Function Approximation and Functional Equations

Roberto Chang

Rutgers

April 2013
Recall that the solution of the Lucas asset price model is given by:

\[p(z)u'(z) = \beta \int u'(z')[z' + p(z')]Q(z, dz') \]

This is a functional equation where the unknown is a function \(p : Z \rightarrow \mathbb{R}_+ \)

Suppose that you know \(u, Z, Q, \beta \). How do you compute an approximate solution?
Numerical Issues

At least two nontrivial issues appear if e.g. Z is an interval:

1. **How do you compute the integral?**

In this case, both issues "disappear" if one assumes that Z is a finite set. But in other contexts that may be unnatural or misleading. Hence we review procedures to deal squarely with the two issues. Additionally, we discuss a computational procedure to solve functional equations.
At least two nontrivial issues appear if e.g. Z is an interval:

1. How do you compute the integral?
2. How do you even represent or approximate a candidate solution, a function $p : Z \to \mathbb{R}_{++}$?

In this case, both issues "disappear" if one assumes that Z is a finite set. But in other contexts that may be unnatural or misleading. Hence we review procedures to deal squarely with the two issues. Additionally, we discuss a computational procedure to solve functional equations.
The problem is to approximate a (possibly intractable) real valued function f with a computationally tractable \hat{f}, using only limited information about f.
The problem is to approximate a (possibly intractable) real valued function f with a computationally tractable \hat{f}, using only limited information about f.

This turns out to be extremely useful in many contexts. For example, if one iterates on Bellman:

$$v^{(i+1)}(k, z) = \max_a u(k, z, a) + \beta \int v^{(i)}(k', z') Q(z, dz')$$

s.t. $a \in \Gamma(k, z)$

$$k' = \phi(k, a, z')$$

at each step one only needs to solve for each iteration $v^{(i+1)}$ at a finite set of values in $K \times Z$, then form the approximation $\hat{v}^{(i+1)}$.
A useful approach to approximate a function \(f \) is to choose an approximant from a given family:

\[
\hat{f}(x) = \sum_{j=1}^{n} c_j \phi_j(x)
\]

where \(\phi_j(x), j = 1, \ldots, n \) are known \textit{basis functions} and \(c_1, \ldots, c_n \) are coefficients that pin down an approximant. \(n \) is called the \textit{degree} of the approximation.
A useful approach to approximate a function \(f \) is to choose an approximant from a given family:

\[
\hat{f}(x) = \sum_{j=1}^{n} c_j \phi_j(x)
\]

where \(\phi_j(x), j = 1, \ldots, n \) are known basis functions and \(c_1, \ldots, c_n \) are coefficients that pin down an approximant. \(n \) is called the degree of the approximation.

Obvious monomial example: let \(\phi_j(x) = x^{j-1} \), so an \(n^{th} \) degree approximation to \(f \) is the polynomial \(c_0 + c_1 x + \ldots + c_n x^{n-1} \).
Approximation Decisions:

- How do you choose basis functions?
Approximation Decisions:

- How do you choose basis functions?
- Given basis functions, how do you choose the coefficients of the approximation?
Choosing the Coefficients: Interpolation

Let us focus on the choice of coefficients first: suppose that we are given a family of basis functions.
Let us focus on the choice of coefficients first: suppose that we are given a family of basis functions.

A typical situation: we know the values of f at some n nodes $x_1, ..., x_n$:

$f(x_k) = y_k, k = 1, ..., n$.

This is a linear system of n equations in the n unknown coefficients $c_1, ..., c_n$.

Often we can choose the nodes, so this is another decision to be made.
Choosing the Coefficients: Interpolation

- Let us focus on the choice of coefficients first: suppose that we are given a family of basis functions.
- A typical situation: we know the values of f at some n nodes $x_1, ..., x_n : f(x_k) = y_k, k = 1, ..., n$.
- Then we can choose the nodes by solving:

$$\hat{f}(x_k) = \sum_{j=1}^{n} c_j \phi_j(x_k) = y_k$$
Let us focus on the choice of coefficients first: suppose that we are given a family of basis functions.

A typical situation: we know the values of f at some n nodes x_1, \ldots, x_n: $f(x_k) = y_k$, $k = 1, \ldots, n$.

Then we can choose the nodes by solving:

$$\hat{f}(x_k) = \sum_{j=1}^{n} c_j \phi_j(x_k) = y_k$$

This is a linear system of n equations in the n unknown coefficients c_1, \ldots, c_n.
Choosing the Coefficients: Interpolation

- Let us focus on the choice of coefficients first: suppose that we are given a family of basis functions.
- A typical situation: we know the values of f at some n nodes $x_1, ..., x_n:\ f(x_k) = y_k, k = 1, ..., n$.
- Then we can choose the nodes by solving:

$$\hat{f}(x_k) = \sum_{j=1}^{n} c_j \phi_j(x_k) = y_k$$

- This is a linear system of n equations in the n unknown coefficients $c_1, ..., c_n$
- Often we can choose the nodes, so this is another decision to be made.
Choosing Basis Functions: Spectral and Finite Element Methods

- Spectral methods use basis functions that are nonzero at almost all points of the domain (e.g. monomials). The most popular such method is polynomial interpolation.
Choosing Basis Functions: Spectral and Finite Element Methods

- Spectral methods use basis functions that are nonzero at almost all points of the domain (e.g. monomials). The most popular such method is polynomial interpolation.
- Finite element methods uses basis functions that are nonzero only over subintervals of the domain. Most popular: linear and cubic splines.
The obvious choice for a basis, monomials, is not good because they are far from orthogonal as n increases. This makes the interpolation system ill conditioned.
The obvious choice for a basis, monomials, is not good because they are far from orthogonal as \(n \) increases. This makes the interpolation system ill conditioned.

A much better alternative: Chebychev polynomials. For \(x \) in \([a, b]\), let \(z = (x - a)/(b - a) \) and define:

\[
T_0(z) = 1, \quad T_1(z) = z \\
T_j(z) = 2zT_{j-1}(z) - T_{j-2}(z), j \geq 2
\]
With polynomial approximation, the obvious choice of nodes is equidistant.
Choice of Nodes

- With polynomial approximation, the obvious choice of nodes is equidistant.
- But this is known to be problematic.
Choice of Nodes

- With polynomial approximation, the obvious choice of nodes is equidistant.
- But this is known to be problematic.
- Preferred: Chebychev nodes, for $i = 1, \ldots, n$

$$x_i = \frac{a + b}{2} + \frac{b - a}{2} \cos \left(\frac{n - i + 0.5}{n} \pi \right)$$
Instead of constructing a high degree smooth approximation that interpolates the data, one can subdivide the domain and fit low order polynomials to each part of the domain.
Instead of constructing a high degree smooth approximation that interpolates the data, one can subdivide the domain and fit low order polynomials to each part of the domain.

The simplest method is *piecewise linear approximation*, aka "connect the dots "

Piecewise Polynomial Interpolation
Instead of constructing a high degree smooth approximation that interpolates the data, one can subdivide the domain and fit low order polynomials to each part of the domain.

The simplest method is *piecewise linear approximation*, aka "connect the dots"

A popular alternative: piecewise cubic
Instead of constructing a high degree smooth approximation that interpolates the data, one can subdivide the domain and fit low order polynomials to each part of the domain.

The simplest method is \textit{piecewise linear approximation}, aka "connect the dots."

A popular alternative: piecewise cubic

Piecewise polynomial approximations can be seen as linear combination of basis functions called \textit{splines}.
A spline of order n on $[a, b]$ is a function $s : [a, b] \rightarrow \mathbb{R}$ such that:

- s has continuous derivatives up to order $n - 2$
A spline of order n on $[a, b]$ is a function $s : [a, b] \rightarrow \mathbb{R}$ such that:

- s has continuous derivatives up to order $n - 2$
- There are m nodes $a = x_1 < ... < x_m = b$ such that $s(x)$ is a polynomial of degree $n - 1$ on each subinterval $[x_i, x_{i+1}]$
A spline of order n on $[a, b]$ is a function $s : [a, b] \to \mathbb{R}$ such that:

- s has continuous derivatives up to order $n - 2$
- There are m nodes $a = x_1 < \ldots < x_m = b$ such that $s(x)$ is a polynomial of degree $n - 1$ on each subinterval $[x_i, x_{i+1}]$
- An order 2 spline is just the common linear interpolant
Suppose we have $n + 1$ nodes, x_0, x_1, \ldots, x_n, and we know $y_i = f(x_i)$ at each node. We want to construct an interpolating cubic spline on each subinterval $[x_i, x_{i+1}]$, the spline will have the representation $a_i + b_i x + c_i x^2 + d_i x^3$. Hence we have to find $4n$ coefficients.

The interpolation conditions, plus continuity and smoothness at the interior points, give $4n - 2$ conditions. The two extra conditions are solved in different ways (natural, Hermite, not-a-knot). The resulting system of equations to be solved is often linear and sparse.
Suppose we have \(n + 1 \) nodes, \(x_0, x_1 \ldots x_n \), and we know \(y_i = f(x_i) \) at each node. We want to construct an interpolating cubic spline.

On each subinterval \([x_i, x_{i+1}]\), the spline will have the representation:

\[
a_i + b_i x + c_i x^2 + d_i x^3
\]

Hence we have to solve for 4\(n \) coefficients.

The interpolation conditions, plus continuity and smoothness at the interior points, give 4\(n \) - 2 conditions. The two extra conditions are solved in different ways (natural, Hermite, not-a-knot). The resulting system of equations to be solved is often linear and sparse.
Suppose we have \(n + 1 \) nodes, \(x_0, x_1 \ldots x_n \), and we know \(y_i = f(x_i) \) at each node. We want to construct an interpolating cubic spline.

On each subinterval \([x_i, x_{i+1}]\), the spline will have the representation \(a_i + b_ix + c_ix^2 + d_ix^3 \).

Hence we have to fix \(4n \) coefficients.
Suppose we have $n + 1$ nodes, $x_0, x_1 \ldots x_n$, and we know $y_i = f(x_i)$ at each node. We want to construct an interpolating cubic spline.

On each subinterval $[x_i, x_{i+1}]$, the spline will have the representation $a_i + b_i x + c_i x^2 + d_i x^3$.

Hence we have to fix $4n$ coefficients.

The interpolation conditions, plus continuity and smoothness at the interior points, give $4n - 2$ conditions.
Suppose we have \(n + 1 \) nodes, \(x_0, x_1 \ldots x_n \), and we know \(y_i = f(x_i) \) at each node. We want to construct an interpolating cubic spline.

On each subinterval \([x_i, x_{i+1}]\), the spline will have the representation
\[
a_i + b_i x + c_i x^2 + d_i x^3
\]

Hence we have to fix \(4n \) coefficients.

The interpolation conditions, plus continuity and smoothness at the interior points, give \(4n - 2 \) conditions.

The two extra conditions are solved in different ways (natural, Hermite, not-a-knot).
Cubic Splines

- Suppose we have \(n + 1 \) nodes, \(x_0, x_1, \ldots, x_n \), and we know \(y_i = f(x_i) \) at each node. We want to construct an interpolating cubic spline.
- On each subinterval \([x_i, x_{i+1}]\), the spline will have the representation \(a_i + b_i x + c_i x^2 + d_i x^3 \).
- Hence we have to fix \(4n \) coefficients.
- The interpolation conditions, plus continuity and smoothness at the interior points, give \(4n - 2 \) conditions.
- The two extra conditions are solved in different ways (natural, Hermite, not-a-knot).
- The resulting system of equations to be solved is often linear and sparse.
As mentioned, splines can be expressed as linear combinations of a basis family called B-splines.
As mentioned, splines can be expressed as linear combinations of a basis family called B-splines.

For piecewise linear splines, B-splines are "tent functions ".

Basis for Splines: B-splines

- As mentioned, splines can be expressed as linear combinations of a basis family called B-splines.
- For piecewise linear splines, B-splines are "tent functions".
- For cubic splines and others, see Judd or MF.
Keep in mind that spectral methods fit a global approximant, whereas finite element methods are "local."
Choosing an Approximation Method

- Keep in mind that spectral methods fit a global approximant, whereas finite element methods are "local."
- For smooth functions, polynomial approximations are very good.
Choosing an Approximation Method

- Keep in mind that spectral methods fit a global approximant, whereas finite element methods are "local"
- For smooth functions, polynomial approximations are very good
- If one has discontinuities, kinks, etc. splines may be preferable
Consider approximating $f(x, y)$. If $\{\phi_i(x)\}_{i=1}^n$ and $\{\eta_j(y)\}_{j=1}^m$ are one dimensional basis families, a basis family for the two dimensional case is given by the tensor family of products $\phi_i(x)\eta_j(y)$.

Likewise, if $\{x_1...x_n\}$ and $\{y_1...y_m\}$ are nodes in the unidimensional case, for the two dimensional case one can use the nodes $\{(x_i, y_j)\}$.
global vlast betta del theta k0 kt
vlast = zeros(1,100);
k0 = 0.06:0.06:6;
betta = 0.98; del = 0.1; theta = 0.36; numits = 240;
for k = 1:numits;
 for j = 1:100
 kt = j * 0.06;
 ktp1 = fminbnd(@valfun,0.01,6.2);
 v(j) = -valfun(ktp1);
 kt1(j) = ktp1;
 end
 vlast = v;
end
function val = valfun(x)
%VALFUN From Mc Candless, p. 67
% Auxiliary function

global vlast betta del theta k0 kt

cc = kt^theta + (1 - del)* kt - x;
g = interp1(k0, vlast, x, 'spline');

if cc<=0
 val = -888 - 800*abs(cc);
else
 val = log(cc) + betta*g;
end

val = -val;
end
Consider the problem: find a function $f : D \rightarrow \mathbb{R}$, $f \in F$, such that for all $x \in D$

$$Tf(x) = 0$$

where $T : F \rightarrow F$ is an operator on F.

Example: rewrite the Lucas tree problem as

$$T_p(z) = p(z)u_0(z)\left[z_0 + p(z_0)Q(z, dz_0)\right] = 0$$

More generally: problems whose solutions are given by systems of functional equations.
Consider the problem: find a function $f : D \rightarrow \mathbb{R}$, $f \in F$, such that for all $x \in D$

$$Tf(x) = 0$$

where $T : F \rightarrow F$ is an operator on F

Example: rewrite the Lucas tree problem as

$$Tp(z) \equiv p(z)u'(z) - \beta \int u'(z')[z' + p(z')]Q(z, dz') = 0$$
Consider the problem: find a function \(f : D \rightarrow \mathbb{R} \), \(f \in F \), such that for all \(x \in D \)

\[
Tf(x) = 0
\]

where \(T : F \rightarrow F \) is an operator on \(F \)

Example: rewrite the Lucas tree problem as

\[
Tp(z) \equiv p(z)u'(z) - \beta \int u'(z')[z' + p(z')]Q(z, dz') = 0
\]

More generally: problems whose solutions are given by systems of functional equations
Suppose that we will look for an approximate solution in the family

\[\hat{f}(x; c) = \sum_{j=1}^{n} c_j \phi_j(x) \]
Suppose that we will look for an approximate solution in the family

\[\hat{f}(x; c) = \sum_{j=1}^{n} c_j \phi_j(x) \]

Fix the degree of the approximation, \(n \). Then the collocation method requires the functional equation to hold exactly at \(n \) points (nodes) in the domain:

\[T \hat{f}(x_i; c) = T(\sum_{j=1}^{n} c_j \phi_j)(x_i) = 0, \quad i = 1, \ldots, n \]
Suppose that we will look for an approximate solution in the family

\[\hat{f}(x; c) = \sum_{j=1}^{n} c_j \phi_j(x) \]

Fix the degree of the approximation, \(n \). Then the collocation method requires the functional equation to hold exactly at \(n \) points (nodes) in the domain:

\[T \hat{f}(x_i; c) = T(\sum_{j=1}^{n} c_j \phi_j)(x_i) = 0, \quad i = 1, \ldots, n \]

This gives a (probably nonlinear) system of \(n \) equations for the \(n \) unknown coefficients \(c_1 \ldots c_n \)
Away from the nodes, the *residual function*:

\[R(x; c) = T\hat{f}(x; c) = T\left(\sum_{j=1}^{n} c_j \phi_j\right)(x) \]

will not be zero. The quality of the approximation can be judged by looking at the residual function.
Away from the nodes, the *residual function*:

\[R(x; c) = T\hat{f}(x; c) = T\left(\sum_{j=1}^{n} c_j \phi_j\right)(x) \]

will not be zero. The quality of the approximation can be judged by looking at the residual function.

Other methods choose \(c \) to make the residual function close to zero in different ways, e.g. on average.
Away from the nodes, the \textit{residual function}:

\[R(x; c) = T \hat{f}(x; c) = T \left(\sum_{j=1}^{n} c_j \phi_j \right)(x) \]

will not be zero. The quality of the approximation can be judged by looking at the residual function.

Other methods choose \(c \) to make the residual function close to zero in different ways, e.g. on average.

For example, one could choose \(c_1 \ldots c_n \) to minimize a version of least squares:

\[\int_{a}^{b} [R(x; c)]^2 w(x) \, dx \]

for some weight function \(w \).