose $\varepsilon_t = \bar{\varepsilon}$. Then the country can default, deposit $P_t(\bar{\varepsilon})$ abroad, and initiate a series of fully collateralized contracts that replicate the reputational contract.
Is Reputation Really Enough?

- Bulow-Rogoff: The reputation argument is based on strong implicit assumptions about creditor rights and incentives.
- For instance, it is assumed that a country in default cannot save abroad.
- Suppose that this fails: that is, the country can hold assets abroad and use foreign assets to fully collateralize insurance contracts.
- Then Bulow-Rogoff show that no positive lending is possible in this context.
- "Proof": suppose $\varepsilon_t = \bar{\varepsilon}$. Then the country can default, deposit $P_t(\bar{\varepsilon})$ abroad, and initiate a series of fully collateralized contracts that replicate the reputational contract.
- The country then gets to realize at least the reputational outcome plus r times $P_t(\bar{\varepsilon})$.

R. Chang (Rutgers)
Sovereign Debt II
April 2013
Stylized facts to explain quantitatively:

1. Frequency of default (about 3 every 100 years)
Recent lit: Eaton-Gersovitz and Cycles in Emerging Economies

Stylized facts to explain quantitatively:

1. Frequency of default (about 3 every 100 years)
2. Size of debt (70 percent)
Stylized facts to explain quantitatively:

1. Frequency of default (about 3 every 100 years)
2. Size of debt (70 percent)
3. Business cycle facts, especially the positive relation between the interest rate (inclusive of spread) and the trade balance
\(t = 0, 1, 2, \ldots \)
\begin{itemize}
 \item $t = 0, 1, 2, \ldots$
 \item One nonstorable good
\end{itemize}
- $t = 0, 1, 2, ...$
- One nonstorable good
- Small country with a representative agent with preferences

$$\mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
One nonstorable good

Small country with a representative agent with preferences

$$E \sum_{t=0}^{\infty} \beta^t u(c_t)$$

Agent receives a stochastic, nonstorable endowment $y_t, t = 0, 1, 2, \ldots$
AG, Arellano

- \(t = 0, 1, 2, \ldots \)
- One nonstorable good
- Small country with a representative agent with preferences

\[
E \sum_{t=0}^{\infty} \beta^t u(c_t)
\]

- Agent receives a stochastic, nonstorable endowment \(y_t, t = 0, 1, 2, \ldots \)
- Endowment follows

\[
y_t = Ae^{zt} \Gamma_t
\]

where \(z_t \) is a transitory process and \(\log \Gamma_t \) is \(I(1) \).
Recursive Formulation of Country’s Problem

Let \(d_t \) = debt at the beginning of period \(t \).
The state at \(t \) is given by \((y_t, d_t)\). The value function is denoted by \(V(y_t, d_t) \).
Let \(V^B(y_t) \) be the value of ending the period in default. Then it must be that:

\[
V^B(y_t) = u((1 - \delta)y_t) + \beta E_t \left\{ \lambda V(y_{t+1}, 0) + (1 - \lambda) V^B(y_{t+1}) \right\}
\]

Let \(V^G(y_t, d_t) \) be the value of ending the period in good standing, so:

\[
V(y_t, d_t) = \text{Max}\{V^G(y_t, d_t), V^B(y_t)\}
\]

and

\[
V^G(y_t, d_t) = \text{Max} \ u(c_t) + \beta E_t V(y_{t+1}, d_{t+1})
\]

s.t. \(c_t = y_t + q_t d_{t+1} - d_t \)

where \(q_t \) is the price at which the country can sell debt in period \(t \).
Let $\chi(y_t, d_t) = 1$ if the country defaults in period t (this is part of the policy function)
The Price of the Debt

- Let $\chi(y_t, d_t) = 1$ if the country defaults in period t (this is part of the policy function).
- Risk neutrality then implies:

$$q_t = \frac{1}{1 + r^*} E_t [1 - \chi(y_{t+1}, d_{t+1})]$$
Let $\chi(y_t, d_t) = 1$ if the country defaults in period t (this is part of the policy function)

Risk neutrality then implies:

$$q_t = \frac{1}{1 + r^*} E_t [1 - \chi(y_{t+1}, d_{t+1})]$$

Hence $q_t = q(y_t, d_{t+1})$