Bubbles and the Current Crisis

Roberto Chang

Rutgers

April 2013
Martin and Ventura (2011) argue that an OG model with financial frictions and bubbles on asset prices provides the best available explanation of the crisis.
Motivation

- Martin and Ventura (2011) argue that an OG model with financial frictions and bubbles on asset prices provides the best available explanation of the crisis.

- A good illustration of the issues we discussed last time.
Motivation

- Martin and Ventura (2011) argue that an OG model with financial frictions and bubbles on asset prices provides the best available explanation of the crisis.
- A good illustration of the issues we discussed last time.
- Novelty: bubbles can be expansionary.
Martin and Ventura (2011) argue that an OG model with financial frictions and bubbles on asset prices provides the best available explanation of the crisis.

A good illustration of the issues we discussed last time.

Novelty: bubbles can be expansionary.

Main idea: plegeable income of entrepreneurs depends on the terminal value of capital, so a bubble enables them to borrow and invest more. This increases investment efficiency and can more than compensate for the fact that bubbles absorbs savings.
Overlapping generations of two period lived agents
Model

- Overlapping generations of two period lived agents
- All agents work when young, consume when old
Model

- Overlapping generations of two period lived agents
- All agents work when young, consume when old
- Risk neutral
Each firm j that can produce in period t has access to technology

$$F(l_{jt}, k_{jt}) = k_{jt}^\alpha l_{jt}^{1-\alpha}$$

A consequence is that the wage is given by the marginal product of labor:

$$w_t = (1 - \alpha)(k_t / l_t)^\alpha$$

$$= (1 - \alpha)k_t^\alpha$$

the last equality holding because $l_t = 1$. (k_t is the aggregate capital/labor ratio).
For existing firms in period t, the investment technology is the usual one:

$$k_{j,t+1} = Z_{jt} + (1 - \delta)k_{jt}$$

New firms in period t (which can only start producing in $t + 1$) have

$$k_{j,t+1} = \pi_t Z_{jt} + (1 - \delta)k_{jt}$$

where $\pi_t > 1$ and can be random ("investment efficiency"). Note that efficiency would entail that all investment should be done by new firms.
• Each generation t has unit size
Each generation t has unit size

A fraction ε: entrepreneurs
Savings

- Each generation t has unit size
- A fraction ε: entrepreneurs
- Only entrepreneurs can start new firms
Savings

- Each generation t has unit size
- A fraction ε: entrepreneurs
- Only entrepreneurs can start new firms
- Anyone can buy old firms and operate them
Any agent can borrow and lend at some stochastic interest rate R_{t+1}
Borrowing and Lending

- Any agent can borrow and lend at some stochastic interest rate R_{t+1}
- $E_t R_{t+1} = \text{"the " interest rate at } t$
Borrowing and Lending

- Any agent can borrow and lend at some stochastic interest rate R_{t+1}.
- $E_t R_{t+1} = "the " interest rate at t$.
- Collateral constraint of agent j:

\[
R_{t+1} f_{jt} \leq \phi_{t+1} \left[F(l_{j,t+1}, k_{j,t+1}) - w_{t+1} l_{j,t+1} + V_{j,t+1} \right] \\
= \phi_{t+1} \left[r_{t+1} k_{jt+1} + V_{j,t+1} \right]
\]

where $f_{jt} =$ amount borrowed, $\phi_{t} =$ "financial friction", $V_{j,t+1} =$ price of the firm acquired by j, and $r_{t} = \alpha k_{t}^{\alpha-1}$.
Optimality conditions

If non-entrepreneurs are willing to lend to entrepreneurs and to buy old firms, then

\[E_t R_{t+1} = \max \frac{E_t [r_{t+1} k_{jt+1} - R_{t+1} f_{jt+1} + V_{jt+1}]}{V_{jt} + Z_{jt} - f_{jt}} \]

where \(r_t = \alpha k_t^{\alpha-1} \) and the max is s.t.

\[k_{j,t+1} = Z_{jt} + (1 - \delta) k_{jt} \]
Likewise, if entrepreneurs are willing to start new firms, then

\[E_t R_{t+1} \leq \max \frac{E_t \left[r_{t+1} k_{jt+1} - R_{t+1} f_{jt+1} + V_{jt+1} \right]}{Z_{jt} - f_{jt}} \]

where \(r_t = \alpha k_t^{\alpha-1} \) and the max is s.t.

\[k_{j,t+1} = \pi_t Z_{jt} + (1 - \delta) k_{jt} \]

and

\[R_{t+1} f_{jt} \leq \phi_{t+1} \left[r_{t+1} k_{jt+1} + V_{j,t+1} \right] \]
Look for equilibrium in which entrepreneurs are always constrained and nonentrepreneurs are not.
Look for equilibrium in which entrepreneurs are always constrained and nonentrepreneurs are not.

Conjecture that

\[
E_t R_{t+1} = r_{t+1} + (1 - \delta) = \alpha k_{t+1}^{\alpha - 1} + (1 - \delta)
\]

\[
V_{jt} = (1 - \delta) k_{jt}
\]
Equilibrium

- Look for equilibrium in which entrepreneurs are always constrained and nonentrepreneurs are not
- Conjecture that

\[
E_t R_{t+1} = r_{t+1} + (1 - \delta) = \alpha k_{t+1}^{\alpha - 1} + (1 - \delta)
\]

\[
V_{jt} = (1 - \delta) k_{jt}
\]

- The conjecture assumes that there is no bubble
Entrepreneurs only invest in new firms and borrow as much as they can. The collateral constraint then becomes:

\[f_{jt} = \frac{\pi_t E_{t+1} \phi_{t+1}}{1 - \pi_t E_t \phi_{t+1}} w_t \]
Entrepreneurs only invest in new firms and borrow as much as they can. The collateral constraint then becomes:

$$f_{jt} = \frac{\pi_t \phi_{t+1}}{1 - \pi_t \phi_{t+1}} w_t$$

Nonentrepreneurs have more than enough savings to buy old firms and lend to entrepreneurs:

$$(1 - \varepsilon) w_t \geq V_t + f_t^N$$
Entrepreneurs only invest in new firms and borrow as much as they can. The collateral constraint then becomes:

\[f_{jt} = \frac{\pi_t E_t \phi_{t+1}}{1 - \pi_t E_t \phi_{t+1}} w_t \]

Nonentrepreneurs have more than enough savings to buy old firms and lend to entrepreneurs:

\[(1 - \varepsilon) w_t \geq V_t + f_t^N \]

Capital evolves according to:

\[k_{t+1} = \left[1 + \frac{(\pi_t - 1) \varepsilon}{1 - \pi_t E_t \phi_{t+1}} \right] (1 - \alpha) k_t^\alpha \]
\[k_{t+1} = \left[1 + \frac{(\pi_t - 1) \epsilon}{1 - \pi_t E_t \phi_{t+1}} \right] (1 - \alpha) k_t^\alpha \]

- Capital evolves as in the typical OG model, with shocks to "technology."

This model seems insufficient to understand the crisis. What was the particular shock that caused such a severe downturn?
\[k_{t+1} = \left[1 + \frac{(\pi_t - 1) \varepsilon}{1 - \pi_t E_t \phi_{t+1}} \right] (1 - \alpha) k_t^\alpha \]

- Capital evolves as in the typical OG model, with shocks to "technology."
- MV: This model seems insufficient to understand the crisis.
\[k_{t+1} = \left[1 + \frac{(\pi_t - 1) \varepsilon}{1 - \pi_t E_t \phi_{t+1}} \right] (1 - \alpha) k_t^\alpha \]

- Capital evolves as in the typical OG model, with shocks to "technology ".
- MV: This model seems insufficient to understand the crisis.
- Main argument: what was the particular shock that caused such a severe downturn?
Now let us conjecture that there are bubbles in equilibrium:

\[
E_t R_{t+1} = r_{t+1} + (1 - \delta) = \alpha k_{t+1}^{\alpha - 1} + (1 - \delta)
\]

\[
V_{jt} = (1 - \delta) k_{jt} + b_{jt}
\]
The entrepreneurs’ collateral constraint becomes

\[f_{jt} = \frac{\pi_t E_t \phi_{t+1}}{1 - \pi_t E_t \phi_{t+1}} w_t + \frac{E_t \phi_{t+1} b_{jt+1}^N}{(1 - \pi_t E_t \phi_{t+1}) E_t R_{t+1}} \]

This is the same as before except for the bubble component.
Also, for any existing firm,

\[E_t R_{t+1} = \frac{E_t b_{jt+1}}{b_{jt}} \]

i.e. the expected growth rate of bubbles must equal the interest rate.
The capital accumulation equation becomes

\[k_{t+1} = \left[1 + \frac{(\pi_t - 1) \varepsilon}{1 - \pi_t E_t \phi_{t+1}} \right] (1 - \alpha) k_t^\alpha \]

\[+ \frac{(\pi_t - 1)}{1 - \pi_t E_t \phi_{t+1}} \frac{E_t \phi_{t+1} b_{t+1}^N}{\alpha k_{t+1}^{\alpha - 1} + (1 - \delta)} - (b_t + b_t^N) \]

Note that now bubbles can have two opposite effects on the accumulation of capital:

- Usual crowding out effect
The capital accumulation equation becomes

\[k_{t+1} = \left[1 + \frac{(\pi_t - 1) \varepsilon}{1 - \pi_t E_t \phi_{t+1}} \right] (1 - \alpha) k^\alpha_t + \frac{(\pi_t - 1)}{1 - \pi_t E_t \phi_{t+1}} \frac{E_t \phi_{t+1} b^N_{t+1}}{\alpha k^\alpha_{t+1} + (1 - \delta)} - (b_t + b^N_t) \]

Note that now bubbles can have two opposite effects on the accumulation of capital:

1. Usual crowding out effect
2. They may relax financial constraints, leading to faster capital accumulation.
The bubbles growth condition becomes

\[E_t b_{t+1} = \left[\alpha k_{t+1}^{\frac{\alpha - 1}{\alpha}} + (1 - \delta) \right] (b_t + b_t^N) \]

The aggregate bubble grows faster than the interest rate because of the creation of new (bubbly) firms.
Let $z_t \in \{F, B\}$ be a "sunspots" variable.
Let $z_t \in \{F, B\}$ be a "sunspots" variable

A plethora of equilibria are possible
Let $z_t \in \{F, B\}$ be a "sunspots" variable.

A plethora of equilibria are possible.

Assume $p = \text{Prob}\{z_{t+1} = F | z_t = B\}$.
Let \(z_t \in \{ F, B \} \) be a "sunspots " variable

A plethora of equilibria are possible

Assume \(p = \operatorname{Prob}\{ z_{t+1} = F | z_t = B \} \)

Start with some period \(t \) in which \(b_t = 0, b_t^N > 0 \)
Let \(z_t \in \{ F, B \} \) be a "sunspots" variable

A plethora of equilibria are possible

Assume \(p = \text{Prob}\{z_{t+1} = F | z_t = B\} \)

Start with some period \(t \) in which \(b_t = 0, b_t^N > 0 \)

Afterwards, \(b_t^N = nb_t \) if \(z_t = B \)
Let $z_t \in \{F, B\}$ be a "sunspots" variable.

A plethora of equilibria are possible.

Assume $p = \text{Prob}\{z_{t+1} = F | z_t = B\}$.

Start with some period t in which $b_t = 0$, $b_t^N > 0$.

Afterwards, $b_t^N = nb_t$ if $z_t = B$.

Assume $\text{Prob}\{z_{t+1} = B | z_t = F\}$ is negligible.
More assumptions:

- $\pi_t = \pi, \phi_t = \phi$
More assumptions:

- $\pi_t = \pi, \phi_t = \phi$
- $\delta \approx 1$
More assumptions:

- \(\pi_t = \pi, \phi_t = \phi \)
- \(\delta \approx 1 \)
- Define \(x_t = b_t / [(1 - \alpha)k_t^\alpha] = \) bubble as share of savings
More assumptions:

- $\pi_t = \pi, \phi_t = \phi$
- $\delta \approx 1$
- Define $x_t = b_t / [(1 - \alpha)k_t^\alpha] = \text{bubble as share of savings}$
- Then

$$x_{t+1} = \frac{[\alpha(1 + n) / (1 - \alpha)(1 - p)]x_t}{1 + \frac{(\pi - 1)\varepsilon}{1 - \phi \pi} \left(\frac{(\pi - 1)\phi n}{1 - \phi \pi} - 1\right) (1 + n)x_t}$$
We also need

\[x_t \leq \frac{1 - \phi \pi - \varepsilon}{1 - \phi (\pi - n)} \frac{1}{1 + n} \equiv \bar{x} \]

Given path for \(x_t \), capital accumulation is given by

\[k_{t+1} = \left(1 + \frac{(\pi - 1) \varepsilon}{1 - \pi \phi} + \frac{\phi (\pi - 1)n}{1 - \phi \pi} \right) (1 + n)x_t \left(1 - \alpha \right) k_t^\alpha \]