Overlapping Generations Models

Econ 504

Roberto Chang

Rutgers

November 2011
So far we have focused on models in which all agents are of the same "age".
So far we have focused on models in which all agents are of the same "age".

In *overlapping generations* models, people of different generations coexist.
So far we have focused on models in which all agents are of the same "age ".

In *overlapping generations* models, people of different generations coexist.

These models are useful and even necessary for the study of some issues (e.g. Social Security)
Overlapping Generations Models

- So far we have focused on models in which all agents are of the same "age".
- In *overlapping generations* models, people of different generations coexist.
- These models are useful and even necessary for the study of some issues (e.g. Social Security).
- But also they have unexpected theoretical properties.
So far we have focused on models in which all agents are of the same "age".

In *overlapping generations* models, people of different generations coexist.

These models are useful and even necessary for the study of some issues (e.g. Social Security).

But also they have unexpected theoretical properties.

Samuelson (1953), Diamond (1967)
A Pure Exchange Case

- $t = 1, 2, ...$
A Pure Exchange Case

- $t = 1, 2, ...$

- A new *generation* of agents is born at each $t = 1, 2, ...$
A Pure Exchange Case

- $t = 1, 2, ...$
- A new *generation* of agents is born at each $t = 1, 2, ...$
- Agents in generation $t \geq 1$ live for two periods only
A Pure Exchange Case

- $t = 1, 2, \ldots$
- A new *generation* of agents is born at each $t = 1, 2, \ldots$
- Agents in generation $t \geq 1$ live for two periods only
- In addition, at $t = 1$ there is a generation ("zero") of already *old* agents, which live only for that period.
$t = 1, 2, \ldots$

A new *generation* of agents is born at each $t = 1, 2, \ldots$

Agents in generation $t \geq 1$ live for two periods only.

In addition, at $t = 1$ there is a generation ("zero") of already *old* agents, which live only for that period.

Hence, in each t, there are two kinds of agents, young and old.
A Pure Exchange Case

- $t = 1, 2, \ldots$
- A new *generation* of agents is born at each $t = 1, 2, \ldots$
- Agents in generation $t \geq 1$ live for two periods only
- In addition, at $t = 1$ there is a generation ("zero") of already *old* agents, which live only for that period.
- Hence, in each t, there are two kinds of agents, young and old.
- For simplicity, assume all generations are of equal size (normalized to one).
In each period there is only one, homogeneous, nonstorable good.
In each period there is only one, homogeneous, nonstorable good
There is no production
In each period there is only one, homogeneous, nonstorable good.

There is no production.

Each agent born at $t \geq 1$ is endowed with e_1 when young (at t), e_2 when old (at $t + 1$).
Goods and Endowments

- In each period there is only one, homogeneous, nonstorable good
- There is no production
- Each agent born at $t \geq 1$ is endowed with e_1 when young (at t), e_2 when old (at $t + 1$)
- Generation zero agents are endowed with e_2 at $t = 1$
Goods and Endowments

- In each period there is only one, homogeneous, nonstorable good
- There is no production
- Each agent born at $t \geq 1$ is endowed with e_1 when young (at t), e_2 when old (at $t + 1$)
- Generation zero agents are endowed with e_2 at $t = 1$
- Hence the *aggregate* endowment is constant
In each period t, there is a market for borrowing and lending
In each period t, there is a market for borrowing and lending

Let $R_t = (1 + r_t)$ denote the interest rate on lending between periods t and $t + 1$
Agent t then solves:

$$\begin{align*}
\text{Max } & u(c_{1t}) + u(c_{2t+1}) \\
\text{s.t. } & c_{1t} + s_t = e_1 \\
& c_{2t+1} = e_2 + R_t s_t \\
& c_{1t}, c_{2t} \geq 0
\end{align*}$$

The solution is given by the present value budget constraint and the Euler equation:

$$\begin{align*}
c_{1t} + \frac{c_{2t+1}}{R_t} &= e_1 + \frac{e_2}{R_t} \\
u'(c_{1t}) &= R_t u'(c_{2t+1})
\end{align*}$$
The solution also gives a savings function

\[s_t = e_1 - c_{1t} = s(R_t) \]
The solution also gives a savings function

\[s_t = e_1 - c_{1t} = s(R_t) \]

At \(t = 1 \), generation zero agents *must* consume the value of their endowments:

\[c_{21} = e_2 \]
A competitive equilibrium is a sequence of interest rates, \{R_t\}_{t \geq 1} and a consumption allocation \{c_2, (c_1, c_2+1)_{t \geq 1}\} such that:

- For each \(t \geq 1 \), \((c_1, c_2+1)\) solves agent \(t \)'s problem given \(R_t \).
A competitive equilibrium is a sequence of interest rates, \(\{ R_t \}_{t \geq 1} \) and a consumption allocation \(\{ c_{21}, (c_{1t}, c_{2t+1}) \}_{t \geq 1} \) such that:

- For each \(t \geq 1 \), \((c_{1t}, c_{2t+1})\) solves agent \(t \)'s problem given \(R_t \)
- \(c_{21} = e_2 \)
A competitive equilibrium is a sequence of interest rates, $\{R_t\}_{t \geq 1}$ and a consumption allocation $\{c_{21}, (c_{1t}, c_{2t+1})_{t \geq 1}\}$ such that:

- For each $t \geq 1$, (c_{1t}, c_{2t+1}) solves agent t's problem given R_t
- $c_{21} = e_2$
- For each $t \geq 1$,

$$c_{1t} + c_{2t} = e_1 + e_2$$
Implications of Equilibrium

Claim: In any competitive equilibrium, $c_{1t} = e_1$ and $c_{2t} = e_2$, all t.

Proof: We know $c_{21} = e_2$, and hence, from the economy’s resource constraint, $c_{11} = e_1$.

The equilibrium interest rate sequence must then be:

$$R_t = u_0(c_{1t})u_0(c_{2t+1}) = u_0(e_1)u_0(e_2)$$
Implications of Equilibrium

Claim: In any competitive equilibrium, $c_{1t} = e_1$ and $c_{2t} = e_2$, all t.

- Proof: We know $c_{21} = e_2$, and hence, from the economy’s resource constraint, $c_{11} = e_1$.
- Hence, $s_1 = e_1 - c_{11} = 0$, and from agent 1’s budget constraint, $c_{22} = e_2$.
Implications of Equilibrium

Claim: In any competitive equilibrium, \(c_{1t} = e_1 \) and \(c_{2t} = e_2 \), all \(t \).

- **Proof:** We know \(c_{21} = e_2 \), and hence, from the economy’s resource constraint, \(c_{11} = e_1 \).
- Hence, \(s_1 = e_1 - c_{11} = 0 \), and from agent 1’s budget constraint, \(c_{22} = e_2 \).
- Therefore \(c_{12} = e_1 \) from resource constraint, etc. (recursive definition)
Implications of Equilibrium

Claim: In any competitive equilibrium, $c_{1t} = e_1$ and $c_{2t} = e_2$, all t.

- Proof: We know $c_{21} = e_2$, and hence, from the economy’s resource constraint, $c_{11} = e_1$.
- Hence, $s_1 = e_1 - c_{11} = 0$, and from agent 1’s budget constraint, $c_{22} = e_2$
- Therefore $c_{12} = e_1$ from resource constraint, etc. (recursive definition)
- The equilibrium interest rate sequence must then be:

\[
R_t = \frac{u'(c_{1t})}{u'(c_{2t+1})} = \frac{u'(e_1)}{u'(e_2)} \equiv R_a
\]
Intuitively, agents could be better off if they consumed $(e_1 + e_2)/2$ in each period of their lives.
Intuitively, agents could be better off if they consumed \((e_1 + e_2)/2\) in each period of their lives.

This is true for all generations \(t \geq 1\).
Intuitively, agents could be better off if they consumed \((e_1 + e_2)/2\) in each period of their lives.

This is true for all generations \(t \geq 1\).

At \(t = 1\), generation zero also benefits if and only if \(e_2 \leq (e_1 + e_2)/2\), that is, if \(e_2 < e_1\).
Intuitively, agents could be better off if they consumed \((e_1 + e_2)/2\) in each period of their lives.

This is true for all generations \(t \geq 1\).

At \(t = 1\), generation zero also benefits if and only if \(e_2 \leq (e_1 + e_2)/2\), that is, if \(e_2 < e_1\).

\(e_1 > e_2\) is equivalent to \(R_a < 1\). This is called the *Samuelson case.*
Intuitively, agents could be better off if they consumed \((e_1 + e_2)/2\) in each period of their lives.

This is true for all generations \(t \geq 1\).

At \(t = 1\), generation zero also benefits if and only if
\[e_2 \leq (e_1 + e_2)/2,\]
that is, if \(e_2 < e_1\).

\(e_1 > e_2\) is equivalent to \(R_a < 1\). This is called the Samuelson case.

So, in the Samuelson case, market equilibria are inefficient!
In other words, the First Welfare Theorem breaks down in the Samuelson case.
In other words, the First Welfare Theorem breaks down in the Samuelson case.

In this model, *low* interest rates (below the rate of growth of the population) are a sign of inefficiency.
In other words, the First Welfare Theorem breaks down in the Samuelson case.

In this model, *low* interest rates (below the rate of growth of the population) are a sign of inefficiency.

This condition has been tested in the past.
Imagine that agents in generation zero are given M units of "money".
The Role of "Fiat Money"

- Imagine that agents in generation zero are given M units of "money".
- Money is intrinsically worthless, e.g. it cannot be eaten nor used for production. However, it is durable.
The Role of "Fiat Money"

- Imagine that agents in generation zero are given M units of "money".
- Money is intrinsically worthless, e.g. it cannot be eaten nor used for production. However, it is durable.
- Is it possible for money to have nonzero value? How?
Imagine that agents in generation zero are given M units of "money". Money is intrinsically worthless, e.g. it cannot be eaten nor used for production. However, it is durable.

Is it possible for money to have nonzero value? How?

Agents acquiring money today must believe that they can use it tomorrow to buy goods.
Let $q_t = \text{price of money in terms of goods (the inverse of the price level)}$.
- Let $q_t = \text{price of money in terms of goods (the inverse of the price level)}$.
- If money is to be held, it must have the same return as loans.
Let $q_t = \text{price of money in terms of goods (the inverse of the price level)}$.

If money is to be held, it must have the same return as loans.

Hence

$$R_t = \frac{q_t+1}{q_t}$$
Let $q_t =$ price of money in terms of goods (the inverse of the price level).

If money is to be held, it must have the same return as loans.

Hence

$$R_t = \frac{q_{t+1}}{q_t}$$

And the savings of generation t agents is

$$s_t = s(R_t) = s\left(\frac{q_{t+1}}{q_t}\right)$$
Also, in equilibrium,

\[s_t = q_t M \]
Also, in equilibrium,

\[s_t = q_t M \]

Hence an equilibrium with positive valued money exists if there is a positive sequence \(q_t, t \geq 1 \) that solves

\[s\left(\frac{q_{t+1}}{q_t}\right) = q_t M \]
If there is a monetary steady state, $q_t = q^* > 0$, all $t \geq 1$, and

$$s\left(\frac{q^*}{q^*}\right) = s(1) = q^* M$$
Existence of a Monetary Steady State

If there is a monetary steady state, \(q_t = q^* > 0 \), all \(t \geq 1 \), and

\[
s\left(\frac{q^*}{q^*}\right) = s(1) = q^* M
\]

Hence a monetary steady state exists if and only if the economy is Samuelson
Existence of a Monetary Steady State

• If there is a monetary steady state, $q_t = q^* > 0$, all $t \geq 1$, and

$$s\left(\frac{q^*}{q^*}\right) = s(1) = q^* M$$

• Hence a monetary steady state exists if and only if the economy is Samuelson

• Alternatively, iff the autarky interest rate $R_a < 1$.
If there is a monetary steady state, \(q_t = q^* > 0 \), all \(t \geq 1 \), and

\[
s\left(\frac{q^*}{q^*}\right) = s(1) = q^* M
\]

Hence a monetary steady state exists if and only if the economy is Samuelson.

Alternatively, iff the autarky interest rate \(R_a < 1 \).

The resulting allocation is efficient (it is in fact a Golden Rule allocation).
Let \(m_t = q_t M \) be the real quantity of money, and rewrite the equilibrium equation as

\[
s\left(\frac{q_{t+1}}{q_t}\right) = s\left(\frac{m_{t+1}}{m_t}\right) = m_t
\]

A monetary equilibrium is given by a positive sequence \(m_t, t \geq 1 \).

The steady state is given by \(m_\infty = q_\infty M \).

There is a continuum of other monetary equilibria in which money loses value in the long run. The monetary steady state may or may not be stable.
Stability and multiplicity of monetary equilibria

Let \(m_t = q_t M \) be the real quantity of money, and rewrite the equilibrium equation as

\[
s\left(\frac{q_t+1}{q_t}\right) = s\left(\frac{m_t+1}{m_t}\right) = m_t
\]

A monetary equilibrium is given by a positive sequence \(m_t, t \geq 1 \).
Stability and multiplicity of monetary equilibria

Let $m_t = q_t M$ be the real quantity of money, and rewrite the equilibrium equation as

$$s\left(\frac{q_{t+1}}{q_t}\right) = s\left(\frac{m_{t+1}}{m_t}\right) = m_t$$

A monetary equilibrium is given by a positive sequence $m_t, t \geq 1$.

The steady state is given by $m_t = m^* = q^* M$
Stability and multiplicity of monetary equilibria

- Let $m_t = q_t M$ be the real quantity of money, and rewrite the equilibrium equation as

$$s\left(\frac{q_{t+1}}{q_t}\right) = s\left(\frac{m_{t+1}}{m_t}\right) = m_t$$

- A monetary equilibrium is given by a positive sequence $m_t, t \geq 1$.
- The steady state is given by $m_t = m^* = q^* M$
- There is a continuum of other monetary equilibria in which money loses value in the long run.
Let \(m_t = q_t M \) be the real quantity of money, and rewrite the equilibrium equation as

\[
s\left(\frac{q_t + 1}{q_t}\right) = s\left(\frac{m_t + 1}{m_t}\right) = m_t
\]

A monetary equilibrium is given by a positive sequence \(m_t, t \geq 1 \).

The steady state is given by \(m_t = m^* = q^* M \)

There is a continuum of other monetary equilibria in which money loses value in the long run.

The monetary steady state may or may not be stable.
Suppose now that the government consumes a constant amount g in each period.
Suppose now that the government consumes a constant amount g in each period.

It finances its expenditures by newly printed money.
Suppose now that the government consumes a constant amount g in each period.

It finances its expenditures by newly printed money.

Hence

$$g = q_t(M_t - M_{t-1})$$

with $M_0 = M$, in our previous notation.
Everything else is the same, except that:

\[g = m_t - \frac{q_t}{q_{t-1}} m_{t-1} = m_t - R_t m_{t-1} \]

i.e.

\[R_t = \frac{m_t - g}{m_{t-1}} \]

and the difference equation is

\[m_t = s \left(\frac{m_{t+1} - g}{m_t} \right) \]
The Inflation tax and the Laffer curve

- Focus on steady states

\[g = \gamma R \]

In steady state, we must have:

\[g = m(R) = \left(1 - \frac{1}{R}\right) s(R) \]

Note that \(\left(1 - \frac{1}{R}\right) \) can be interpreted as a tax on money holdings (the inflation tax).
Focus on steady states

From

\[g = m_t - R_t m_{t-1} \]

in steady state we must have

\[g = m(1 - R) = (1 - R)s(R) \]
Focus on steady states

From

$$g = m_t - R_t m_{t-1}$$

In steady state we must have

$$g = m(1 - R) = (1 - R)s(R)$$

Note that $(1 - R)$ can be interpreted as a tax on money holdings (the inflation tax).
Exercise 9.11 of LS
Exercise 9.11 of LS

The government can also sell bonds at a constant rate of return \(R^* > 1 \).
Exercise 9.11 of LS

The government can also sell bonds at a constant rate of return \(R^* > 1 \).

The government b.c. is then

\[
g = q_t (M_t - M_{t-1}) + B_t - R^* B_{t-1}
\]
Exercise 9.11 of LS

The government can also sell bonds at a constant rate of return $R^* > 1$.

The government b.c. is then

$$g = q_t(M_t - M_{t-1}) + B_t - R^* B_{t-1}$$

If $B_t = B^* > 0$, then focusing in steady states,

$$g = m_t - R_t m_{t-1} + B^*(1 - R^*)$$

$$g = m(1 - R) + B^*(1 - R^*)$$
Exercise 9.11 of LS

The government can also sell bonds at a constant rate of return $R^* > 1$.

The government b.c. is then

$$g = q_t(M_t - M_{t-1}) + B_t - R^* B_{t-1}$$

If $B_t = B^* > 0$, then focusing in steady states,

$$g = m_t - R_t m_{t-1} + B^*(1 - R^*)$$
$$g = m(1 - R) + B^*(1 - R^*)$$

This says that, in ss, the higher B^* the more revenue we need from inflation.
Corollary (unpleasant arithmetic): A reduction in $M_t - M_{t-1}$ today can lead to higher inflation in the future (in the steady state). This is because, given g, a reduction in money growth today can increase B^*.