Lecture 8
Education

Prof. Paczkowski

Rutgers University

Spring Semester, 2009
Part I

Reading Assignments
Reading Assignments
Part II

Introduction
We have considered in depth the technology issue as an engine of growth
Introduction

We have considered in depth the technology issue as an engine of growth

- Role of technology
Introduction

We have considered in depth the technology issue as an engine of growth

- Role of technology
- R&D and R&D history
There is another engine to consider that was implicit in the Neoclassical theories and emphasized by the endogenous growth literature: education
There is another engine to consider that was implicit in the Neoclassical theories and emphasized by the endogenous growth literature: education

- This affects human capital
There is another engine to consider that was implicit in the Neoclassical theories and emphasized by the endogenous growth literature: education.

- This affects human capital
 - Technology in Neoclassical theory is skill biased
There is another engine to consider that was implicit in the Neoclassical theories and emphasized by the endogenous growth literature: education

- This affects human capital
 - Technology in Neoclassical theory is skill biased
 - Human capital extends the definition of capital beyond real, physical P&E
There is another engine to consider that was implicit in the Neoclassical theories and emphasized by the endogenous growth literature: education

- This affects human capital
 - Technology in Neoclassical theory is skill biased
 - Human capital extends the definition of capital beyond real, physical P&E
 - Effective labor
There is another engine to consider that was implicit in the Neoclassical theories and emphasized by the endogenous growth literature: education

- This affects human capital
 - Technology in Neoclassical theory is skill biased
 - Human capital extends the definition of capital beyond real, physical P&E
 - Effective labor
There is another engine to consider that was implicit in the Neoclassical theories and emphasized by the endogenous growth literature: education

- This affects human capital
 - Technology in Neoclassical theory is skill biased
 - Human capital extends the definition of capital beyond real, physical P&E
 - Effective labor

Question

What is skill biased?
What is Education?

Human capital is the result of education
Human capital is the result of education

- Formal = schooling
What is Education?

Human capital is the result of education

- **Formal** = schooling
 - Conventional schools (K – 12, College, etc.)
Human capital is the result of education

- **Formal** = schooling
 - Conventional schools (K – 12, College, etc.)
 - **Vocational schools**
What is Education?

Human capital is the result of education

- **Formal = schooling**
 - Conventional schools (K – 12, College, etc.)
 - Vocational schools
 - Continuing adult education
What is Education?

Human capital is the result of education

- **Formal** = schooling
 - Conventional schools (K – 12, College, etc.)
 - Vocational schools
 - Continuing adult education
 - In-house training courses offered by businesses and agencies
Human capital is the result of education

- **Formal = schooling**
 - Conventional schools (K – 12, College, etc.)
 - Vocational schools
 - Continuing adult education
 - In-house training courses offered by businesses and agencies

- **Informal = on-the-job-training, apprentices**
Formal education from schooling can be subdivided for analysis...
Formal education from schooling can be subdivided for analysis…

- **Quantity of education**
Formal education from schooling can be subdivided for analysis...

- **Quantity of education**
 - **Number of years of schooling attained**
Formal education from schooling can be subdivided for analysis...

- Quantity of education
 - Number of years of schooling attained
- Quality of education
Formal education from schooling can be subdivided for analysis...

- **Quantity of education**
 - Number of years of schooling attained

- **Quality of education**
 - Gauged by...
Formal education from schooling can be subdivided for analysis...

- Quantity of education
 - Number of years of schooling attained

- Quality of education
 - Gauged by...
 - Scores on internationally comparable exams
Formal education from schooling can be subdivided for analysis...

- **Quantity of education**
 - Number of years of schooling attained

- **Quality of education**
 - Gauged by...
 - Scores on internationally comparable exams
 - Pupils per teacher
Formal education from schooling can be subdivided for analysis...

- **Quantity of education**
 - Number of years of schooling attained

- **Quality of education**
 - Gauged by...
 - Scores on internationally comparable exams
 - Pupils per teacher
 - Gender ratio (female to male)
Formal Education

Formal education from schooling can be subdivided for analysis...

- Quantity of education
 - Number of years of schooling attained

- Quality of education
 - Gauged by...
 - Scores on internationally comparable exams
 - Pupils per teacher
 - Gender ratio (female to male)
 - Spending as percent of real GDP
An empirical model looked at the effect of education on growth for a number of countries in the context of other variables.
An empirical model looked at the effect of education on growth for a number of countries in the context of other variables:

\[g_{it} = g(X_{it}) + \epsilon_{it} \]

where

- \(g = \text{CAGR} \)
- \(X = \text{list of explanatory variables for countries} \)
- \(i = 1, \ldots, n_t \text{ countries} \)
The t represents 10-year periods for calculating the CAGRs, the dependent variable.
The t represents 10-year periods for calculating the CAGRs, the dependent variable

- $n_t = 81, 84, 81$
The t represents 10-year periods for calculating the CAGRs, the dependent variable

- $n_t = 81, 84, 81$

- This is a panel with three time measures for each country
The t represents 10-year periods for calculating the CAGRs, the dependent variable

- $n_t = 81, 84, 81$
- This is a panel with three time measures for each country
- A total of 246 ($= 81 + 84 + 81$) observations
The t represents 10-year periods for calculating the CAGRs, the dependent variable

- $n_t = 81, 84, 81$
- This is a panel with three time measures for each country
- A total of 246 ($= 81 + 84 + 81$) observations
- Estimation is by an extension of OLS rather than OLS to take advantage of the panel nature of the data
Panel data involve observations that possess both cross-section, and within-cross section (time series) identifiers.
Panel data involve observations that possess both cross-section, and within-cross section (time series) identifiers

- Generally speaking, panel data correspond to data with large numbers of cross-sections, with variables held in single series in stacked form
A generic panel structure

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>i = 1</td>
<td>t = 1</td>
<td>data</td>
</tr>
<tr>
<td></td>
<td>t = 2</td>
<td>data</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>t = T(1)</td>
<td>data</td>
</tr>
<tr>
<td>i = 2</td>
<td>t = 1</td>
<td>data</td>
</tr>
<tr>
<td></td>
<td>t = 2</td>
<td>data</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>t = T(2)</td>
<td>data</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i = N</td>
<td>t = 1</td>
<td>data</td>
</tr>
<tr>
<td></td>
<td>t = 2</td>
<td>data</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>t = T(N)</td>
<td>data</td>
</tr>
</tbody>
</table>
Advantages of a panel

- Controls for store heterogeneity reducing risk of biased estimates
Advantages of a panel

- Controls for store heterogeneity reducing risk of biased estimates
- Provides more informative data, more variability, less collinearity, more degrees-of-freedom, more efficiency
Advantages of a panel

- Controls for store heterogeneity reducing risk of biased estimates
- Provides more informative data, more variability, less collinearity, more degrees-of-freedom, more efficiency
- Enables enhanced measurement of effects not detectable by pure cross-section or pure time series data
Advantages of a panel

- Controls for store heterogeneity reducing risk of biased estimates
- Provides more informative data, more variability, less collinearity, more degrees-of-freedom, more efficiency
- Enables enhanced measurement of effects not detectable by pure cross-section or pure time series data
- Allows more complex models and more complicated behavioral analysis
Advantages of a panel

- Controls for store heterogeneity reducing risk of biased estimates
- Provides more informative data, more variability, less collinearity, more degrees-of-freedom, more efficiency
- Enables enhanced measurement of effects not detectable by pure cross-section or pure time series data
- Allows more complex models and more complicated behavioral analysis
- Captures more accurate data than aggregate data sets
Advantages of a panel

- Controls for store heterogeneity reducing risk of biased estimates
- Provides more informative data, more variability, less collinearity, more degrees-of-freedom, more efficiency
- Enables enhanced measurement of effects not detectable by pure cross-section or pure time series data
- Allows more complex models and more complicated behavioral analysis
- Captures more accurate data than aggregate data sets
Formal Education
(Continued)

Advantages of a panel

- Controls for store heterogeneity reducing risk of biased estimates
- Provides more informative data, more variability, less collinearity, more degrees-of-freedom, more efficiency
- Enables enhanced measurement of effects not detectable by pure cross-section or pure time series data
- Allows more complex models and more complicated behavioral analysis
- Captures more accurate data than aggregate data sets

Disadvantages of a panel

- More complexity estimation methods
Formal Education (Continued)

Advantages of a panel

- Controls for store heterogeneity reducing risk of biased estimates
- Provides more informative data, more variability, less collinearity, more degrees-of-freedom, more efficiency
- Enables enhanced measurement of effects not detectable by pure cross-section or pure time series data
- Allows more complex models and more complicated behavioral analysis
- Captures more accurate data than aggregate data sets

Disadvantages of a panel

- More complexity estimation methods
- More complex data structure
Independent variables
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
- Government consumption /GDP (real terms)
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
- Government consumption /GDP (real terms)
- Rule-of-Law index
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
- Government consumption /GDP (real terms)
- Rule-of-Law index
- Openness ratio
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
- Government consumption /GDP (real terms)
- Rule-of-Law index
- Openness ratio
- \((\text{Openness ratio}) \times (\log \text{GDP})\) (real terms)
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
- Government consumption /GDP (real terms)
- Rule-of-Law index
- Openness ratio
- (Openness ratio) x (log GDP) (real terms)
- Inflation rate
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
- Government consumption /GDP (real terms)
- Rule-of-Law index
- Openness ratio
- (Openness ratio) x (log GDP) (real terms)
- Inflation rate
- Log total fertility rate
Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
- Government consumption /GDP (real terms)
- Rule-of-Law index
- Openness ratio
- (Openness ratio) x (log GDP) (real terms)
- Inflation rate
- Log total fertility rate
- **Investment/GDP (real terms)**
Formal Education
(Continued)

Independent variables

- Log per capita real income (within-level of RGDP; also, squared)
- Male secondary and higher schooling
- Government consumption /GDP (real terms)
- Rule-of-Law index
- Openness ratio
- (Openness ratio) x (log GDP) (real terms)
- Inflation rate
- Log total fertility rate
- Investment/GDP (real terms)
- Growth rate of terms of trade
The R^2 values for the three subperiods are very respectable...
The R^2 values for the three subperiods are very respectable. . .

- $R^2_1 = 0.62 \Rightarrow 62\%$ of variation growth explained
The R^2 values for the three subperiods are very respectable...

- $R^2_1 = 0.62 \Rightarrow \text{62\% of variation growth explained}$
- $R^2_2 = 0.50 \Rightarrow \text{50\% of variation growth explained}$
The R^2 values for the three subperiods are very respectable...

- $R_1^2 = 0.62 \Rightarrow 62\%$ of variation growth explained
- $R_2^2 = 0.50 \Rightarrow 50\%$ of variation growth explained
- $R_1^2 = 0.47 \Rightarrow 47\%$ of variation growth explained
Generally, a higher ratio

\[
\begin{align*}
\text{Human Capital} \\
\text{Physical Capital}
\end{align*}
\]

generates higher growth
Generally, a higher ratio

\[
\frac{\text{Human Capital}}{\text{Physical Capital}}
\]

generates higher growth

- More human capital facilitates absorption of new, superior technologies from leading countries
Generally, a higher ratio

\[
\frac{Human \ Capital}{Physical \ Capital}
\]

generates higher growth

- More human capital facilitates absorption of new, superior technologies from leading countries
- We will discuss absorption/adoPTION later
There are two ways to measure or discuss human capital as previously discussed...
There are two ways to measure or discuss human capital as previously discussed...

- Quantity of education
There are two ways to measure or discuss human capital as previously discussed...

- Quantity of education
- Quality of education
Quantity of Education...
Quantity of Education...

- This was measured in this study by the years of schooling attained by the population 25 and older.
Quantity of Education...

- This was measured in this study by the years of schooling attained by the population 25 and older.
- For males, the coefficient is positive and statistically significant.
Quantity of Education...

- This was measured in this study by the years of schooling attained by the population 25 and older
- For males, the coefficient is positive and statistically significant
 - An additional year of school raises growth by 0.44% per year
Quantity of Education...

- This was measured in this study by the years of schooling attained by the population 25 and older
- For **males**, the coefficient is positive and statistically significant
 - An additional year of school raises growth by 0.44% per year
Quantity of Education...

- This was measured in this study by the years of schooling attained by the population 25 and older.
- For males, the coefficient is positive and statistically significant.
 - An additional year of school raises growth by 0.44% per year.

Question

Why not females?
Female education attainment was tried for secondary and higher levels but was found to be statistically insignificant.
Female education attainment was tried for secondary and higher levels but was found to be statistically insignificant

Possible interpretation
Female education attainment was tried for secondary and higher levels but was found to be statistically insignificant

- Possible interpretation
 - Many countries follow discriminatory practices and do not exploit well-educated females in the economy
Female education attainment was tried for secondary and higher levels but was found to be statistically insignificant.

- Possible interpretation
 - Many countries follow discriminatory practices and do not exploit well-educated females in the economy
 - This is an open and contentious issue
Female education attainment was tried for secondary and higher levels but was found to be statistically insignificant

- Possible interpretation
 - Many countries follow discriminatory practices and do not exploit well-educated females in the economy
 - This is an open and contentious issue

- But – effect may be spurious
Better fit? Is effect really smaller? Outlier pulling line (?)
Quality of Education

Some believe the quality of education is more important than quantity. Quality can be measured by test scores. The test scores used in this study...
Quality of Education

- Some believe the quality of education is more important than quantity
Quality of Education

- Some believe the quality of education is more important than quantity
- Quality can be measured by test scores
Quality of Education

- Some believe the quality of education is more important than quantity
- Quality can be measured by test scores
- The test scores used in this study...
Quality of Education

- Some believe the quality of education is more important than quantity
- Quality can be measured by test scores
- The test scores used in this study...
 - Science
Quality of Education

- Some believe the quality of education is more important than quantity
- Quality can be measured by test scores
- The test scores used in this study...
 - Science
 - Math
Quality of Education

- Some believe the quality of education is more important than quantity
- Quality can be measured by test scores
- The test scores used in this study...
 - Science
 - Math
 - Reading
Results...
Results . . .

- **Science** has a statistically significant and positive effect
Results...

- Science has a statistically significant and positive effect
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
Results. . .

- Science has a statistically significant and positive effect.
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
- On the other hand, a 1 standard deviation increase in education attainment raises growth only 0.2% per year!
Results...

- Science has a statistically significant and positive effect.
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
- On the other hand, a 1 standard deviation increase in education attainment raises growth only 0.2% per year!
- Math has a statistically significant and positive effect, but less than science.
Results...

- Science has a statistically significant and positive effect
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
- On the other hand, a 1 standard deviation increase in education attainment raises growth only 0.2% per year!
- Math has a statistically significant and positive effect, but less than science
- Reading is negative!!
Results...

- Science has a statistically significant and positive effect
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
- On the other hand, a 1 standard deviation increase in education attainment raises growth only 0.2% per year!
- Math has a statistically significant and positive effect, but less than science
- Reading is negative!!
Results . . .

- Science has a statistically significant and positive effect
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
- On the other hand, a 1 standard deviation increase in education attainment raises growth only 0.2% per year!
- Math has a statistically significant and positive effect, but less than science
- Reading is negative!! This is puzzling
Results...

- Science has a statistically significant and positive effect
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
- On the other hand, a 1 standard deviation increase in education attainment raises growth only 0.2% per year!
- Math has a statistically significant and positive effect, but less than science
- Reading is negative!! This is puzzling
- Reading is positive when included with math and science
Results...

- Science has a statistically significant and positive effect.
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
- On the other hand, a 1 standard deviation increase in education attainment raises growth only 0.2% per year!
- Math has a statistically significant and positive effect, but less than science.
- Reading is negative!! This is puzzling.
- Reading is positive when included with math and science.
Results. . .

- Science has a statistically significant and positive effect.
- A 1 standard deviation improvement in scores would raise growth 1% per year!!
- On the other hand, a 1 standard deviation increase in education attainment raises growth only 0.2% per year!
- Math has a statistically significant and positive effect, but less than science.
- Reading is negative!! This is puzzling.
- Reading is positive when included with math and science.

Overall, the test score variable is positive.
Figure 3. Growth Rate versus Test Scores
The previous discussion showed that studies have provided evidence that schooling is positively correlated with the growth rate of per capita RGDP across countries.
The previous discussion showed that studies have provided evidence that schooling is positively correlated with the growth rate of per capita RGDP across countries.

- But we need to do better to explain how schooling affects growth.
The previous discussion showed that studies have provided evidence that schooling is positively correlated with the growth rate of per capita RGDP across countries.

- But we need to do better to explain how schooling affects growth.
- There is the possibility that the causality direction is reversed: growth affects schooling so we may be measuring the wrong thing!
Some studies have shown that 19601 primary- and secondary-school enrollment rates are positively related with 1960-1985 growth in real GDP per capita.

- An increase in enrollment rates tantamount to one more year of attainment is associated with 0.30\% per year faster RGDP growth over 1960-1990 (standard error = 0.05\%).

1Note: Study done in late 1990s so looked at a long period. This allowed a generation sufficient time to grow (30 years), be educated, mature and enter the work force.
Some studies have shown that primary- and secondary-school enrollment rates are positively related with 1960-1985 growth in real GDP per capita:

- An increase in enrollment rates tantamount to one more year of attainment is associated with 0.30% per year faster RGDP growth over 1960-1990 (standard error = 0.05%)
- But higher school enrollment in 1960 may be associated with faster growth in the 1960-1985 period because growth in human capital facilitates adoption of technology.

\[^{1}\text{Note: Study done in late 1990s so looked at a long period. This allowed a generation sufficient time to grow (30 years), be educated, mature and enter the work force.}\]
Some studies have shown that 1960\(^1\) primary- and secondary-school enrollment rates are positively related with 1960-1985 growth in real GDP per capita.

- An increase in enrollment rates tantamount to one more year of attainment is associated with 0.30% per year faster RGDP growth over 1960-1990 (standard error = 0.05%).
- But higher school enrollment in 1960 may be associated with faster growth in the 1960-1985 period because growth in human capital facilitates adoption of technology.
 - Big tech boom especially in 1970s, 1980s, 1990s

\(^1\)Note: Study done in late 1990s so looked at a long period. This allowed a generation sufficient time to grow (30 years), be educated, mature and enter the work force.