End of Term Administrative Issues

1. Rewritten midterms due today
2. Recitation tomorrow
3. Next week: Recitation moved to Tuesday, classes Wed and Thu
4. Last week: Recitation on Tuesday, Dec 10th
5. Project Due: Dec 12th
6. Final Exam: Wed Dec 18, 9-12 am, Scott 206
To address the shortcomings of real business cycle models, many advocate the introduction of nominal price and wage rigidities.

- Dominant framework: the dynamic New Keynesian model (a modern IS-LM model)
- Versions of the NK model are basic to actual monetary policy analysis and formulation
- Read: Gali chapters 2,3 (also recommended: Romer, ch. 7)
A Basic Dynamic Model

- Combine elements from Galí, chapter 3
Combine elements from Galí, chapter 3

The representative household has preferences

\[
\sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\sigma}}{1-\sigma} + \kappa \frac{(M_t/P_t)^{1-\nu}}{1-\nu} - \frac{N_t^{1+\varphi}}{1+\varphi} \right]
\]

and budget constraint

\[
P_t C_t + M_t + Q_t B_t \leq M_{t-1} + B_{t-1} + W_t N_t + T_t
\]
A Basic Dynamic Model

- Combine elements from Galí, chapter 3
- The representative household has preferences

\[\sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\sigma}}{1-\sigma} + \kappa \left(\frac{M_t}{P_t} \right)^{1-\nu} \right] - \frac{N_t^{1+\varphi}}{1+\varphi} \]

and budget constraint

\[P_t C_t + M_t + Q_t B_t \leq M_{t-1} + B_{t-1} + W_t N_t + T_t \]

- Money in the utility function: Sidrauski (1967)
It is convenient to define $A_t = B_{t-1} + M_{t-1}$. The budget constraint can be rewritten as:

$$P_t C_t + Q_t M_t + Q_t B_t + M_t (1 - Q_t) \leq M_{t-1} + B_{t-1} + W_t N_t + T_t$$

Or

$$P_t C_t + Q_t A_{t+1} + (1 - Q_t) M_t \leq A_t + W_t N_t + T_t$$
It is convenient to define $A_t = B_{t-1} + M_{t-1}$. The budget constraint can be rewritten as:

$$P_tC_t + Q_tM_t + Q_tB_t + M_t(1 - Q_t) \leq M_{t-1} + B_{t-1} + W_tN_t + T_t$$

Or

$$P_tC_t + Q_tA_{t+1} + (1 - Q_t)M_t \leq A_t + W_tN_t + T_t$$

- This defines Q_t as the price at t of a dollar at $t + 1$, so $1/Q_t = 1 + i_t$
It is convenient to define $A_t = B_{t-1} + M_{t-1}$. The budget constraint can be rewritten as:

$$P_t C_t + Q_t M_t + Q_t B_t + M_t (1 - Q_t) \leq M_{t-1} + B_{t-1} + W_t N_t + T_t$$

Or

$$P_t C_t + Q_t A_{t+1} + (1 - Q_t) M_t \leq A_t + W_t N_t + T_t$$

- This defines Q_t as the price at t of a dollar at $t + 1$, so $1/Q_t = 1 + i_t$
- So $1 - Q_t = i_t / (1 + i_t)$ is the opportunity cost of holding money
Optimality conditions

FOCs include the usual Euler:

\[C_t^{-\sigma} = \beta E_t C_{t+1}^{-\sigma} R_{t+1} \]

where

\[R_{t+1} = \frac{1}{Q_t} \frac{P_t}{P_{t+1}} = \frac{(1 + i_t)}{1 + \pi_{t+1}} \]

Also, optimal labor supply:

\[N_t^\varphi = C_t^{-\sigma} (W_t / P_t) \]

and the demand for money equation:

\[\kappa (M_t / P_t)^{-\nu} = \left[C_t^{-\sigma} (1 - Q_t) \right], \text{ or} \]

\[M_t / P_t = \left[\frac{1}{\kappa} C_t^{-\sigma} \left(\frac{i_t}{1 + i_t} \right) \right]^{-1/\nu} \]
Rewriting the Euler equation as:

\[Q_t = E_t \beta \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+1}} \]

it is clear that

\[Q_{t,t+1} = \beta \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+1}} \]

is the *stochastic discount factor* for nominal payoffs between \(t \) and \(t + 1 \).
The modern literature emphasizes that producers set prices optimally.
The modern literature emphasizes that producers *set* prices optimally.

Hence there must be some departure from perfect competition.
The modern literature emphasizes that producers set prices optimally.
Hence there must be some departure of perfect competition.
Usual choice: monopolistic competition.
The modern literature emphasizes that producers set prices optimally.

Hence there must be some departure of perfect competition.

Usual choice: monopolistic competition.

The idea: final goods are aggregates of imperfectly substitutable varieties.
The modern literature emphasizes that producers set prices optimally. Hence there must be some departure of perfect competition. Usual choice: *monopolistic competition*. The idea: final goods are aggregates of imperfectly substitutable varieties. In the household problem,

$$C_t = \left[\int_0^1 C_t(i)^{1-1/\varepsilon} di \right]^{\varepsilon/(\varepsilon-1)}$$
If a household consumes C_t units of the composite good, the minimum cost of purchasing it is

$$P_t C_t = \text{Min}\{C_t(i)\} \quad \int P_t(i) C_t(i) \, di \quad \text{s.t.} \quad C_t = \left[\int_0^1 C_t(i)^{1-1/\varepsilon} \, di \right]^{\varepsilon/(\varepsilon-1)}$$

whose solution is

$$C_t(i) = \left(\frac{P_t(i)}{P_t} \right)^{-\varepsilon} C_t$$

where

$$P_t = \left[\int P_t(i)^{1-\varepsilon} \, di \right]^{1/(1-\varepsilon)}$$
Each variety i is produced by a single firm with only labor:

$$Y_t(i) = A_t N_t(i)^{1-\alpha}$$

- Assume, first, that each firm sets a nominal price $P_t(i)$ for its variety to maximize profits.
Each variety i is produced by a single firm with only labor:

$$Y_t(i) = A_t N_t(i)^{1-\alpha}$$

- Assume, first, that each firm sets a nominal price $P_t(i)$ for its variety to maximize profits.
- The constraints are the production function and the demand for variety i:

$$Y_t(i) = \left(\frac{P_t(i)}{P_t} \right)^{-\varepsilon} Y_t$$
Production

Each variety i is produced by a single firm with only labor:

$$Y_t(i) = A_t N_t(i)^{1-\alpha}$$

- Assume, first, that each firm sets a nominal price $P_t(i)$ for its variety to maximize profits.
- The constraints are the production function and the demand for variety i:

$$Y_t(i) = \left(\frac{P_t(i)}{P_t} \right)^{-\varepsilon} Y_t$$

- Profits are

$$P_t(i) Y_t(i) - W_t N_t(i) = P_t(i) Y_t(i) - \Psi_t(Y_t(i))$$

where, from the production function, the (total) cost function is:

$$\Psi_t = W_t \left(\frac{Y_t(i)}{A_t} \right)^{1/(1-\alpha)}$$
The solution to:

\[
\text{Max } P_t(i) Y_t(i) - \Psi_t(Y_t(i))
\]

subject to

\[
Y_t(i) = \left(\frac{P_t(i)}{P_t} \right)^{-\varepsilon} Y_t
\]

is the *markup rule*:

\[
P_t(i) = \frac{\varepsilon}{\varepsilon - 1} \psi_t(Y_t(i))
\]

where \(\psi_t(Y_t(i)) = \Psi'_t(Y_t(i)) \) is the *marginal cost* function, equal to

\[
\psi_t(Y_t(i)) = \frac{W_t}{(1 - \alpha)A_t} \left(\frac{Y_t(i)}{A_t} \right)^{\alpha/(1-\alpha)}
\]
With flexible Prices, $P_t(i) = P_t$ and $Y_t(i) = Y_t$, so that the markup condition becomes:

$$P_t = \frac{\varepsilon}{\varepsilon - 1} \psi_t(Y_t)$$

$$= \frac{\varepsilon}{\varepsilon - 1} \frac{W_t}{(1 - \alpha)A_t} \left(\frac{Y_t}{A_t} \right)^{\alpha/(1-\alpha)}$$
In equilibrium, \(Y_t(i) = Y_t = A_t N_t(i)^{1-\alpha} \), so
\(N_t = N_t(i) = (Y_t/A_t)^{1/(1-\alpha)} \).

Also, \(Y_t = C_t \), so we get:
\[
\frac{W_t}{P_t} = N_t^{\varphi} C_t^{\sigma} = (Y_t/A_t)^{\varphi/(1-\alpha)} Y_t^{\sigma}
\]

Hence, with flexible prices, \(Y_t \) solves
\[
1 = \frac{\varepsilon}{\varepsilon - 1} \frac{(Y_t/A_t)^{\varphi/(1-\alpha)} Y_t^{\sigma}}{(1 - \alpha)A_t} \left(\frac{Y_t}{A_t} \right)^{\alpha/(1-\alpha)}
\]

Main Implication: *natural output* \(Y_t = Y_t^n \) is a function only of \(A_t \)
Special case: $\alpha = 0$, then we have

$$1 = \frac{\varepsilon}{\varepsilon - 1} \frac{(Y_t^n)^{\sigma+\varphi}}{A_t^{\varphi+1}}$$

or, taking logs,

$$0 = \log \left(\frac{\varepsilon}{\varepsilon - 1} \right) + (\varphi + \sigma) y_t^n - (1 + \varphi) a_t$$

Monetary aspects do not matter
The Calvo Model

- Calvo (1983) assumed that, in each period, a firm can set a new price with probability $1 - \theta$.

$$
\sum_{k=0}^{\infty} \theta^k E_t Q_t, t+k
$$

subject to

$$Y_{t+k} = P_t Y_t + \epsilon_t C_{t+k} + \sigma P_t Y_t + \kappa$$

and with $Q_{t+k} = \beta_k C_{t+k}$
The Calvo Model

- Calvo (1983) assumed that, in each period, a firm can set a new price with probability $1 - \theta$.
- A firm that can reset price then chooses P_t^* to maximize:

$$\sum_{k=0}^{\infty} \theta^k E_t \{ Q_{t,t+k} \left[P_t^* Y_{t+k|t} - \Psi_{t+k}(Y_{t+k|k}) \right] \}$$

subject to

$$Y_{t+k|t} = \left(\frac{P_t^*}{P_{t+k}} \right)^{-\varepsilon} C_{t+k}$$

and with

$$Q_{t,t+k} = \beta^k \left(\frac{C_{t+k}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+k}}$$
Optimal Pricing and the Price Level

The FOC is
\[\sum_{k=0}^{\infty} \theta^k E_t \{ Q_{t,t+k} \left[P_t^* - \frac{\varepsilon}{\varepsilon - 1} \psi_{t+k|t} \right] \} = 0 \] (1)

where \(\psi_{t+k|t} = \Psi_{t+k}'(Y_{t+k|k}) \), so this is an obvious generalization of the static case.

Given all this, the evolution of the price level is (Gali p 62):

\[P_t = \left[\theta P_{t-1}^{1-\varepsilon} + (1 - \theta) P_t^{*1-\varepsilon} \right]^{1/(1-\varepsilon)} \] (2)
From a log-linear approximation of (1)-(2) (assuming $\alpha = 0$ from now on, ugly derivation in Appendix) we get that the dynamics of inflation, $\pi_t = \log P_t - \log P_{t-1} = p_t - p_{t-1}$, are given by

$$\pi_t = \beta E_t \pi_{t+1} + \lambda \hat{mc}_t$$

where

$$\lambda = \frac{1 - \theta}{\theta} (1 - \beta \theta)$$

and $\hat{mc}_t = mc_t - mc$ is the log deviation of real marginal cost from its steady state value mc.
Marginal Costs, In Equilibrium I

Recall

\[mc_t = (w_t - p_t) - a_t \]

and

\[N_t^\varphi = C_t^{-\sigma}(W_t / P_t) \]

In equilibrium, \(C_t = Y_t \). Also, \(Y_t = A_t N_t \). Using this, taking logs in the last equation, and combining,

\[mc_t = (\sigma + \varphi) y_t - (1 + \varphi) a_t \]

To express this in a different way, observe that under flexible prices real marginal costs are constant (why?) and equal to \(mc \). Hence,

\[mc = (\sigma + \varphi) y_t^n - (1 + \varphi) a_t \]

where \(y_t^n \) is the natural or flexible price output.
It follows that

$$\hat{mc}_t = (\sigma + \varphi)(y_t - y^n_t)$$

where $y_t - y^n_t$ is the output gap.
The New Keynesian Phillips Curve

Then, combining

\[\pi_t = \beta E_t \pi_{t+1} + \lambda \hat{mc}_t \]
\[\hat{mc}_t = (\sigma + \varphi)(y_t - y^n_t) \]

we arrive at

\[\pi_t = \beta E_t \pi_{t+1} + \kappa(y_t - y^n_t) \]

with \(\kappa = \lambda(\sigma + \varphi) \). This is the basic New Keynesian Phillips Curve.
Log-linearizing the Euler equation

\[C_t^{-\sigma} = \beta E_t C_{t+1}^{-\sigma} \frac{1 + i_t}{1 + \pi_{t+1}} \]

with \(Y_t = C_t \), you get

\[-\sigma y_t = \log \beta + E_t \{ -\sigma y_{t+1} + i_t - \pi_{t+1} \} \]

Letting the output gap be denoted by \(\tilde{y}_t = y_t - y^n_t \), so \(y_t = \tilde{y}_t + y^n_t \), and replacing in the above, you get

\[\tilde{y}_t = -\frac{1}{\sigma} (i_t - E_t \pi_{t+1} - r^n_t) + E_t \tilde{y}_{t+1} \]

where

\[r^n_t = -\log \beta + \sigma E_t \{ y^n_{t+1} - y^n_t \} \]

is the *natural real rate of interest*.
Note that $r_t = i_t - E_t \pi_{t+1}$ is the real rate of interest.

Iterating forward, for any $k \geq 1$:

$$\tilde{y}_t = -\frac{1}{\sigma} E_t \left[(r_t - r_t^n) + (r_{t+1} - r_{t+1}^n) + \ldots + (r_{t+k} - r_{t+k}^n) \right] + E_t \tilde{y}_{t+k}$$
Summarizing, we now have:

1. The NK Phillips Curve:

\[\pi_t = \beta E_t \pi_{t+1} + \kappa \tilde{y}_t \]
Summarizing, we now have:

1. The NK Phillips Curve:

$$\pi_t = \beta E_t \pi_{t+1} + \kappa \tilde{y}_t$$

2. The Dynamic IS:

$$\tilde{y}_t = -\frac{1}{\sigma} (i_t - E_t \pi_{t+1} - r^n_t) + E_t \tilde{y}_{t+1}$$
The Basic New Keynesian Model

Summarizing, we now have:

1. The NK Phillips Curve:
 \[\pi_t = \beta E_t \pi_{t+1} + \kappa \tilde{y}_t \]

2. The Dynamic IS:
 \[\tilde{y}_t = -\frac{1}{\sigma} (i_t - E_t \pi_{t+1} - r^n_t) + E_t \tilde{y}_{t+1} \]
Summarizing, we now have:

1. The NK Phillips Curve:
 \[\pi_t = \beta E_t \pi_{t+1} + \kappa \tilde{y}_t \]

2. The Dynamic IS:
 \[\tilde{y}_t = -\frac{1}{\sigma} \left(i_t - E_t \pi_{t+1} - r^n_t \right) + E_t \tilde{y}_{t+1} \]

The model is completed with a specification of monetary policy.
Summarizing, we now have:

1. The NK Phillips Curve:

 \[\pi_t = \beta E_t \pi_{t+1} + \kappa \tilde{y}_t \]

2. The Dynamic IS:

 \[\tilde{y}_t = -\frac{1}{\sigma} (i_t - E_t \pi_{t+1} - r^n_t) + E_t \tilde{y}_{t+1} \]

The model is completed with a specification of monetary policy. For example, an interest rate rule (Gali, 3.4):

\[i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{y}_t + \nu_t \]
Summarizing, we now have:

1. The NK Phillips Curve:

\[\pi_t = \beta E_t \pi_{t+1} + \kappa \tilde{y}_t \]

2. The Dynamic IS:

\[\tilde{y}_t = -\frac{1}{\sigma}(i_t - E_t \pi_{t+1} - r^n_t) + E_t \tilde{y}_{t+1} \]

- The model is completed with a specification of monetary policy.
- For example, an interest rate rule (Gali, 3.4):

\[i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{y}_t + \nu_t \]

- Note that this is equivalent to a real interest rule:

\[r_t = i_t - E_t \pi_{t+1} = \rho + \phi_\pi \pi_t - E_t \pi_{t+1} + \phi_y \tilde{y}_t + \nu_t \]
Gali (p.50) shows that a unique equilibrium exists with a rule
\[i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{y}_t + \nu_t \]
if and only if:
\[\kappa(\phi_\pi - 1) + (1 - \beta)\phi_y > 0 \]
Gali (p.50) shows that a unique equilibrium exists with a rule
\[i_t = \rho + \phi_\pi \pi_t + \phi_y \ddot{y}_t + v_t \] if and only if:
\[\kappa (\phi_\pi - 1) + (1 - \beta) \phi_y > 0 \]

This is the called *Taylor Principle*
Equilibrium Under an Interest Rate Rule

Gali (p.50) shows that a unique equilibrium exists with a rule

$$i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{\gamma}_t + \nu_t$$

if and only if:

$$\kappa (\phi_\pi - 1) + (1 - \beta) \phi_y > 0$$

- This is the called *Taylor Principle*
- To understand it, suppose $\phi_y = 0$. Then the Principle is that $\phi_\pi > 1$, which ensures that a permanent increase in inflation is met with a higher real rate of interest
Gali (p.50) shows that a unique equilibrium exists with a rule
\[i_t = \rho + \phi_\pi \pi_t + \phi_y \tilde{y}_t + \nu_t \] if and only if:
\[\kappa(\phi_\pi - 1) + (1 - \beta)\phi_y > 0 \]

- This is the called \textit{Taylor Principle}
- To understand it, suppose \(\phi_y = 0 \). Then the Principle is that \(\phi_\pi > 1 \), which ensures that a permanent increase in inflation is met with a higher real rate of interest
- When \(\phi_y \), the same idea applies.
See Gali, 3.4 Some noteworthy aspects:

1. *Liquidity Effect*: the nominal interest rate *increases* and the money supply *falls* in response to a contractionary monetary shock.

2. The impact of a positive technology shock on output and labor employment can be *negative*.
Some Policy Implications

Suppose that there is a social loss function is of the form $E \sum \beta^t L_t$, where the current loss is:

$$L_t = v \tilde{y}_t^2 + (1 - v) \pi_t^2$$
Some Policy Implications

Suppose that there is a social loss function is of the form $E \sum \beta^t L_t$, where the current loss is:

$$L_t = \nu \tilde{y}_t^2 + (1 - \nu) \pi_t^2$$

- Justifying this loss function: Romer 11.3, Woodford (2003), Gali 4
Suppose that there is a social loss function is of the form $E \sum \beta^t L_t$, where the current loss is:

$$L_t = v \tilde{y}_t^2 + (1 - v) \pi_t^2$$

- Justifying this loss function: Romer 11.3, Woodford (2003), Gali 4
- If AS is given by the basic New Keynesian Phillips Curve:

$$\pi_t = \beta E_t \pi_{t+1} + \kappa \tilde{y}_t$$

then it is feasible for the central bank to keep $\pi_t = \tilde{y}_t = 0$
Suppose that there is a social loss function is of the form $E \sum \beta^t L_t$, where the current loss is:

$$L_t = v \tilde{y}_t^2 + (1 - v) \pi_t^2$$

- Justifying this loss function: Romer 11.3, Woodford (2003), Gali 4
- If AS is given by the basic New Keynesian Phillips Curve:

$$\pi_t = \beta E_t \pi_{t+1} + \kappa \tilde{y}_t$$

then it is feasible for the central bank to keep $\pi_t = \tilde{y}_t = 0$
- But this minimizes the loss function!
Some Policy Implications

Suppose that there is a social loss function is of the form $E \sum \beta^t L_t$, where the current loss is:

$$L_t = v\tilde{y}_t^2 + (1 - v)\pi_t^2$$

- Justifying this loss function: Romer 11.3, Woodford (2003), Gali 4
- If AS is given by the basic New Keynesian Phillips Curve:

$$\pi_t = \beta E_t \pi_{t+1} + \kappa\tilde{y}_t$$

then it is feasible for the central bank to keep $\pi_t = \tilde{y}_t = 0$

- But this minimizes the loss function!
- Justification for inflation targeting
Appendix: Loglinearizing AS Equations I

Rewrite the pricing equation (1) as:

\[
\sum_{k=0}^{\infty} \theta^k E_t Q_{t+k} \frac{P_t^*}{P_{t-1}} = \frac{\varepsilon}{\varepsilon - 1} \sum_{k=0}^{\infty} \theta^k E_t Q_{t+k} \frac{\psi_{t+k|t}}{P_{t-1}} \\
= \mathcal{M} \sum_{k=0}^{\infty} \theta^k E_t Q_{t+k} \frac{\psi_{t+k|t}}{P_{t+k}} \frac{P_{t+k}}{P_{t-1}} \\
= \mathcal{M} \sum_{k=0}^{\infty} \theta^k E_t Q_{t+k} MC_{t+k|t} \Pi_{t-1,t+k}
\]

where \(\mathcal{M} = \frac{\varepsilon}{\varepsilon - 1} \), \(MC_{t+k|t} = \frac{\psi_{t+k|t}}{P_{t+k}} \), \(\Pi_{t-1,t+k} = \frac{P_{t+k}}{P_{t-1}} \)

Loglinearizing around a zero inflation steady state:

\[
\sum_{k=0}^{\infty} (\beta \theta)^k (P_t^* - p_{t-1}) = \sum_{k=0}^{\infty} (\beta \theta)^k E_t [\widehat{mc}_{t+k|t} + (p_{t+k} - p_{t-1})]
\]
or:

\[
\frac{p_t^* - p_{t-1}}{1 - \beta \theta} = \sum_{k=0}^{\infty} (\beta \theta)^k E_t[\hat{mc}_{t+k}|t + (p_{t+k} - p_{t-1})] \tag{3}
\]

where \(\hat{mc}_{t+k}|t = mc_{t+k}|t - mc \). (Note also \(mc = -\log M \).)

From now on, assume \(\alpha = 0 \), which implies that

\[
mc_{t+k}|t = mc_{t+k} = (w_{t+k} - p_{t+k}) - a_{t+k}. \] (The general case is in Gali).

Then the pricing equation (3) becomes:

\[
p_t^* - p_{t-1} = (1 - \beta \theta) \sum_{k=0}^{\infty} (\beta \theta)^k E_t[\hat{mc}_{t+k} + (p_{t+k} - p_{t-1})]
\]
which can be rewritten as:

\[p_t^* - p_{t-1} = \beta \theta E_t(p_{t+1}^* - p_t) + (1 - \beta \theta) \hat{m}c_t + \pi_t \]

In turn, the price level equation (2) gives:

\[\pi_t = p_t - p_{t-1} = (1 - \theta)(p_t^* - p_{t-1}) \]

Combining the last two equations, we get

\[\pi_t = \beta E_t \pi_{t+1} + \lambda \hat{m}c_t \]

where

\[\lambda = \frac{1 - \theta}{\theta} (1 - \beta \theta) \]