Eaton and Gersovitz (1981) first discussed a *sovereign debt problem* using modern dynamic methods.

Main question: why do governments repay their debts?
Eaton and Gersovitz (1981) first discussed a *sovereign debt problem* using modern dynamic methods.

Main question: why do governments repay their debts?

The practical importance of the question became apparent with actual default episodes, starting with Mexico 1982.

Main question: why do governments repay their debts?

The practical importance of the question became apparent with actual default episodes, starting with Mexico 1982.

A lot of research in the 80s and early 1990s (see OR ch. 6)
Motivation

- Main question: why do governments repay their debts?
- The practical importance of the question became apparent with actual default episodes, starting with Mexico 1982.
- A lot of research in the 80s and early 1990s (see OR ch. 6).
- Recent revival of the literature: Aguiar-Gopinath, Arellano, Mendoza, and others.
1. Motivate issues with a basic EG setup
1. Motivate issues with a basic EG setup
2. Review dynamic programming and recursive equilibrium concepts
1. Motivate issues with a basic EG setup
2. Review dynamic programming and recursive equilibrium concepts
3. Discuss computational issues (numerical approximation techniques, numerical DP, functional equations)
Plan

1. Motivate issues with a basic EG setup
2. Review dynamic programming and recursive equilibrium concepts
3. Discuss computational issues (numerical approximation techniques, numerical DP, functional equations)
4. Return to literature and review main findings, with emphasis on recent developments
Basic Sovereign Debt Problem

- \(t = 0, 1, 2, ... \)
Basic Sovereign Debt Problem

- $t = 0, 1, 2, \ldots$
- One nonstorable good
Basic Sovereign Debt Problem

- $t = 0, 1, 2, \ldots$
- One nonstorable good
- Small country with a representative agent with preferences

$$E \sum_{t=0}^{\infty} \beta^t u(c_t)$$
Basic Sovereign Debt Problem

- $t = 0, 1, 2, \ldots$
- One nonstorable good
- Small country with a representative agent with preferences

\[
E \sum_{t=0}^{\infty} \beta^t u(c_t)
\]

- Agent receives a stochastic, nonstorable endowment y_t, $t = 0, 1, 2, \ldots$
Basic Sovereign Debt Problem

- $t = 0, 1, 2, \ldots$
- One nonstorable good
- Small country with a representative agent with preferences

$$E \sum_{t=0}^{\infty} \beta^t u(c_t)$$

- Agent receives a stochastic, nonstorable endowment y_t, $t = 0, 1, 2, \ldots$
- Assume the endowment is a Markov process
Assumptions about international borrowing

The rest of the world: risk neutral foreigners whose opportunity cost of funds is $R^* = 1 + r^*$
Assumptions about international borrowing

- The rest of the world: risk neutral foreigners whose opportunity cost of funds is $R^* = 1 + r^*$
- If he is in "good standing", the representative agent can sell one period noncontingent debt at some price q_t, say.
Assumptions about international borrowing

- The rest of the world: risk neutral foreigners whose opportunity cost of funds is $R^* = 1 + r^*$
- If he is in "good standing", the representative agent can sell one period noncontingent debt at some price q_t, say.
- But the agent can default on the debt at the beginning of each period. This erases the debt.
Assumptions about international borrowing

- The rest of the world: risk neutral foreigners whose opportunity cost of funds is $R^* = 1 + r^*$
- If he is in "good standing", the representative agent can sell one period noncontingent debt at some price q_t, say.
- But the agent can default on the debt at the beginning of each period. This erases the debt.
- While in default, the endowment shrinks to $(1 - \delta)y_t$
Assumptions about international borrowing

- The rest of the world: risk neutral foreigners whose opportunity cost of funds is $R^* = 1 + r^*$
- If he is in "good standing", the representative agent can sell one period noncontingent debt at some price q_t, say.
- But the agent can default on the debt at the beginning of each period. This erases the debt.
- While in default, the endowment shrinks to $(1 - \delta)y_t$
- The agent exits from the default with some probability λ
Discussion of assumptions so far

1 Costs of default are controversial: EG assumed that the only punishment from default was permanent exclusion from the world capital market. Bulow and Rogoff showed that this alone would not support any positive level of debt if a country in default could save in the world market at the rate R^*.

2 It is assumed that the representative agent is no different from the government. This simplifies the problem a lot but it is obviously quite restrictive.

3 Clearly the assumption of one period non-contingent debt is quite ad hoc and restrictive.
Discussion of assumptions so far

1. Costs of default are controversial: EG assumed that the only punishment from default was permanent exclusion from the world capital market. Bulow and Rogoff showed that this alone would not support any positive level of debt if a country in default could save in the world market at the rate R^*.

2. It is assumed that the representative agent is no different from the government. This simplifies the problem a lot but it is obviously quite restrictive.
Discussion of assumptions so far

1. Costs of default are controversial: EG assumed that the only punishment from default was permanent exclusion from the world capital market. Bulow and Rogoff showed that this alone would not support any positive level of debt if a country in default could save in the world market at the rate R^*.

2. It is assumed that the representative agent is no different from the government. This simplifies the problem a lot but it is obviously quite restrictive.

3. Clearly the assumption of one period non contingent debt is quite ad hoc and restrictive.
Solving the Country’s Problem

Let \(d_t = \) debt at the beginning of period \(t \).
The state at \(t \) is given by \((y_t, d_t)\). The value function is denoted by \(V(y_t, d_t) \).
Let \(V^B(y_t) \) be the value of ending the period in default. Then it must be that:

\[
V^B(y_t) = u((1 - \delta)y_t) + \beta E_t \left\{ \lambda V(y_{t+1}, 0) + (1 - \lambda) V^B(y_{t+1}) \right\}
\]

Let \(V^G(y_t, d_t) \) be the value of ending the period in good standing, so:

\[
V(y_t, d_t) = \text{Max}\{V^G(y_t, d_t), V^B(y_t)\}
\]

and

\[
V^G(y_t, d_t) = \text{Max} \ u(c_t) + \beta E_t V(y_{t+1}, d_{t+1}) \\
\text{s.t.} \quad c_t = y_t + q_t d_{t+1} - d_t
\]

where \(q_t \) is the price at which the country can sell debt in period \(t \).
The Price of the Debt

- Let $\chi(y_t, d_t) = 1$ if the country defaults in period t (this is part of the policy function)
Let $\chi(y_t, d_t) = 1$ if the country defaults in period t (this is part of the policy function)

Risk neutrality then implies:

$$q_t(1 + r^*) = E_t[1 - \chi(y_{t+1}, d_{t+1})]$$
Let $\chi(y_t, d_t) = 1$ if the country defaults in period t (this is part of the policy function)

Risk neutrality then implies:

$$q_t(1 + r^*) = E_t [1 - \chi(y_{t+1}, d_{t+1})]$$

Hence $q_t = q(y_t, d_{t+1})$
Recursive Equilibrium: Definition

A recursive equilibrium: value functions V, V^G, V^B, policy functions c, d, χ, and a debt price function q such that:

1. Given the debt price function q, the value functions and policy functions solve the country’s problem.
2. The debt price function satisfies

$$q(y_t, d_{t+1}) = \int [1 - \chi(y_{t+1}, d_{t+1})] \Gamma(y_t, dy_{t+1})$$

where $\Gamma(y, B)$ is the transition function of y_t.
Make an initial guess about the function $q(y_t, d_{t+1})$
Make an initial guess about the function $q(y_t, d_{t+1})$

Solve the DP problem of the country. Obtain, among others, the decision rule χ
Solving the Model, in Practice

- Make an initial guess about the function $q(y_t, d_{t+1})$
- Solve the DP problem of the country. Obtain, among others, the decision rule χ
- Update q by

 $$q(y_t, d_{t+1}) = \int [1 - \chi(y_{t+1}, d_{t+1})] \Gamma(y_t, dy_{t+1})$$
Solving the Model, in Practice

- Make an initial guess about the function $q(y_t, d_{t+1})$
- Solve the DP problem of the country. Obtain, among others, the decision rule χ
- Update q by

$$q(y_t, d_{t+1}) = \int \left[1 - \chi(y_{t+1}, d_{t+1}) \right] \Gamma(y_t, dy_{t+1})$$

- Iterate to convergence
Best reference: Lucas and Stokey, with Prescott

Exogenous state: \(z \in Z \)

\(z_t \) is a Markov Process with transition \(Q(z, B) \) (prob \(z_{t+1} \in B \) if \(z_t = z \))

Endogenous state \(k \in K \)
Every period an action $a \in A$ is taken

Feasible actions depends on the state: let $\Gamma(k, z)$ denote the feasible correspondence

LS: Assume that

$$k' = \phi(k, a, z')$$
The Bellman Equation

- Let $u(k, z, a)$ denote the current payoff.
- The value function is:

$$v(k, z) = \max_a u(k, z, a) + \beta \int v(k', z') Q(z, dz')$$

s.t. $a \in \Gamma(k, z)$

$$k' = \phi(k, a, z')$$

- The optimal choice of $a = g(k, z)$ is the policy function.
- A solution is a function $v: K \times Z \to \mathbb{R}$ that satisfies the Bellman equation.
Issues in Defining the DP Problem correctly

Often you can define Z however you want, but the definition of K is usually more delicate, since it has to respect more fundamental assumptions on the problem.
Issues in Defining the DP Problem correctly

1. Often you can define Z however you want, but the definition of K is usually more delicate, since it has to respect more fundamental assumptions on the problem.

2. Also, note that z captures all the variables that are exogenous to the decision maker. But these variables may be *endogenous* to the model (as in the sovereign debt problem). The law of motion of z, given by Q, is then taken as given by the individual but then needs to be solved for in equilibrium.
Issues in Defining the DP Problem correctly

1. Often you can define Z however you want, but the definition of K is usually more delicate, since it has to respect more fundamental assumptions on the problem.

2. Also, note that z captures all the variables that are exogenous to the decision maker. But these variables may be *endogenous* to the model (as in the sovereign debt problem). The law of motion of z, given by Q, is then taken as given by the individual but then needs to be solved for in equilibrium.

3. Obvious solution method: value iteration (which we discuss shortly)
Let $Z = [z_L, z_H]$ be the productivity shock, and $Q(z, dz')$ a transition function.

Note: we can usually approximate a typical AR model with a Markov Chain (Tauchen).

$K = [k_L, k_H]$. Often we take $k_L = 0$ and k_H be the maximum sustainable level of capital:

$$k_H = (1 - \delta)k_H + z_Hf(k_H)$$

$a = (c, k')$ constrained by $c \geq 0, k' \in K$ and the feasibility correspondence:

$$c + k' \leq (1 - \delta)k + zf(k)$$

The transition function is simply $k' = \phi(k, a, z') = k'$ and the period utility function $u(k, z, a) = U(c)$.
A Variation with Occasionally Binding Constraints

Suppose that investment cannot be negative:

\[i = k' - (1 - \delta)k \geq 0 \]

This can be added as part of the feasibility correspondence,

The key aspect of this example is that the constraint will probably bind only occasionally.
Another Famous Example: Lucas Tree Model

\[z \in Z = [z_L, z_H] : \text{tree dividend} \]
Another Famous Example: Lucas Tree Model

- \(z \in Z = [z_L, z_H] \): tree dividend
- \(\theta \): agent's holding of shares in the tree. Take \(K = [1 - \varepsilon, 1 + \varepsilon] \).
Another Famous Example: Lucas Tree Model

- $z \in Z = [z_L, z_H]$: tree dividend
- $\theta = \text{agent's holding of shares in the tree}$. Take $K = [1 - \varepsilon, 1 + \varepsilon]$.
- The agent assumes that $p = p(z)$ is the price of the tree.
Another Famous Example: Lucas Tree Model

- $z \in Z = [z_L, z_H]$: tree dividend
- θ = agent’s holding of shares in the tree. Take $K = [1 - \varepsilon, 1 + \varepsilon]$.
- The agent assumes that $p = p(z)$ is the price of the tree
- Bellman equation:

\[
v(\theta, z) = \text{Max } U(c) + \beta \int v(\theta', z')Q(z, dz')
\]

s.t. $c + p(z)\theta' \leq \theta(z + p(z))$

$c \geq 0, \theta' \in K$
Another Famous Example: Lucas Tree Model

- $z \in \mathbb{Z} = [z_L, z_H]$: tree dividend
- $\theta = $ agent’s holding of shares in the tree. Take $K = [1 - \varepsilon, 1 + \varepsilon]$.
- The agent assumes that $p = p(z)$ is the price of the tree
- Bellman equation:

$$v(\theta, z) = \max U(c) + \beta \int v(\theta', z')Q(z, dz')$$

s.t. $c + p(z)\theta' \leq \theta(z + p(z))$

$c \geq 0, \theta' \in K$

- The solution, of course, depends on the conjecture for $p(z)$
Another Famous Example: Lucas Tree Model

- \(z \in Z = [z_L, z_H] \): tree dividend
- \(\theta = \) agent’s holding of shares in the tree. Take \(K = [1 - \varepsilon, 1 + \varepsilon] \).
- The agent assumes that \(p = p(z) \) is the price of the tree
- Bellman equation:

\[
v(\theta, z) = \max U(c) + \beta \int v(\theta', z') Q(z, dz')
\]

\[
s.t. \quad c + p(z)\theta' \leq \theta(z + p(z))
\]

\[
c \geq 0, \theta' \in K
\]

- The solution, of course, depends on the conjecture for \(p(z) \)
- In equilibrium \(p(z) \) must be such that \(\theta \) is always equal to one and \(c = z \)
The FOC for the maximization is the Euler condition:

\[
p(z) u'(c(\theta, z)) = \beta \int u'(c(\theta'(\theta, z), z')) [z' + p(z')] Q(z, dz')
\]

which in equilibrium reduces to

\[
p(z) u'(z) = \beta \int u'(z') [z' + p(z')] Q(z, dz')
\]

a functional equation to be solved for \(p(z)\)
Numerical DP: Discrete Case

- Assume all relevant sets are finite: \(Z = \{z_1, ..., z_n\} \), etc.
- Then the value function is a matrix: \(v_{ij} = v(z_i, k_j) \)
- Let \(V^{(m)} = \{v_{ij}^{(m)}\} \) be the \(m^{th} \) iteration of the value function.
- For each \((i, j)\), one then solves:

\[
v_{ij}^{(m+1)} = \max_a u(z_i, k_j, a) + \sum_{i'} v_{i'j'}^{(m)} \pi_{i,i'}
\]

s.t. \(a \in \Gamma(z_i, k_j) \)

\(k_{j'} = \phi(k_j, a, z_{i'}) \)
Remarks on the discrete case

Sometimes this is a natural procedure, but often the state space is continuous (e.g. optimal growth). Then one expects that a good approximation will require a fine grid.

Curse of dimensionality appears: the size of grids increase exponentially with the number of state variables.

Also, convergence is only linear.

Iterations can be accelerated in various ways.

As mentioned, often a process for z can be well approximated by a Markov chain.

Advantages: there is always a solution; maximization step is a matrix operation; straightforward.

See Ljungqvist and Sargent for many applications.
Remarks on the discrete case

1. Sometimes this is a natural procedure, but often the state space is continuous (e.g. optimal growth). Then one expects that a good approximation will require a fine grid.

2. Curse of dimensionality appears: the size of grids increase exponentially with the number of state variables.
Remarks on the discrete case

1. Sometimes this is a natural procedure, but often the state space is continuous (e.g. optimal growth). Then one expects that a good approximation will require a fine grid.

2. Curse of dimensionality appears: the size of grids increase exponentially with the number of state variables.

3. Also, convergence is only linear
Remarks on the discrete case

1. Sometimes this is a natural procedure, but often the state space is continuous (e.g. optimal growth). Then one expects that a good approximation will require a fine grid.

2. Curse of dimensionality appears: the size of grids increase exponentially with the number of state variables.

3. Also, convergence is only linear

4. Iterations can be accelerated in various ways.
Remarks on the discrete case

1. Sometimes this is a natural procedure, but often the state space is continuous (e.g. optimal growth). Then one expects that a good approximation will require a fine grid.

2. Curse of dimensionality appears: the size of grids increase exponentially with the number of state variables.

3. Also, convergence is only linear.

4. Iterations can be accelerated in various ways.

5. As mentioned, often a process for z can be well approximated by a Markov chain.

See Ljungqvist and Sargent for many applications.
Remarks on the discrete case

1. Sometimes this is a natural procedure, but often the state space is continuous (e.g. optimal growth). Then one expects that a good approximation will require a fine grid.

2. Curse of dimensionality appears: the size of grids increase exponentially with the number of state variables.

3. Also, convergence is only linear.

4. Iterations can be accelerated in various ways.

5. As mentioned, often a process for z can be well approximated by a Markov chain.

6. Advantages: there is always a solution; maximization step is a matrix operation; straightforward.

See Ljunqvist and Sargent for many applications.
Remarks on the discrete case

1. Sometimes this is a natural procedure, but often the state space is continuous (e.g. optimal growth). Then one expects that a good approximation will require a fine grid.

2. Curse of dimensionality appears: the size of grids increase exponentially with the number of state variables.

3. Also, convergence is only linear.

4. Iterations can be accelerated in various ways.

5. As mentioned, often a process for z can be well approximated by a Markov chain.

6. Advantages: there is always a solution; maximization step is a matrix operation; straightforward.

7. See Ljungqvist and Sargent for many applications.
1 For y_t, a continuous AR(1) process is estimated, then approximated by a Markov chain using a grid of 25 values.
For y_t, a continuous AR(1) process is estimated, then approximated by a Markov chain using a grid of 25 values.

The space for debt is discretized into 400 values. "We ensured that the limits of our asset space never bind along the simulated equilibrium paths."
For y_t, a continuous AR(1) process is estimated, then approximated by a Markov chain using a grid of 25 values.

The space for debt is discretized into 400 values. "We ensured that the limits of our asset space never bind along the simulated equilibrium paths."

Iteration upon iteration: make a guess for the price function $q(y_i, z_j)$; solve the DP problem via value function iteration; update the price function guess; iterate to convergence.
Approximation and Interpolation of Functions
Approximation and Interpolation of Functions

DP application
Beyond Brute Force: To Review Next Time

- Approximation and Interpolation of Functions
- DP application
- Numerical solution of functional equations

Return to sovereign debt problems
Beyond Brute Force: To Review Next Time

- Approximation and Interpolation of Functions
- DP application
- Numerical solution of functional equations
- Return to sovereign debt problems