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ABSTRACT

Nine macroeconomic variables are forecast in a real-time scenario using a variety of flexible
specification, fixed specification, linear, and nonlinear econometric models. All models are allowed to
evolve through time, and our analysis focuses on model selection and performance. In the context of
real-time forecasts, flexible specification models (including linear ARX and nonlinear artificial neural
network) appear to offer a useful and viable alternative to less flexible fixed specification linear models
for a subset of the economic variables which we examine, particularly at forecast horizons greater than
1-step ahead. We speculate that one reason for this result is that the economy is evolving (rather slowly)
over time. This feature cannot easily be captured by fixed specification linear models, however, and man-
ifests itself in the form of evolving coefficient estimates. We also provide additional evidence supporting
the claim that models which "win" based on one model selection criterion (say a squared error measure)
do not necessarily win when an alternative selection criterion is used (say a confusion rate measure), thus
highlighting the importance of the particular cost function which is used by forecasters and "end-users" to
evaluate their models. A wide variety of different model selection criteria and statistical tests are used to
illustrate our findings.

Keywords: Cointegration, Confusion Rate, Linearity, Model Selection, Nonlinearity, Parameter Evolu-
tion, Real Time Forecasting.
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1. Introduction and Overview

In a recent paper, Swanson and White (1996: SW) examined the usefulness of a class of artificial

neural networks (ANNs) for forecasting nine macroeconomic variables. Forecasts based on the ANNs as

well as various linear econometric models were compared to professional forecasts from the

Survey  of Professional  Forecasters (SPF: see Croushore (1993)). The analysis provided direct evidence

with regard to the usefulness of econometric models relative to economic forecasts made available by

various professional forecasters in both the private and public sectors. In order to ensure that the same

information was available for the construction of both the econometric and professional forecasts, an

ex  ante or real time experiment was conducted. Results indicated that: (i) The in-sample Schwarz Infor-

mation Criterion (SIC) is not superior to true out-of-sample forecast performance measures for selecting

models; (ii) Econometric models frequently outperform the SPF based on a variety of model selection cri-

teria; (iii) Flexible specification linear models appear to be promising, although flexible specification

nonlinear (ANN) models are not particularly useful in the context examined.

In this paper we examine the same dataset from a different perspective, and focus on a number of

related but different issues. First, we compare 5 different econometric models, each with the other, and

do not focus our statistical analysis solely on a comparison of professional forecasts with econometric

forecasts. We consider three fixed specification linear models: a random walk, a random walk with drift,

and a "best" linear autoregressive model with exogenous variables (ARX). Two flexible specification

models are also examined. They are a flexible specification linear model and an flexible specification

nonlinear model. The nonlinear model is a single hidden layer "feedforward" artificial neural network.

Only the flexible specification models are allowed to "choose" new specifications at each point in time,

while all of our models are re-estimated at each point in time using "windows" of data of varying lengths,

in order to construct sequences of what we term a "rolling window" based forecasts. In this context we

ask the following questions: (1) "Are the flexible specification models more or less susceptible to param-

eter variability than the fixed specification models?" (2) "Is it useful to allow for so much flexibility in
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our models, or do fixed specification models perform equally well?" Second, we construct models using

levels rather than differenced data. The use of levels data has the advantage that cointegration of

unspecified form is allowed for. This is particularly useful if some concern exists that cointegrating

spaces, ranks, etc. are poorly estimated (e.g. when small samples of data are used). However, the

approach has the obvious drawback that cointegrating restrictions are not explicitly estimated.

Our approach of estimating models in levels poses no problem for the univariate random walk and

random walk with drift models. However, given the nonstationary behavior of the variables, the other

models are estimated inefficiently. This leads to two questions: (1) "How well do inefficiently estimated

multivariate models perform relative to simple random walk models?" (2) "How well do our levels

models perform relative to efficiently parameterized cointegrating systems?" These questions are

addressed below, and are interesting for a number of reasons. First, parsimonious models are widely

known to forecast at least as well as more complex multivariate models for a number of economic time

series. Second, cointegrating vectors and the ranks of cointegrating spaces are difficult to estimate pre-

cisely given small samples, and this problem may be exaggerated by our use of a real-time forecasting

scenario. Third, since we are interested in forecasts, and not in conducting statistical inference on the

parameters of our models, estimating models in levels may provide a useful alternative to many more

complex estimation strategies, without having any effect on any of the statistical inferences which we

carry out. There are a number of recent papers which address some of these issues (e.g. Clements and

Hendry (1995), Hoffman and Rasche (1996), and Lin and Tsay (1996)), and we attempt to add to the dis-

cussion.

Another aspect of our experimental setup is that we directly focus on the relative merits of (i) flexi-

ble specification versus fixed specification models and (ii) linear versus nonlinear models. We compare

these types of models using a variety of statistical tests (Wilcoxon signed rank tests, market timing tests,

and forecast error based tests) as well as by directly comparing the point estimates of a number of

different model selection criteria (including forecast mean squared error, mean absolute forecast error
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deviation, mean absolute percentage forecast error, confusion rate, and mean SIC among others). By

doing so we hope to further our understanding of the relative merits of our various different modeling

strategies with respect to forecast horizon and the individual characteristics of each variable.

Our results suggest that ANN models appear to offer a useful and viable alternative to less flexible

fixed specification linear models for a small subset of the economic variables which we examine, particu-

larly at forecast horizons greater than 1-step ahead. We also provide additional evidence supporting the

claim that models which "win" based on one model selection criterion (say a squared error measure) do

not necessarily win when an alternative selection criterion is used (say a confusion rate measure), thus

highlighting the importance of the particular cost function which is used by forecasters and "end-users" to

evaluate their models. Finally, our levels models outperform random walk models and ARIMA models

for 7 of the 9 variables which we examine, suggesting that it is advantageous to estimate models in levels

(as opposed to differences), particularly when the nonstationary data being examined are cointegrated.

In summary, we adopt a rolling window approach to model selection and forecasting for "choosing"

between flexible specification and fixed specification as well as linear and nonlinear econometric models.

By doing so, we hope to contribute to the understanding of the relative merits of various econometric

modeling strategies. Contributions are also attempted in a number of other related areas. In particular, in

the context of constructing economic forecasts we ask how one may choose among the wide variety of

different model selection criteria which are available, and what the consequences of such choices may be.

We also compare five different econometric models in pairwise fashion in an attempt to determine

whether some models tend to outperform other models in a systematic manner. We place particular

emphasis on the comparison of simple models such as random walks with more complex models such as

artificial neural networks. The rest of paper is organized as follows. Section 2 discusses the data. Sec-

tions 3 and 4 outline our fixed specification and flexible specification models, while Section 5 discusses

flexible specification versus parameter evolution in the current context. Section 6 outlines estimation

strategies, and Section 7 summarizes the model selection criteria which we examine. Our results are gath-
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ered in Section 8, and Section 9 concludes.

2. Data

We use the same data as that examined in SW. However, we focus on economic data which is pub-

licly available, and do not use the SPF. For the period 1960:1 to 1993:3 we examine the following nine

quarterly U.S. macroeconomic time series (The data are available in hard copy or by email upon request):

U Civilian  Unemployment  Rate : SA,  %, Averaged

 
 monthly.

R Aaa Corporate  Bond Yield : Moody´s,  %, Averaged
 
 monthly.

IP Industrial  Production  Index : SA,  index,  1987=100, Averaged
 
 monthly.

NGNP Gross  National  Product : SA,  $billions,  Quarterly.

 Corporate  Profits After  Taxes : SA,  $billions,  Quarterly.

RGNP Gross  National  Product : SA,  $billions  1987, Quarterly.

PCE Personal  Consumption  Expenditures : SA,  $billions  1987, Quarterly.

BI Change  in Business  Inventories : SA,  $billions  1987, Quarterly.

Net  X Net  Exports  of Goods and Services : SA,  $billions  1987, Quarterly.

A significant feature of this data set is that all of the data are as first reported in each successive

issue of the Survey of Current Business. We call such "first available" data the "unrevised" data. The data

are quite different (particularly for the non financial variables) from data which have been periodically

revised over time (which we will call revised data), and which are available through various on-line

sources such as CITIBASE. What makes this data collection strategy different is that it allows us to for-

mulate and estimate econometric models at time period t-1, for instance, using only data which were

available prior to period t. This allows us to guard against future information creeping into our

econometric specifications, and thus our forecasts, through data revisions, definitional changes, bench-

mark revisions, and seasonal two-sided moving average adjustments, for instance. Specifically, we avoid

using data available after period t-h, where h is the horizon of our forecasts, In this respect we are con-

structing ex  ante or real time forecasts, thus addressing the data revision problems pointed out by Fair

and Shiller (1990). 1
__________________

1 Our approach is to use only the "first available" data. Thus, our data are only real-time in the sense that were we to gather them from
CITIBASE, say, then the older data would have been revised, seasonally adjusted, etc., many times. This process in turn would potentially
allow future information to creep into past observations, thus ensuring that our data were not "real-time". Further, the newer data would be
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This particular type of data set is of value when comparing econometric forecasts with professional

forecasts (which are necessarily real-time) as in SW. However, real-time forecasting using unrevised

data should be of interest for a number of other reasons also, and hence we use such a dataset here. For

instance, traders of stocks, bonds and commodities in various business settings need to react very quickly

to changing market information. This naturally entails reacting to new economic information as soon as it

becomes available. Regardless of whether the traders obtain their "new" information from public sources

such as government agencies, or from private forecasting firms, the forecasts they receive are real-time,

insofar as very recent information was used to construct the forecasts. As an example, note that many

relevant economic variables (such as gross national product, industrial production, exports, imports,

inventories, sales, and employment) are subject to revision, and are periodically updated (in some cases

these updates continue ad infinitum). Thus, the information which traders react to is at least partially

"unrevised" in the sense discussed above. In this context, if we are attempting to provide econometric

forecasts which are meant to compete with forecasts gotten from other sources (such as professional fore-

casting services or, simply, individuals acting on "gut" instinct) it seems reasonable to use the same (at

least partially unrevised) information which is available to our competitors. Thus, at least in some cases

the use of unrevised data is preferable to revised data. Given these arguments, it follows that construct-

ing our econometric models using only fully revised data, and then later plugging unrevised data into the

models to produce forecasts does not make sense, for example. It seems more reasonable to use the same

type of data to estimate the model as we later feed into the model to yield economic forecasts.

3. Nonflexible Specification Models

__________________

unrevised, while the older data would be revised many times. This adds further complexity to the picture, as one is then left wondering whether
one is forecasting unrevised or revised vintages of data. Our approach avoids "mixing up" the data in this way, but suffers from using less
information than may actually be available, if a new data set were collected for each variable at each point in time. In summary, we attempt to
forecast only first available information (which is only one vintage of data which may be of interest to policy makers, etc.), and ensure that
future information has not been allowed to creep into the dataset which we use at each point in time to construct our forecasts. It should
perhaps be stressed that in order to construct a truly "real-time" dataset, we would need 45 datasets for each variable. In such cases, users can
form models to extract information from past revisions, etc.. Some references which contain related discussions about data revisions, extracting
information from multiple vintages of data, and preliminary data error include: Boschen and Grossman (1982), Maravall and Pierce (1983),
Mariano and Tanizaki (1994) and Patterson (1995).
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Some of the models and model selection criteria discussed in Sections 3, 4, 6 and 7 are similar

and/or related to those in SW. For completeness, some parts of the descriptions of the models, etc. are

taken from SW. For further details, the reader is referred to SW. The linear models specified in this

paper are all special cases of the following autoregressive model with exogenous variables (ARX):

yt +h1  =  0  +  
i =1

K1

 i  yt i   +  
i =1

K2

 i  xt i   +  
i =1

K3

 i  zti   +  ut+h1, (1)

where yt is one of the nine macroeconomic variables, h is the horizon of our forecast, and ut +h1 is a

scalar innovation. The selection of regressors (xt and zt) is discussed below. (ARIMAX version of (1)

were also estimated, and results are discussed below). We estimate a total of 22 versions of (1). The first

model corresponds to a random walk, where 0 = 0, 1 = 1, i  = 0, i =2,..., K 1 and i  = i  = 0, i =1,...,5.

A second model allows for a nonzero drift term, so that 0  0 in general. The next five models are

AR(K1) processes, where K1=1,...,5 and i  = i  = 0, for all i. The remaining versions of (1) which we

examine are ARX models in which: (i) K1=K2=1,...,5 and i  = 0, i =1,...,K 3, (ii) K1=K3=1,...,5 and

i  = 0, i =1,...,K 2, and (iii) K1=K2=K3=1,...,5. This group of models augments the models examined in

SW by including a random walk with drift model in both the "pre-sample" model selection stages and the

forecasting stages of our experiment. One advantage of this approach is that we can directly compare our

flexible specification linear and nonlinear models with random walk models. This is a useful comparison,

as random walk models have been seen to perform especially well relative to a wide class of more com-

plex alternatives when forecasting macroeconomic variables. Furthermore, the random walk models

explicitly impose unit roots, although they do not allow for cointegration among the data. On the other

hand, the ARX models allow for cointegration of unspecified form, as the equations are estimated using

levels data (see discussion below). 2 We consider these linear models as special cases of a fairly broad

array of forecasting models, while realizing that various other linear models that we don’t examine here

are also available. Below, the random walk and random walk with drift models are denoted using
__________________

2 It should be noted that we do not consider issues related to seasonality here (for an interesting survey on seasonality see Franses (1995)).
Instead we take the approach of using seasonally adjusted data in our analysis, which we believe is not unreasonable, given that much U.S. data
are available only as seasonally adjusted series. However, issues related to spurious nonlinearity, for example, arise, as discussed by Ghysels,
Granger, and Siklos (1996), among others.
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obvious notation, while the other models are referred to by the ordered triplet (K1,K2,K3), and are called

LINEAR ARX MODELS.

4. Adaptive Artificial Neural Network Models

We examine the subset of the class of flexible nonlinear models called artificial neural networks

commonly known as single hidden layer "feedforward" networks. A primary motivation for the ANN

models is an effort by cognitive scientists to emulate the computational structure of the human brain. Pro-

gress to date has resulted in the development of network models that are in many respects similar, but

potentially richer than the wide variety of flexible functional forms and semi-parametric models familiar

in econometrics. 3 In economics, ANN models have been used in a variety of financial applications, for

example. For some discussion of these applications see White (1988, 1989), Moody and Utans (1991),

Dorsey, Johnson and van Boening (1994), Kuan and White (1994), and Swanson and White (1995).

ANNs have also been used to forecast and model macroeconomic data in recent years (for example, see

Moody, Levin and Rehfuss (1993), Maasoumi, Khotanzad and Abaye (1994), Häfke and Helmenstein

(1994), Soni, Otruba, Häfke and Natter (1995) and Swanson and White (1996)). The ANN regression

models considered here have the form:

f(w,  ) = w̃´ + 
j =1

q

 G(w̃ ´ j) j (2)

where w̃ = (1, w´)´ is a (column) vector of explanatory variables,

w = (yt 1, ... , yt K1, xt 1, ... , xt K2, zt1, ... , ztK3)´,

 = (´, ´, ´ )´,  = (1, . . . ,q)´,  = (´1, . . . ,q
´ )´, q is a given integer, and G is a given nonlinear

function, in our case, the logistic cumulative distribution function (c.d.f.) G (z) = 1/(1 + exp( z)). The

variables w correspond to the variables considered in the linear forecasting models described above, and

the number of "hidden units", q, is set equal to 5. Clearly, (2) is a generalization of (1), and is equal to (1)

__________________
3 Other nonlinear methods are also often applied in economics. For example, Mulhern and Caprara (1994) examine the usefulness of a

nearest neighbor model for forecasting market response. An interesting discussion of the usefulness of nonlinear models is given in Ramsey
(1996), while many examples and further references are contained in Brock, Hsieh and LeBaron (1991), Granger (1993), and Granger and
Teräsvirta (1993).
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when i  = 0, i =1,...,5. We will attempt to determine whether inclusion of the nonlinear terms enhances

forecasting ability, assuming that overfitting is properly avoided.

A network interpretation of (2) which is also given in SW is as follows. "Input units" send signals

w 0(= 1), w 1, . . . ,wr over "connections" that amplify or attenuate the signals by a factor ("weight")

ji , i =0, . . . , r, j =1, . . . , q. The signals arriving at "intermediate" or "hidden" units are first summed

(resulting in w̃´j) and then converted to a "hidden unit activation" G(w̃´j) by the operation of the "hid-

den unit activation function", G. The next layer operates similarly, with hidden activations sent over con-

nections to the "output unit." As before, signals are attenuated or amplified by weights j and summed.

In addition, signals are sent directly from input to output over connections with weights . A nonlinear

activation transformation at the output is also possible, but we avoid this here for simplicity. In network

terminology, f (w, ) is the "network output activation" of a "hidden layer feedforward network" with

"inputs" w and "network weights" . The parameters j are called "input to hidden unit weights," while

the parameters j are called "hidden to output unit weights." The parameters  are called "input to output

unit weights." It should perhaps be noted that Hornik, Stinchcombe and White (1989, 1990) Carroll and

Dickinson (1989) and Funahashi (1989), among others, have shown that functions of the form (2) are

capable of approximating arbitrary functions of w arbitrarily well given q sufficiently large and a suitable

choice of . This property is known as "universal approximation", and is an appealing characteristic of

ANN models, perhaps in part accounting for the reported success of such models.

Versions of equation (2), with the number of hidden units set to zero are also estimated. These

models form our class of flexible specification linear models, and are estimated much the same way as

the ANN model (as explained in the next section), except that i  = 0, i =1,...,5. In this way we attempt to

differentiate between potential gains brought about by the inclusion of the hidden units from gains due to

the flexible nature of our ANN models.

5. Model Adaptation versus Parameter Evolution
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Each of the models in our experiment is re-estimated 45 times in order to construct a sequence of 45

quarterly 1 and 4-quarter ahead forecasts. In this way, the parameters in all of the models are all allowed

to evolve over time. One feature of re-estimation strategies such as this is that if the "window" or sample

of data used to estimate the model is allowed to increase over time, then the system may be seen to

"evolve" to some final form (where by final form we mean that a model has a fixed specification and rela-

tively constant parameters). Examples of analyses conducted using increasing windows of data include

Fair and Shiller (1990), Leitch and Tanner (1991), Pesaran and Timmerman (1994a), Thoma (1994) and

Swanson (1996). Here we allow for the underlying relation between the economic variables to be evolv-

ing over time, but perhaps not to some final form. In particular, we use fixed window sizes of 40, 68 and

76 quarters of data in our regression estimations. Thus, while the sample changes with each period, it

does not increase in size over time. In this scenario, the system may still evolve to some final form as in

the increasing windows case (assuming that the window sizes are sufficiently large). However, our

approach has the added feature that if the system is not evolving to some final form, then the model is

allowed to update by discarding older and less relevant observations. To examine parameter evolution in

the various models we track the parameter values of all of the regressors used in each of our models for

the entire 45 quarter ex ante forecast sample period. We hope to add thereby to the discussion concern-

ing the evolutionary nature of the parameters and the usefulness of rolling windows in econometric

models.

Our use of rolling windows in the context of model (1) does not allow for the econometric

specifications of our models to change over time. In fact, it seems reasonable that if the parameter values

are changing, then perhaps the "best" econometric specifications with respect to forecasting may also be

changing over time. Models which have the characteristic that new specifications are chosen at each

point in time are called "flexible". From (2) we have flexible linear as well as nonlinear models. By

estimating these flexible models in addition to a wide variety of fixed specification models we hope to

find evidence pertaining to the relative merits of the two different classes of models. For example, if the
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fixed specification models forecast better than the flexible specification models, and exhibit little parame-

ter evolution, then we have direct evidence that the flexible specification models are perhaps too general

for the purpose at hand. As one crude measure of model flexibility, we keep a running count of the total

number of parameters estimated by the flexible specification models. One shortcoming of this approach

is that the number of parameters estimated may remain stable while the model specification is changing.

Thus, the variation in the number of parameters estimated is a conservative estimate of the extent to

which model flexibility is being taken advantage of. Also, even if the flexible models change each

period, there is no guarantee that the "flexible" model forecasts will be superior to those produced by a

"fixed specification" model. The same argument holds for the examination of parameter evolution. Thus,

it should be stressed that our examination of model flexibility and parameter evolution is not meant as a

substitute for our forecast comparison. Rather, it is meant to augment our knowledge concerning the

empirical characteristics of the various forecast models examined.

6. Estimation Strategies

The parameters of the linear models are all estimated using standard least squares, with all vari-

ables entering into the models in levels. For the relevant cases (which do not include the random walk

models) we make the assumption that the variables are cointegrated. 4 In this sense, the single equations

that we estimate can be seen to arise from inefficiently estimated vector error correction (VEC) models.

In our real-time scenario, this procedure has at least two advantages. First it allows us to avoid re-

estimating the rank of any potential cointegration between the variables at each point in time, while still

accounting for any cointegration that may be present, albeit in an inefficient way. Second, we need not
__________________

4 This assumption is borne out by the data. In particular, augmented Dickey-Fuller tests were applied to each series, and the null hypothesis
that each series was I(1) failed to reject for all 9 variables. We then used Johansen’s trace test statistic to estimate the rank of the cointegrating
space for each of the nine models, using data up until 1982:2 (which is the last period before the start of our out-of-sample period). These tests
were carried out using the lag order suggested for our "best" linear models, and were constructed for each of the five standard deterministic
trend specifications commonly used in the context of Johansen’s methodology. For 5 of the models, cointegration was found regardless of trend
specification, while for 2 of the models cointegration was found for three out of 5 trend specifications. For the other two models (interest rates
and net exports), the "best" linear model was the random walk, and so no cointegration test statistics were constructed. This suggests that
levels models (or cointegrated vector error correction models) are relevant for our analysis, and that differenced data models may be
inappropriate. In order to obtain a clearer picture of the usefulness of differenced data models, we re-did our analysis using ARMA models with
differenced data instead of AR models in levels. Based on MSE criteria, the AR models always outperformed the ARMA models, except for IP
in the h=1 case. We take this to constitute evidence that the cointegration among the data suggest that using differences is inappropriate.
However, as mentioned above, our analysis is necessarily limited by the particular classes of econometric models which we consider.
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re-estimate any potential cointegrating vectors at each point in time. This is particularly advantageous for

the small finite samples which we are considering here, as the Johansen (1988) and Johansen and Juselius

(1990) maximum likelihood method has been shown to produce widely varying (and perhaps imprecise)

estimates using the rolling window approach adopted here (see Swanson (1996)). Furthermore, a number

of recent papers suggest that using levels models may be reasonable in many cases, when the precise

form of the cointegrating space is unknown. 5 Finally, as we are interested only in out-of-sample perfor-

mance and model selection, we do not conduct any inference on the regression coefficients from our in-

sample estimations, so that the non-standard distributions of the coefficients do not directly affect our

analysis. However, given the above discussion, we suggest that further study into this and related issues

seems to be warranted, and is the subject of ongoing research. Of final note is that the variables chosen

as predictor variables in each of our regression models were obtained by using a "training" set of data

from 1960:1-1982:2 to determine which macroeconomic variables were most closely related, in-sample,

in terms of both cointegrating properties and in-sample fit.

The linear fixed specification regression models for 40, 58 and 76 quarter windows of data are

evaluated using sequences of out-of-sample 1-quarter and 4-quarter ahead forecast errors. The forecast

errors are generated by performing the regressions over a given window terminating at observation th,

say, and then computing the error in forecasting yt for h=1,4 using data available at time t  h and the

coefficients estimated using data in the window terminating at time th. Each time the window rolls for-

ward one period, a new out-of-sample residual is generated, simulating true out-of-sample predictions

and prediction errors made in real-time by this process. For our study, the smallest value for th

corresponds to the second quarter of 1983 for h=1 (and the third quarter of 1982 for h=4) while the larg-

est corresponds to the second quarter of 1993 for h=1 (and the third quarter of 1992 for h=4). This
__________________

5 In particular, Hoffman and Rasche (1996) conclude that if there is an advantage to using cointegration models (CIMs) instead of levels
models (LMs), it is usually at longer forecast horizons. Lin and Tsay (1996), on the other hand, find that CIMs perform well in Monte Carlo,
when the "correct" constraints are placed on the system. However, based on actual data, the results are very mixed, with CIMs doing quite
poorly in many cases. Clements and Hendry (1995) also contains empirical evidence based on forecasts of M1 which suggests that there is little
to choose between CIMs and LMs, although they find using Monte Carlo that gains from imposing long-run constraints become more apparent
at small estimation sample sizes. One result which seems clear among these papers, though, is that pure difference models perform quite
poorly.
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staggered timing allows us to generate sequences of 45 out-of-sample 1-quarter and 1-year ahead forecast

errors based on forecasts for the same period - 1982:3-1993:3.

The ANN estimation involves first performing forward stepwise linear regression, with regressors

added one at a time until no additional regressor can be added to improve the SIC. The linear regression

coefficients are thereafter fixed. Next, a single hidden unit is added (i.e. q is set to 1), and regressors are

selected one by one for connection to the first hidden unit, until the SIC cannot be improved any more.

More hidden units are sequentially attached to the network as needed, in order to maximize the in-sample

SIC value at each point in time. This procedure is repeated using the various window lengths before each

forecast is constructed. A final feature of our ANN estimation strategy is that it is possible to have no

hidden units chosen. In this sense, the SIC-best model may be linear for some periods, and perhaps non-

linear for others. 6 The linear flexible specification models were estimated in much the same way as the

ANN models, except that no hidden units were allowed to enter into any final specifications. This is an

important feature of our analysis, as it underscores a more subtle difference between our flexible

specification and fixed specification linear models. In particular, the fixed specification models are fixed

over time, with the "best" fixed specification models chosen based on a "training" set of data, while the

flexible specification models evolve through time based on an in-sample model selection criterion. For

this reason we "tip the scale" in favor of the linear fixed specification models by reporting results not only

for the "best" model, but also for a random walk and a random walk with drift model. Note, however, that

simply reporting the forecasting results from all of the estimated models would probably severely bias

our experimental results, as the preferred forecasting models might mistakenly be equated with the

models exhibiting the most appealing model selection statistics, ex post.
__________________

6 Our approach to nonlinearity is to compare various models from a forecasting perspective. If the nonlinear models win, then we have
direct evidence of the usefulness of the nonlinear model, without needing to initially test for nonlinearity. However, nonlinearity tests are
useful in other respects, as they may help us to form initial expectations concerning whether or not our ANNs will perform well, for example.
For this reason we constructed BDS, RESET, and White test statistics. The latter two of these tests may be viewed as tests of overall model
specification. However, as nonlinearity is one form of misspecification against which they have been shown to have power, we feel that the tests
are of interest. Our findings are based on initial linear ARX regressions which assume the lag order used in the paper. The sample used ends in
1982:2. White tests are constructed with and without cross product terms; RESET tests use 1, 2, and 3 fitted powers of the dependent variable;
and BDS tests are based on m=2. For 7 of 9 series, we obtain rejections for at least two of three types of tests. The two exceptions are  and
RGNP. (Detailed results are available from the corresponding author.)
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7. Evaluation Methods

7.1 Model Selection Criteria

The MSE is one of the more popular measures of forecast accuracy. We compute the forecast mean

squared error of the 45 forecast errors for each model, window and horizon, h=1,4.

MSE   =  
t =1

T

ûI,t
2

/ T, (3)

where û is the forecast error, I corresponds to any one of the estimated econometric models, and T is the

post-sample size, 45 in our case. (Related measures which are also calculated include mean absolute

forecast error deviation - MAD, and mean absolute percentage forecast error - MAPE). Even though the

MSE (as well as MAD and MAPE) is quite popular, at least two potential drawbacks of the criterion are

worth mentioning. First, squared (or any other particular) error loss measures may not be closely related

to other relevant cost functions. This is pointed out by Leitch and Tanner (1991), Stekler (1991), Diebold

and Mariano (1994) and Swanson and White (1995), among others. Leitch and Tanner and Swanson and

White find that the MSE is not closely related to profit measures in the context of an analysis of the term

structure. Stekler examines methods for answering eight questions which can be asked about the quality

of a set of macroeconomic forecasts, and discusses some of the criteria which we use here. Diebold and

Mariano develop statistical tests for a broad class of error loss measures. A second potential drawback of

the MSE is that it is not generally invariant to nonsingular scale-preserving linear transformations of the

model in the context of multi-step forecasts or nonscalar processes, as pointed out by Clements and Hen-

dry (1993) and discussed further in Clements and Hendry (1995). For these reasons, we also consider a

number of other related (and unrelated) model selection criteria in our experiment. One closely related

criterion which we calculate is Theil’s U statistic, which is measured as:

U  =  �� � � � �
t =1

T

(yI,t   yI,t h)2

(ŷI,t   yI,t)
2

____________  ,

and can be viewed as the root MSE of a forecast divided by the root MSE of a naive no change forecast.

The statistic takes the value 0 when the prediction is perfect, and unity when the MSE of the predicted
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change equals the MSE of the no change prediction. When comparing forecasts, Theil’s U is ordinally

equivalent to the MSE selection criterion. Thus, in our context, Theil’s U only provides an alternative

method by which the random walk model can conveniently be compared with our other methods based

on the point MSE estimates. However, because Theil’s U has been reported in many past studies, we

include it here.

An alternative model selection criterion, which may be particularly useful to market analysts trying

to forecast the next economic turning point, for example, or to stock traders attempting to forecast the

future price movements of particular stocks or futures contracts is the confusion rate. In our case, the con-

fusion rate is calculated from a 2x2 contingency table. However, contingency tables can clearly be more

complex. For detailed discussions of confusion rate measures, the reader is referred to Henriksson and

Merton (HM, 1981), Schnader and Stekler (1990), Pesaran and Timmerman (1992, 1994b) and Stekler

(1994).

An example of a confusion matrix taken from SW is

  
predicted

  
  
  

  

down
up
  
  

  

�
� 12

23  7
3�

�

  
up  down

actual

(4)

The columns in (4) correspond to actual moves, up or down, while the rows correspond to predicted

moves. In this way, the diagonal cells correspond to correct directional predictions, while off-diagonal

cells correspond to incorrect predictions. We measure overall performance in terms of the model’s "con-

fusion rate," the sum of the off-diagonal elements, divided by the sum of all elements. One question

which we attempt to answer using our "least confused" models is whether such models are the same as

those chosen as best based on other out-of-sample forecast performance measures such as the MSE,

MAD and MAPE.

Related to the confusion matrix and to standard 2-test of independence in the context of confusion

matrices (see discussion below), we report the  coefficient.  values are calculated as
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  =  �� � � �2 / T . (5)

For our contingency tables, in which the number of rows and columns are each two,  ranges from 0

when the variables are independent to 1 when the variables are perfectly related, and is thus a measure

which can be used in a loosely analogous way as the in-sample multiple coefficient of determination. It

should be noted that the maximum value of  exceeds unity when a contingency table contains more than

two rows and two columns, and hence  is used primarily with 2x2 tables.  is sometimes referred to as a

measure of the degree of diagonal concentration. This is because when two diagonally opposite cells are

both identically 0,  = 1. One reason for reporting  is that the value of our 2 statistic is directly propor-

tional to the sample size, 45 in our case. Thus, the 2 test is particularly appropriate for ordinal rankings

with T fixed. Overall, calculations using (5) provide a shortcut for determining how confused our models

are, and for providing initial evidence as to whether the model is useful as a predictor of the sign of

change in a particular macroeconomic variable.

Our final model selection criterion is an in-sample based complexity penalized likelihood measure.

In particular, we report the geometric mean of the SIC (see Schwarz (1978)), which is hereafter referred

to as the MSIC. For each of our 45 samples, the SIC is calculated as

SIC = log s2 + p(log n)/n ,

where s 2 is the regression mean-squared-error and can be interpreted as a goodness of fit measure. The

second term is the complexity penalty which depends on the number of parameters estimated, p, and on

the window size (n=40, 58 or 76). However, as pointed out by Swanson and White (1996), the in-sample

MSIC does not appear to offer a convenient shortcut to true out-of-sample performance measures for

selecting econometric forecasting models, and as such is somewhat limited in the current context. We

nevertheless report the MSIC values for a number of reasons. First, because our flexible specification

models are chosen so as to minimize SIC values at each point in time, we expect that the MSIC values for

our flexible specification models will be lower than those reported for our other forecasting models.

Reporting the MSIC values allows us to confirm this expectation. Second, there are some cases where the
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flexible specification models do outperform the fixed specification models based on MSE, MAD, MAPE

and Confusion Rate measures. As such, the evidence is not fully against using SIC measures as con-

venient shortcuts to selecting forecasting models. (One early treatment of in-sample model selection cri-

teria and forecasting is given in Engle and Brown (1986).) In this vein, we include MSIC values at least

partly because we feel that the use of in-sample model selection criteria in general (and not just the SIC)

is still an open issue, and merits further attention.

7.2 Tests Based on Model Selection Criteria

There are a number of methods for testing which forecasting models are superior based on MSE.

One such test is discussed in Granger and Newbold (1986). Assuming normality, and that the forecasts

are unbiased, when 1,t  = ûI,t   ûII,t is contemporaneously uncorrelated with 2,t  = ûI,t  + ûII,t the null

hypothesis of equal forecast accuracy is the same as zero correlation between 1,t and 2,t , where I and II

denote the two competing forecasting models. Setting r = corr(1,t  , 2,t), gives a standard z-statistic for

correlation of the form: z*  =  ⁄1
2log[(1 + r)/(1  r)], where (T1)z* is a standard normal random vari-

able. Many generalizations of this basic test are available. For example, Meese and Rogoff (1988)

modify the Granger-Newbold test by allowing for serial correlation, Mizrach (1991) further relaxes a

Gaussianity assumption used in the Granger-Newbold and Meese-Rogoff tests, and Kolb and Stekler

(1993) discuss a MSE regression test.

Here we use a test of equal forecast accuracy due to Diebold and Mariano (1995) which can easily

be applied to a wide variety of criteria, including MSE, MAD, and MAPE. The "loss differential" test

uses a sample path {dt}t =1
T of a loss differential series, and is based on the following large sample statis-

tic:

D   =   d
_

 / [ T12 f̂d(0) ]      N (0,1)

where d
_

is the sample average of dt , and 2fd(0) is estimated in the usual way as a two-sided weighted

sum of available sample autocovariances. In particular,
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2 f̂d(0)  =  
=(T1)


(T1)
l

�
�
� S (T)

_____ 	
�


̂d(),

̂d()  =  
T
1__

t = | |+1

T

(dt   d
_

)(dt | |   d
_

),  and

d
_

  =  
T
1__

t =1

T

[g(ûI,t)  g(ûII,t)],

where l
�
�
� S (T)

_____ 	
�



is the lag window, S (T) is the truncation lag, and examples of g ( . ) are given below.

Following Diebold and Mariano’s suggestion, we use a uniform lag window defined by

l
�
�
� S (T)

_____ 	
�



  =  
�
�
�    0     otherwise

   1     for  | (/S (T)) |     1 ,

and assume (h1) dependence for our h-step ahead forecasts so that only (h1) sample autocovariances

need be used in the estimation of fd(0) and S (T)=(h1). However, it should be noted that this assump-

tion can be relaxed, and parametric methods can be used to estimate fd(0), for example. One appealing

attribute of the loss differential test is that the asymptotic normality of D requires only that dt is covari-

ance stationary and short memory. We define our loss differential series (i.e. g( . )) as

dt   =  ûI,t
2

  ûII,t
2

, for the MSE test;

dt   =  | ûI,t |   | ûII,t | , for the MAD test; and

dt   =  | (ŷI,t / yt)  1 |   | (ŷII,t / yt)  1 | , for the MAPE test.

We also consider a nonparametric test which does not assume normality and essentially requires

only that the distribution of dt is continuous. In particular, Wilcoxon signed rank test statistics (see

Bickel and Doksum (1977)) are calculated by pooling the results of various selection criteria (MSE,

MAD and MAPE) across variables. This is meant to provide an overall flavor for the usefulness of one

type of econometric model versus another, independent of which macroeconomic variable is used, and

acts as a further guide for comparing the potential benefits of our various forecasting models.
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Assume that we wish to compare the performance of the forecasts of each of our five final forecast-

ing models with each other. We assume that we have independent pairs (i.e one pair is the MSE for the

random walk model and the MSE for the random walk with drift model for a single variable over the

entire forecast period) corresponding to the nine macroeconomic variables. Then we construct the

difference between our "control" (the random walk model MSE values), and our "treated" model (the ran-

dom walk with drift model MSE values). In this scenario we have ten different control-treatment combi-

nations corresponding to the ten different pairwise model comparisons. The null hypothesis is of no

"treatment effect", assuming that the differences between the MSEs for each variable are symmetrically

distributed about 0. Define Zi = MSSI,i   MSSII,i , i=1,...,NV, where MSS is the value of the particular

model selection statistic being examined, and NV is nine. The Wilcoxon signed rank test uses the signs

of the Zi, and the ranks of the | Zi | , and is thus a more sensitive distribution-free test than the sign test, for

example. The signed ranks preserve the order relationship on each side of 0 and with respect to 0. Let Ri

be the signed rank of Zi. Then for example, if Z = (200, 300, 400, 500, 600), we have

R = (1, 2, 3, 4, 5). Assuming that the population distribution of the Ri , say F, is continuous and sym-

metric about 0, then

W   =  ⁄1
2

i =1

NV

Ri  + 
4

NV (NV + 1)___________  =  
i =1

S

Ti  , (6)

where Ti are the ordered positive Ri and S is the observed number of positive Zi. The distribution of W in

(6) can be approximated as N (0,1) with approximate critical values for NV > 16 as follows:

4
1__NV (NV + 1) + 

�
�
� 24

1___NV (NV + 1)(2NV + 1)
�
�
�

⁄1
2

z(1  ),

after appropriately standardizing W using the variance given by Var(W) =
24
1___NV (NV + 1)(2NV + 1). The

distribution of W for cases where NV  16 can be tabulated by noting that

P [T1 = t1, . . . , Ts = ts, S = s]  =  
2NV

1____ ,

where (t1, . . . , ts) , t1 <  . . .  < ts is the set of possible values of (T1, . . . , Ts).
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Turning now to our confusion rate criterion, recall that since (4) is simply a 22 contingency table,

the hypothesis that a given model/window combination is of no value in forecasting the direction of spot

rate changes can be expressed as the hypothesis of independence between the actual and predicted direc-

tions (as discussed in Pesaran and Timmerman (1994b) and Stekler (1994)). Pesaran and Timmerman

(1994b) show that the test of market timing (in the context of forecasting the direction of asset price

movements) proposed by HM is asymptotically equivalent to the standard 2-test of independence in a

22 contingency table, when the column and row sums are not a priori fixed (in our analysis the column

and row sums are not fixed). When the column and row sums are fixed, Pesaran and Timmerman (1994b)

further show that the HM-test of market timing is better interpreted as an exact test of independence

within the framework of a 22 contingency table. We examine confusion matrices, confusion rates, and

both the HM p-values and the standard 2-test of independence p-values. It should be noted that a

finding that a model rejects the null hypothesis of independence is direct evidence that the model is use-

ful as a predictor of the sign of change in a particular macroeconomic variable. The 2-test of indepen-

dence is calculated as

2  =  
i =1

k

fei

(foi
  fei

)2
_________ ,

where foi
is the observed number in a given cell of (4), fei

is the expected number in a given cell of (4),

and k is the number of cells, 4 in our 2x2 case. In our example, for the uppermost left cell (with entry 23)

we have that (i) the probability of actual up is 35/45=0.78, (ii) the probability of predicted up is

26/45=0.58, (iii) the joint probability of actual up and predicted up is 0.78x0.58=0.45, (iv) hence the

expected number for the upermost left cell is 20.4.

Using all of the above tests, we compare each of our models in pairwise fashion, so that statistics

are calculated for each of ten different pairwise "competitions". In this manner, we compare (i) linear

fixed specification and linear flexible specification models, (ii) linear fixed specification and nonlinear

flexible specification models and (iii) linear flexible specification and nonlinear flexible specification

models. These comparisons are done on a variable by variable basis for each of the 9 macroeconomic
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series.

8. Experimental Results

8.1 Model Comparison Results Using MSE, MAD, MAPE and Confusion Rate

A number of interesting results emerge when comparing the random walk (L1), random walk with

drift (L2), "best" linear (L3), flexible specification linear (L4) and flexible specification nonlinear (NN)

forecasting models. Table 1 reports the results of loss differential tests based on MSE. (Complete empiri-

cal results are available upon request from the authors - e.g. an earlier version of the paper included loss

differential test results for MSE, MAD, and MAPE.) There are 10 columns of p-values corresponding to

ten pairwise model comparisons under the null hypothesis of equal forecast accuracy. For example,

column 1 reports results for the comparison of NN (the ANN model) versus L1 (the random walk without

drift model). For the first variable, unemployment (U), and for h=1, the p-value is 0.061. Thus, at a 6.1%

level of significance we reject the null hypothesis that NN and L1 are equally accurate when used to fore-

cast U, based on the MSE criterion. The "winning" model appears in brackets beside any p-values which

are less than 0.10. Thus, in our example, L1 is seen to outperform NN for forecasting U based on the

MSE. Whenever the flexible specification nonlinear model chose no hidden units for any of the 45 fore-

casts in the ex ante forecast period, then the L4 and NN results are necessarily identical. For these cases,

and for all related duplicate cases (e.g. when L2 versus L4 is exactly the same as L2 versus NN), dashes

appear in place of the usual p-values.

Upon examination of the MSE (as well as MAD and MAPE) -best models based on loss differential

test p-values the following models appear to perform well against their competitors in the current context.

Unemployment and interest rates appear to be well characterized as random walks at forecast horizon of

h=1, although there is little to choose among the 5 competing forecasting models for these two variables

at a 1-year forecast horizon. However, when examining MAD and MAPE (results not included here), the

interest rate variable appears best characterized as a random walk at both forecast horizons. In particular,

trending variables are generally characterized better as random walks with drift than as random walks
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(not surprisingly). It should be reiterated, though, that comparisons based on other criteria such as confu-

sion rates may result in the choice of a different model. For instance, Swanson and White (1995) find that

artificial neural network models are often least confused when used to forecast the direction of change of

the spot interest rate. At the opposite end of the spectrum from interest rates is industrial production,

where the random walk model is invariably beaten by all of L2, L3, L4 and NN, with little to choose

between the latter models at h=1 and h=4. 7 However, at h=4 the flexible specification nonlinear model is

often beaten, while the flexible specification linear model remains a strong candidate for providing the

best forecasting model. At forecast horizons h=1,4, both of the GNP variables generally favor L3, L4 and

NN, with L4 appearing to be a slightly stronger candidate for overall "winner" than L3 and NN. For cor-

porate profits variable (), the random walk model seems to perform particularly poorly, while it is

difficult to choose between L3 and L4 when attempting to specify a "best" model. For the change in busi-

ness inventories variable there is little to choose among the models based on MSE, although the flexible

specification linear model clearly dominates at both forecast horizons when MAD and MAPE loss

differential test results are examined. Overall, then, there are cases where each of the models "wins".

Nevertheless, based on the loss differential test statistic for MSE, MAD, and MAPE, the flexible

specification linear and nonlinear models seem to be beating the rest of the models around 50% of the

time. The exceptions to this are interest rates, net exports and unemployment.

Table 2 reports Wilcoxon ranked sign test statistic values, associated p-values, and lists the "win-

ning" model in brackets for p-values of less than 0.25. (Analogous results based on the sign test are

available from the authors.) This rather high p-value was used because we have only nine matched pairs

(corresponding to the nine variables) in our sample. Thus, based on the binomial distribution, it would be

very difficult to reject the null hypothesis (that the model perform equally well) any of the time at a 5%

level, say, as statistic values of only 1 or 9 would suffice. Of course, observing a statistic value of 1 or 9

in our context would be startling, given the diverse nature of our group of variables. Furthermore, since
__________________

7 For h=4, this assertion is made because L2,L3,L4, and NN "win" based on MAD and MAPE, even though only L2 and L3 "win" based on
MSE.
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we are attempting with these tests only to capture an overall feel for which models are performing well,

setting the size of the test at 0.25 does not seem unreasonable. At the 1-quarter forecast horizon, there is

little to choose between the models based on the MSE, although L4 and L2 appear to be overall winners

based on MAD and MAPE, respectively. This result is only loosely consistent with the results of the loss

differential tests, and can probably be attributed to the "pooled" nature of the ranked sign test. Based on a

1-year forecast horizon, NN and L2 perform well based on MAPE; L3 is the "winner" based on MAD;

and L2, L3, L4, and NN are all "winners" based on MSE. These results, then, suggest that flexible

specification models are useful (with NN models being more useful at longer forecast horizons), although

each model performs well in a number of cases based on the different criteria examined.

In order to look at our models from another perspective, we also compared them based on simple

point estimates of MSEs, MADs, MAPEs and Confusion Rates. While this approach does not constitute

any sort of valid statistical test, it does help to shed light on the relative merits of the alternative forecast-

ing models. In Table 3, "winners" from a competition between the flexible specification (L4 and NN) and

the fixed specification (L1, L2 and L3) models are reported. The table clearly suggests that the flexible

specification models are particularly good at the h=4 forecast horizon, forecasting more accurately and

being less confused than their fixed specification counterparts for the majority of variables (including U,

NGNP, RGNP, PCE, BI and Net X). This is contrary to the h=1 case where flexible specification models

only clearly dominate for the GNP variables, and are partial winners for R, IP and BI (with a confusion

rate tie for PCE). As suggested above, the flexible specification models appear to show some promise in

the context of multi-step forecasting. However, even in the h=1 case, there is evidence that flexible

specification models need to be considered when constructing economic forecasts. One avenue for

further research in this respect is the construction of more complex and varied flexible specification

models (i.e. which are not only chosen using an in-sample SIC criterion) using other means of adaptation

and encorporating other forms of nonlinearity, for example. As an illustration, one alternative type of

nonlinear specification involves estimating nonlinear cointegrating relationships when constructing the
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forecasting model (see Corradi, Swanson, and White (1995) and Granger and Swanson (1996)).

Because the flexible specification models were both picked in the same way (using an in-sample

SIC), and because the flexible specification nonlinear model has a generally nonlinear functional form,

even when 0 hidden units are selected, we also asked the following question based on the results of Table

3: "Does the flexible specification nonlinear forecasting model outperform the "best" fixed specification

linear model based on point estimates, regardless of how many hidden units are selected?" (These results

summarize various statistic values presented in Tables 4-5.) Counting up the total number of "wins"

across MSE, MAD, MAPE and confusion rate criteria, we see that for h=1 the linear models "win"

approximately 62% of the time, while for h=4 the nonlinear model "wins" around 61% of the time.

Based on these results it appears that both the linear and the nonlinear models have something to offer

(with the nonlinear model slightly preferred for h=4 and the linear model slightly preferred for h=1), and

that econometric forecasting models should be constructed by entertaining both linear and nonlinear

models, with the final outcome clearly being dependent on which particular macroeconomic variable is

being modeled. Put another way, in the current context the artificial neural networks appear useful; how-

ever, they do not supplant more straightforward linear models, and further analysis of both types of

models is warranted.

8.2 Choosing a Forecasting Model

Tables 4-5 summarize the experimental results for L1-L4 and NN by tabulating all of the model

selection criteria for each variable and forecast horizon. In addition to MSE, MAD, MAPE and confu-

sion rates, MSIC, , and Theil’s U statistics are also tabulated. In general, each of the above criteria has

something to offer when "choosing" a final forecasting model. Of course, there is no clear cut answer to

which model selection criterion is the "most" useful, as that depends on the user’s loss (or cost) function.

Nevertheless, the following rough guidelines are useful. The MSIC is our only in-sample criterion, and

since it is minimized for the nonlinear models (by construction), it would be the clear squared-error loss

based criterion of choice, if the nonlinear model were always the winner out-of-sample. However, since
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the nonlinear model wins only about 50% of the time, the MSIC is not always selecting the best forecast-

ing model. For this reason, the other squared error loss based criteria (MSE, MAD, MAPE, and Theil’s U)

should also be considered. Since Theil’s U only serves to summarize the MSE statistics, it does not pro-

vide much extra information. However, if the only goal of the analysis is to determine whether or not it is

possible to construct a model which outperforms the simple random walk model (based on squared error

loss), then Theil’s U provides a convenient short-cut to directly reporting the forecasting results from all

models. (Note that the Theil’s U statistic is always unity (by definition) for the random walk without drift

models reported in Tables 4-5.) In Table 4 we see that the random walk with drift performs worse than the

random walk when forecasting unemployment (Theil’s U value for the random walk with drift model for

h=1 is 1.049). However, the "best" linear, as well as both flexible specification models forecast unem-

ployment better than the "no change" or random walk model, based on point estimates. Thus, based on

Theil’s U we might conclude that the random walk model is less appropriate for forecasting unemploy-

ment, as a number of MSE-better models are available.

As discussed above, however, squared error loss functions are not always of interest to forecasters.

The confusion rate and  values offer measures which are of interest when the objective is to forecast the

direction of change in the variable. As an example of how choosing a model based on this criterion can

differ from choices based on squared-error loss, consider the case of real GNP (see Table 4). Note that for

h=1 the least confused model based on both the confusion rate and the  coefficient is the flexible

specification linear model, which is confused around 11% of the time. However, Theil’s U statistic, the

MSE, and the MAD statistics are all lower for the "best" linear model. Thus, while the "best" linear

model is preferred based on squared-error loss, the flexible specification model is preferred based on abil-

ity to forecast direction of change. This suggests that the nonparametric tests discussed above may pro-

vide a guide as to which models perform well overall, but clearly do not provide convincing evidence as

to which forecasting model will prevail on a case by case basis. Perhaps the best approach to this issue is

to entertain an appropriate variety of selection criteria, noting any patterns of "winners" and "losers"
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which emerge, and weighting more heavily those criteria which are most closely related to some posited

loss function or functions.

8.3 Model Adaptation and Evolution Results

In order to examine the parameter evolution and model adaptation of our various forecasting

models, the estimated coefficients of each of the models were tracked throughout the sequence of 45

quarterly 1 and 4-step ahead forecasts. Parameter evolution arises because each model is re-estimated at

each period of time, allowing the parameters to change before each new forecast is made. Both the flexi-

ble specification and fixed specification models are allowed to evolve over time. However, only the flexi-

ble specification models are allowed to "select" new specifications at each point in time. Panel A of Fig-

ure 1 provides plots of various parameters as they evolved over the forecast period. It is apparent that the

most of the parameters plotted are changing over time. In this sense, the plots are indicative of the sub-

stantial evolution of parameter estimates in virtually all of the fixed specification models which we exam-

ined. This in turn suggests that many of these forecasting models are taking advantage of the evolution-

ary aspect of our estimation strategy. For example, drift and slope parameters tend to vary over time in a

relatively erratic fashion, and do not appear to be "evolving" to some final fixed values. This can be taken

as rather "loose" evidence that fixing the parameters of a forecasting model at the outset, and then con-

structing a sequence of 1 or 4-step ahead forecasts (as new data become available) may be sub-optimal in

the sense of providing relatively inferior forecasts. This feature is emphasized by looking at a second

feature of the plots in Figure 1. For the  and GNP variables, the plotted parameter estimates are increas-

ing steadily over time. In particular for the GNP case, the slope coefficient estimate is seen to be increas-

ing more or less continually from 1985 to 1993. One of the reasons for the rich parameter evolution may

be that fixed specification linear models have a tendency to become misspecified over time, as the econ-

omy changes. As possible evidence of model misspecification of this type we also examined the parame-

ter evolution of the coefficients from the flexible specification models. To illustrate our findings, Panel B

of Figure 1 contains plots of various lagged dependent variable coefficient values. The coefficients of the
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variables shown are clearly evolving over time. However, the coefficients do not appear to be evolving to

such a great extent as those in the fixed specification models. In particular, in all 4 cases shown the plot-

ted parameters exhibit rather long stable periods, where their values are seen to change little over time.

Thus, it appears that flexible specification models may be less susceptible to evolutionary change than

fixed specification models. This feature is perhaps tied in with the above discussion concerning the pos-

sible tendency of fixed specification models to become misspecified over time, and suggests that flexible

specification models may be useful for the purpose of constructing forecasting models.

As a final question with regard to model adaptation, we ask: "Are the flexible specification models

apt to choose large numbers of regressors, or to frequently change the number of regressors used?" If so

we have evidence that, for example, the economy is undergoing rapid change, or the fixed specification

models are overfitting the data, or that our flexible specification estimation strategy is sensitive to chang-

ing economic conditions. Panel C of Figure 1 plots the number of parameters (including the constant

term) selected by various flexible specification models over time. From the plots, it appears that the

answer to our question is no. In all cases shown, the number of selected parameters never exceeds nine,

and is usually around five. Furthermore, the variation in the number of parameters selected is rather

small, in particular for the Real GNP case, where 4 parameters are chosen throughout the 1982-1990

forecast period. In summary, our primary method for comparing forecasting models has been the use of

model selection criteria and tests. As such, the above discussion of parameter evolution and model flexi-

bility is not only rather subjective in nature, and is meant to be used only as an aid to understanding our

model selection results. In light of this, we conclude by suggesting that there is some evidence support-

ing our model selection based finding that flexible linear and nonlinear models are potentially useful for

forecasting, relative to simpler and fixed specification models.

9. Conclusions

Nine macroeconomic variables have been forecast using a variety of flexible specification and fixed

specification econometric models, both linear and nonlinear. We have attempted to examine the useful-
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ness of flexible specification and nonlinear forecasting models relative to more commonly used fixed

specification and linear models, such as the random walk, random walk with drift and unrestricted vector

autoregressive (estimated using ARX specifications) models. All models have been allowed to evolve

through time, and our analysis focuses on real-time model selection and performance. In closing, we offer

the following conclusions.

First, in the context of real-time forecasts, flexible specification and nonlinear models appear to

offer a useful and viable alternative to less flexible fixed specification linear models. In particular at fore-

cast horizons greater than one step ahead there seems to be some potential for improving macroeconomic

forecasts using flexible specification econometric models, which have the feature that the model

"specification" is allowed to vary over time, as new information becomes available. This model adapta-

tion has the potentially useful feature of being able to capture shifts in the relationships among economic

variables relatively quickly, and in a relatively painless manner computationally.

Second, while all (linear and nonlinear, flexible specification and fixed specification) models are

re-estimated at each point in time, we provide initial evidence that the evolution of coefficients estimated

using more rigid fixed specification models is somewhat more erratic than in the case of flexible

specification models. We speculate that one reason for this result is that the economy is evolving (rather

slowly) over time. This feature cannot easily be captured by fixed specification linear models, however,

and manifests itself in the form of quickly evolving coefficient estimates. In this sense, it appears that

flexible specification models have much to offer when forecasting economic time series, although smooth

transition autoregressions and related nonlinear models are not examined in this paper.

A third result of our analysis is that while the flexible specification models perform well based on a

number of model selection criteria (including mean squared forecast error and confusion rate), their non-

linear counterparts are somewhat less successful (although the artificial neural networks (ANNs) still

dominate other models in a number of cases). This mixed evidence with regard to the ANN models sug-

gests that further research using generalizations of the models considered here may be useful. For exam-
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ple, selecting networks based on model selection criteria other than the the Schwarz information criterion

(SIC), using cross-validation techniques, and including more than one "hidden layer" in nonlinear archi-

tectures may be of potential interest, especially given the relative inability of the SIC to consistently pick

optimal forecasting models based on out-of-sample model selection criteria.

Our fourth and last conclusion concerns how to "choose" a forecasting model. As is well known,

models which "win" based on one model selection criterion (say a squared-error measure) do not neces-

sarily win when an alternative selection criterion is used (say a confusion rate measure). This points to

the need for the applied practitioner to carefully define a cost function prior to choosing a final forecast-

ing model for a particular time series. Although cost functions based on error-loss are often used, other

measures based on market timing and profitability, for example, are becoming increasingly more popular,

as forecasters realize that model selection depends (sometimes crucially) on which model selection cri-

teria are used. Overall, our results suggest that a variety of linear and nonliner models should be initially

entertained in any forecasting exercise, and that final model selection based on a careful analysis of a

number of model selection criteria is probably a good starting point. In particular, we were not surprised

to find that each of the five alternative models (random walk, random walk with drift, "best" linear vector

autoregression, flexible specification linear and flexible specification artificial neural network) is our

chosen "winner" for one or another of the macroeconomic variables, and for one or another of our model

selection criteria.
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Table 3: Winners from a Point Estimate Comparison of Various Models by Selection Criterion1

Summary  of  Results
 
 Tables  45
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Table 3a: Flexible Versus Fixed Specification: h=1 (h=4)

Variable Selection Criterion

MSE MAD MAPE Confusion Rate

U Fixed (Flex) Fixed (Flex) Fixed (Flex) Fixed (Flex)

R Fixed (Fixed) Fixed (Fixed) Fixed (Fixed) Flex

IP Fixed (Fixed) Fixed (Fixed) Flex (Fixed) Fixed (Fixed)

NGNP Flex (Flex) Flex (Flex) Flex (Flex) ----

 Fixed (Fixed) Fixed (Fixed) Fixed (Fixed) Fixed (Fixed)

RGNP Flex (Flex) Flex (Fixed) Fixed (Flex) Fixed (Fixed)

PCE Fixed (Flex) Fixed (Flex) Fixed (Flex) ----

BI Fixed (Flex) Fixed (Flex) Flex (Flex) Fixed (Flex)
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Table 3b: Linear Versus Nonlinear Specification: h=1 (h=4)

Variable Selection Criterion

MSE MAD MAPE Confusion Rate

U Linear (NonLin) Linear (NonLin) Linear (NonLin) Linear (NonLin)

R Linear (Linear) Linear (Linear) Linear (Linear) Nonlin (----)

IP Linear (Linear) Linear (Linear) Nonlin (Linear) Linear (NonLin)

NGNP Nonlin (NonLin) Nonlin (NonLin) Nonlin (NonLin) ----

 Nonlin (Linear) Nonlin (Linear) Nonlin (Linear) Linear (Linear)

RGNP Nonlin (Linear) Nonlin (Linear) Nonlin (NonLin) Nonlin (NonLin)

PCE Linear (NonLin) Linear (NonLin) Linear (NonLin) ----

BI Linear (NonLin) Linear (NonLin) Nonlin (Linear) Linear (NonLin)

Net X Linear (NonLin) Linear (NonLin) Linear (NonLin) Linear (NonLin)


1 The table summarizes the "winners" (based on point estimates) for all variable by forecast horizon (h), and for the out-of-sample
model selection criteria as given. All statistics are calculated using the true ex-post observation period from 1982:3-1993:3. In the case
of ties, dashes are shown in place of the "winner".
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Table 4: Summary Model Selection Statistics: Forecast Horizon, h=11

dept+h1  =    +  
i=1

K 1

 i depti  +  
i=1

K 2

 i ind 1ti  +  
i=1

K 3

 i ind 2ti  +  ut+h1



Var Mod MSIC MSE MAD MAPE CM CR HM 2  TU

U L1 -1.531 0.102 0.241 3.323 - - - - - 1.000
(2,0,2) L2 -1.538 0.113 0.256 3.534 13,25,4,1 0.674 0.994 0.138 0.226 1.049

[OW=76] L3 -1.857 0.072 0.210 2.999 10,9,7,17 0.372 0.106 0.212 0.191 0.841
HU:2% L4 -2.225 0.095 0.238 3.348 10,11,7,15 0.419 0.228 0.455 0.114 0.963

NN -2.224 0.095 0.238 3.341 10,11,7,15 0.419 0.228 0.455 0.114 0.963

R L1 -1.268 0.284 0.396 3.919 - - - - - 1.000
(1,0,0) L2 -1.286 0.314 0.423 4.170 13,30,0,2 0.667 0.501 0.901 0.019 1.052

[OW=76] L3 -1.251 0.321 0.430 4.131 13,32,0,0 0.711 1.000 0.870 0.025 1.064
HU:0% L4 -1.366 0.388 0.501 4.936 8,20,5,11 0.568 0.705 0.877 0.023 1.169

NN -1.366 0.388 0.501 4.936 8,20,5.11 0.568 0.705 0.877 0.023 1.169

IP L1 1.250 2.191 1.183 1.223 - - - - - 1.000
(2,2,0) L2 1.160 1.783 1.014 1.054 34,11,0,0 0.244 1.000 0.863 0.026 0.902

[OW=76] L3 0.967 1.544 0.987 1.238 23,6,11,5 0.378 0.330 0.670 0.064 0.840
HU:0% L4 0.677 2.011 1.186 1.172 19,4,15,7 0.422 0.219 0.436 0.116 0.958

NN 0.677 2.011 1.186 1.172 19,4,15,7 0.422 0.219 0.436 0.116 0.958

NGNP L1 8.167 6664 74.44 1.631 - - - - - 1.000
(4,0,4) L2 6.956 1807 32.91 0.945 45,0,0,0 0.000 1.000 0.940 0.011 0.521

[OW=76] L3 6.782 1789 33.25 0.762 45,0,0,0 0.000 1.000 0.938 0.011 0.518
HU:0% L4 6.543 1652 30.27 0.685 45,0,0,0 0.000 1.000 0.938 0.011 0.498

NN 6.543 1652 30.27 0.685 45,0,0,0 0.000 1.000 0.938 0.011 0.498

 L1 4.446 146.6 9.373 5.779 - - - - - 1.000
(5,0,5) L2 4.420 137.9 8.994 5.597 31,14,0,0 0.311 1.000 0.872 0.024 0.970

[OW=76] L3 4.693 177.6 10.33 6.572 23,9,8,5 0.378 0.367 0.746 0.048 1.100
HU:0% L4 4.411 149.1 9.154 5.712 20,11,11,3 0.489 0.904 0.552 0.089 1.008

NN 4.411 149.1 9.154 5.712 20,11,11,3 0.489 0.904 0.552 0.089 1.008

RGNP L1 7.831 2033 38.04 0.857 - - - - - 1.000
(4,0,4) L2 7.605 1156 25.47 0.573 40,5,0,0 0.111 1.000 0.940 0.035 0.754

[OW=58] L3 7.719 1805 32.27 0.734 35,5,5,0 0.222 1.000 0.933 0.013 0.942
HU:20% L4 7.126 1050 26.66 0.589 35,4,5,1 0.200 0.529 0.816 0.035 0.719

NN 7.139 994.1 25.98 0.576 35,4,5,1 0.200 0.529 0.816 0.035 0.699

PCE L1 6.946 1295 30.51 1.019 - - - - - 1.000
(1,0,1) L2 6.585 814.2 22.38 0.743 35,10,0,0 0.222 1.000 0.858 0.027 0.793

[OW=58] L3 6.626 827.3 22.71 0.776 35,10,0,0 0.222 1.000 0.858 0.027 0.799
HU:0% L4 6.453 967.8 24.82 0.823 35,10,0,0 0.222 1.000 0.858 0.027 0.865

NN 6.453 967.8 24.82 0.823 35,10,0,0 0.222 1.000 0.858 0.027 0.865

BI L1 6.273 649.0 21.24 447.2 - - - - - 1.000
(2,2,0) L2 6.273 659.0 21.41 461.7 7,15,15,8 0.667 0.995 0.380 0.290 1.008

[OW=76] L3 5.869 486.9 18.68 322.0 18,9,4,14 0.289 0.004 0.009 0.390 0.866
HU:0% L4 5.742 557.3 19.68 266.1 15,7,9,14 0.356 0.049 0.098 0.247 0.927

NN 5.742 557.3 19.68 266.1 15,7,9,14 0.356 0.049 0.098 0.247 0.927

Net X L1 5.543 529.3 18.03 68.81 - - - - - 1.000
(1,0,0) L2 5.535 535.5 18.11 69.34 1,6,14,23 0.455 0.959 0.441 0.116 1.006

[OW=76] L3 5.578 557.6 18.73 69.64 6,13,9,16 0.568 0.733 1.000 0.002 1.026
HU:9% L4 5.520 654.7 20.47 72.52 6,18,9,11 0.614 0.957 0.393 0.162 1.112

NN 5.526 615.1 19.86 70.51 6,17,9,12 0.591 0.932 0.390 0.129 1.078
1 The equation shown above is the general specification for the linear models, where K1,K2,K3 can take values from 1 to 5, and where all esti-
mations are done using levels data. The "Mod" column lists the models estimated (see footnote to Table 1). The selected lag structure is shown
underneath the variable name in the first column of the table, with notation (K1,K2,K3), and the optimal window (OW) chosen for the nonadap-
tive linear VAR model is given in square brackets underneath the lag specification. The percentage of forecasts which are made using
specifications with hidden units is given underneath the variable name in the first column of the table, with notation HU: %. All statistics are
calculated using the true ex-post forecast period from 1982:3-1993:3, and the associated forecast errors. The 2x2 confusion matrices reported
in the CM column of the table have diagonal cells (a11 and a22) corresponding to correct directional predictions, while off-diagonal cells (a12
and a21) correspond to incorrect predictions. The matrix is reported as a vector in the following order: a11, a12, a21, a22. The HM (Henriksson
and Merton (1981)) and 2 confusion matrix tests of independence p-values are based on the null hypothesis that a given model is of no value
in predicting the direction of change in the dependent variable. The Yates correction is applied to the 2 calculations. MSIC is the mean of the
SIC across all forecast estimation periods. MSE, MAD, and MAPE are mean square error, mean absolute deviation, and mean absolute percen-
tage error, respectively.
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Table 5: Summary Model Selection Statistics: Forecast Horizon, h=41

dept+h1  =    +  
i=1

K 1

 i depti  +  
i=1

K 2

 i ind 1ti  +  
i=1

K 3

 i ind 2ti  +  ut+h1



Var Mod MSIC MSE MAD MAPE CM CR HM 2  TU

U L1 0.517 1.206 0.831 11.39 - - - - - 1.000
(1,1,1) L2 0.503 1.330 0.905 12.58 11,28,5,0 0.750 1.000 0.008 0.399 1.050

[OW=76] L3 -0.255 1.079 0.873 12.47 5,9,11,19 0.455 0.650 0.783 0.042 0.946
HU:29% L4 -1.125 0.619 0.674 9.593 10,8,6,20 0.318 0.030 0.060 0.284 0.716

NN -1.091 0.615 0.659 9.510 10,8,6,20 0.318 0.030 0.060 0.284 0.714

R L1 0.565 1.809 1.052 10.58 - - - - - 1.000
(1,1,1) L2 0.504 2.294 1.146 11.50 13,31,0,1 0.689 0.711 0.638 0.070 1.126

[OW=76] L3 0.369 2.583 1.211 12.05 11,21,2,11 0.511 0.183 0.363 0.136 1.195
HU:53% L4 -0.670 3.222 1.416 14.22 8,18,5,14 0.511 0.506 1.000 0.001 1.335

NN -0.105 3.128 1.438 14.54 5,17,8,15 0.556 0.889 0.573 0.084 1.315

IP L1 3.336 22.43 3.621 3.784 - - - - - 1.000
(5,5,5) L2 3.150 16.87 2.977 3.167 38,7,0,0 0.156 1.000 0.838 0.031 0.867

[OW=76] L3 3.182 31.54 4.540 4.761 26,6,12,1 0.400 0.926 0.636 0.071 1.241
HU:24% L4 2.456 57.37 5.861 6.040 23,2,15,5 0.378 0.378 0.250 0.171 1.599

NN 2.504 38.41 5.124 5.307 23,2,15,5 0.378 0.378 0.250 0.171 1.309

NGNP L1 10.76 90232 288.9 6.305 - - - - - 1.000
(4,0,4) L2 9.105 16520 111.2 2.490 45,0,0,0 0.000 1.000 0.940 0.011 0.428

[OW=76] L3 8.541 12839 89.73 2.052 45,0,0,0 0.000 1.000 0.938 0.011 0.377
HU:2% L4 8.110 9941 79.19 1.766 45,0,0,0 0.000 1.000 0.938 0.011 0.332

NN 8.104 10043 80.49 1.796 45,0,0,0 0.000 1.000 0.938 0.011 0.334

 L1 5.683 617.0 18.24 10.32 - - - - - 1.000
(4,0,4) L2 5.560 486.3 17.19 10.14 26,18,0,0 0.409 1.000 0.877 0.023 0.888

[OW=76] L3 5.447 488.3 17.73 10.73 23,11,3,7 0.318 0.040 0.078 0.266 0.890
HU:2% L4 5.164 611.3 20.31 12.20 19,10,7,8 0.386 0.189 0.378 0.133 0.995

NN 5.165 545.14 19.30 11.74 19,10,7,8 0.386 0.189 0.378 0.133 0.940

RGNP L1 10.00 23248 132.5 2.979 - - - - - 1.000
(2,2,0) L2 9.423 10822 85.47 1.931 39,6,0,0 0.133 1.000 0.827 0.037 0.682

[OW=58] L3 8.682 5914 64.08 1.435 37,4,2,2 0.133 0.080 0.136 0.222 0.504
HU:0% L4 8.464 6379 64.71 1.421 38,4,1,2 0.111 0.043 0.053 0.288 0.524

NN 8.464 6379 64.71 1.421 38,4,1,2 0.111 0.043 0.053 0.288 0.524

PCE L1 9.063 3382 89.86 3.042 - - - - - 1.000
(1,1,1) L2 8.065 3464 49.10 1.671 41,4,0,0 0.089 1.000 0.793 0.039 0.580

[OW=58] L3 7.586 2832 45.80 1.542 41,4,0,0 0.089 1.000 0.793 0.039 0.525
HU:4% L4 7.370 2784 44.30 1.468 41,4,0,0 0.089 1.000 0.793 0.039 0.520

NN 7.386 2819 44.51 1.474 41,4,0,0 0.089 1.000 0.793 0.039 0.523

BI L1 7.046 1528 29.34 976.2 - - - - - 1.000
(1,0,1) L2 7.046 1553 29.68 971.0 8,10,16,11 0.578 0.900 0.502 0.100 1.008

[OW=76] L3 6.491 1009 26.12 362.3 13,6,11,15 0.378 0.076 0.152 0.213 0.812
HU:0% L4 6.162 753.2 22.60 508.7 18,6,6,15 0.267 0.002 0.005 0.420 0.702

NN 6.162 753.2 22.60 508.7 18,6,6,15 0.267 0.002 0.005 0.420 0.702

Net X L1 7.161 2539 43.79 141.9 - - - - - 1.000
(1,1,1) L2 7.375 2701 46.26 153.5 0,8,19,18 0.600 1.000 0.023 0.339 1.032

[OW=58] L3 7.353 3103 49.92 151.7 6,15,13,11 0.622 0.980 0.152 0.213 1.106
HU:31% L4 6.667 3322 41.03 103.8 16,7,3,19 0.222 0.000 0.000 0.521 1.144

NN 6.706 2485 38.70 100.2 16,8,3,18 0.244 0.000 0.001 0.484 0.989
1 See notes to Table 4.
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 û
II

,t
2

,
fo

r
th

e
M

SE
te

st
;

d t
  =

  
|û
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