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A Model Selection Approach to Assessing the Information

in the Term Structure Using Linear Models and Artificial

Neural Networks

ABSTRACT

We take a model selection approach to the question of whether forward interest rates are useful in

predicting future spot rates, using a variety of out-of-sample forecast-based model selection criteria: fore-

cast mean squared error, forecast direction accuracy, and forecast-based trading system profitability. We

also examine the usefulness of a class of novel prediction models called "artificial neural networks," and

investigate the issue of appropriate window sizes for rolling-window-based prediction methods. Results

indicate that the premium of the forward rate over the spot rate helps to predict the sign of future changes

in the interest rate. Further, model selection based on an in-sample Schwarz Information Criterion (SIC)

does not appear to be a reliable guide to out-of-sample performance, in the case of short-term interest

rates. Thus, the in-sample SIC apparently fails to offer a convenient shortcut to true out-of-sample perfor-

mance measures.

Keywords: Artificial Neural Networks; Forecasting; Term Structure; Interest Rates; Rolling Windows;

Model Selection; Information Criteria.
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1. INTRODUCTION AND OVERVIEW

An issue of continuing interest in the finance literature is the extent to which forward interest rates

are useful as predictors of future spot rates. Fama’s (1984) work represents a milestone in examining this

issue, providing evidence that forward rates do indeed contain information about future spot rates. Mish-

kin (1988) refines and updates Fama’s analysis by conducting tests of the hypothesis that forward rates

have predictive content using econometric techniques that properly take account of heteroskedasticity and

serial correlation neglected by Fama, by using a somewhat more general method for obtaining interest

rates from the term structure, and by making use of data available subsequent to Fama’s. Mishkin too finds

evidence that forward rates help predict future spot rates.

In this paper, we examine this issue from a model  selection perspective in order to shed some addi-

tional light, rather than from a classical hypothesis testing perspective, as in Mishkin (1988). Specifically,

we address the question, "Given an array of alternative models for forecasting future spot rates and

appropriate forecasting-based model selection criteria, does the model selected by this procedure make use

of forward rates?" If so, we have additional direct evidence of the usefulness of forward rates in predicting

future spot rates. If not, we have direct evidence to the contrary. We consider not only linear models, as in

Mishkin (1988), but also a class of flexible non-linear functional forms called artificial neural networks.

The results reported below provide additional support for the hypothesis that forward rates are indeed use-

ful, and suggest that the class of non-linear models which is considered may also prove useful for forecast-

ing interest rates. More specifically, we find that the premium of the forward rate over the spot rate helps

to predict the sign of future changes in the interest rate.

We adopt the model selection perspective as a complement to the more traditional hypothesis testing

approach for a variety of reasons, while noting that the two methods are not completely dissimilar (for

example, when in-sample model selection criteria are used). Our first reason is the fact that model selec-

tion permits us to focus directly on the issue at hand: out-of-sample forecasting performance. Next is the

advantage that the model selection approach does not require specification of a correct model for its valid

application, as does the traditional hypothesis testing approach. Another desirable feature of the model

selection approach is that if properly designed, the probability of selecting the truly best model approaches
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one as the sample size increases, in contrast to the traditional practice of fixing a test size and rejecting the

null hypothesis at that fixed size regardless of sample size, thus ensuring that Type I errors (wrongly reject-

ing the null hypothesis) will always occur with non-vanishing probability, no matter how much data is

available.

A limitation of the model selection approach is that it can sometimes be difficult to assess the Type I

error associated with testing the implicit model selection hypothesis that two models under consideration

truly perform equally well based on observed differences in realized model selection criteria. The pro-

cedure we implement will have this defect; however, this is a defect of the same order as using a tradi-

tional test whose size is known only asymptotically. In the model selection case, the size is also known

only asymptotically, but it is known to be zero, a consequence of the fact that the truly best model is

selected with probability approaching one, as discussed above. Nevertheless, the distinction between the

model selection approach and the traditional hypothesis testing approach should not be overemphasized.

For example, the comparison of two nested models using a sample-based complexity penalized likelihood

criterion (such as the Schwarz Information Criterion - SIC) amounts to a likelihood ratio test with the

significance level being determined by the penalty term associated with the information criterion.

A final conceptual motivation for using the model selection approach is that it can be used in con-

junction with traditional hypothesis testing procedures. As recently discussed by Pötscher (1991), once a

model is selected by a procedure that yields the truly best model with probability approaching one, then

one can test hypotheses about the parameters of the truly best model in the usual way without adverse

asymptotic consequences for the size of the test. Of course, if one does not impose the belief that the

model selected is correctly specified, then one must be careful to appropriately interpret the hypothesis

being tested - for example, that the role of forward rates in the best model among those tested is nil, rather

than that forward rates do not aid whatsoever in forecasting future spot rates. Due to the statistical com-

plexity of the relatively computationally simple procedures considered here, we shall not engage in such

hypothesis testing exercises, but leave development of the necessary distributions to other work. The rea-

sons for this statistical complexity will become apparent below. We mention this final motivation so that

the reader does not carry away the impression that we are proposing a substitute for traditional hypothesis
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testing. In fact we are proposing a logically prior complement for cases when the two methods cannot be

equated to one another.

By adopting this model selection perspective, we believe that we contribute not only to the discus-

sion of the usefulness of forward rates as a predictor of future spot rates, but also to the methodology of

examining this and similar issues. One dimension of this contribution is that we consider a variety of

model selection criteria, including the SIC, together with three out-of-sample criteria: forecast mean

squared error, forecast direction accuracy, and forecast-based trading rule profitability. Contributions are

also attempted in a number of other related interesting directions. Specifically, we examine the usefulness

of a class of novel nonlinear prediction models called "artificial neural networks" (e.g. Kuan and White

1994), and we examine the issue of appropriate window sizes for rolling-window-based prediction

methods.

The rest of the paper is organized as follows. Section 2 discusses the data, while Section 3 discusses

the models considered in this study. Section 4 describes our estimation methods and the model selection

criteria examined here. Section 5 discusses the results for statistical performance measures and Section 6

discusses the results for profitability performance measures. Section 7 contains a summary and concluding

remarks.

2. THE DATA

We use data graciously provided by Frederic S. Mishkin, as used in his study (Mishkin 1988). Two

objects are of interest: Rt+τ , the 1-month spot rate observed at time t  + τ−1; and F τ,t, the forward rate for

month t+τ observed at time t. (This notation is similar to that in Fama (1984) and Mishkin (1988).) As

described by Mishkin (1988, p. 309), end of month U.S. Treasury bill rate data were obtained from the

Center for Research on Security Prices (CRSP) at the University of Chicago. The one-month bill is

defined to have a maturity of 30.4 days, the two month bill 60.8 days, and so on, up to the six month bill

with a maturity of 182.5 days. For each defined maturity the interest rate was interpolated linearly from

the two bills that were closest to the defined maturity. As pointed out by an anonymous referee, it should

be noted that the Mishkin data which is used here does not make use of actual transactions price data, as in
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Fama (1984), since the interest rates are interpolated from the two bills that are closest to the defined matu-

rity. Thus, while the Mishkin data has the advantage that the term structure slope around the desired matu-

rity is constant rather than zero and is thus less restrictive, using actual transactions price data is more suit-

able when the focus is on predicting future premiums in the market. For this reason, the discussion of the

most profitable regression model given a specific trading strategy (Section 6) should be thought of as

methodological, and not as suggesting that the results will hold when dealing with actual prices in the

market.

3. THE MODELS

3.1 Linear Models

Mishkin (1988) considers the following two models estimated by Fama:

Rt+τ  − Rt+1 = α + β (Fτ,t − Rt+1) + νt +τ−1 (1)

Rt+τ  − Rt+τ−1 = α + β (Fτ,t − F τ−1,t) + νt +τ−1 . (2)

In these models, it is of interest to test whether β0, the "true" value of β, is zero. If so, the forward rate is

unimportant (linearly) in predicting future spot rates. If not, forward rates contain useful predictive infor-

mation. As Fama (1984) discusses, the null hypothesis (β0 = 0) occurs when risk premiums in forward

rates obliterate the predictive relationship that would occur in the absence of these premiums. Fama

(1976) and Shiller, Campbell and Schoenholtz (1983) find no evidence against the null, while Fama (1984)

and Mishkin (1988) do find evidence against the null.

In this study, we consider these models as special cases of a fairly broad array of forecasting models.

We refer to models with dependent variables Rt+τ  − Rt+1 as "Case 1" and models with dependent variables

Rt+τ  − Rt+τ−1 as "Case 2."

For Case 1, we consider linear models containing the following regressors: a constant; lags of

F τ,t − Rt+1 from orders zero to two; and lags of Rt+τ  − Rt+1 from "observable order" one to three. By a lag

of "observable order" one, we mean the first lag of Rt+τ  − Rt+1 observable at time t, i.e. Rt+1 − Rt+1−τ , and

so on for observable lag orders two and three. We separately consider models with a constant only, a con-

stant and lags of F τ,t − Rt+1, a constant and observable lags of Rt+τ  − Rt+1, and a constant, lags of
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F τ,t − Rt+1 and observable lags of Rt+τ  − Rt+1. The number of lags included was dictated by the necessity

of keeping the total number of regressions to a manageable number, while still exploring a range of plausi-

ble possibilities.

Table 1 provides a summary of the regressors included in the Case 1 regressions. The linear regres-

sions are Models 1.0 through 1.16. Note that Model 1.0 is the simple random walk model (i.e. (1) with α

and β both constrained to zero), while Model 1.2 coincides with (1). The models differ primarily in the

number of included lags. Table 1 also references two models (1.17 and 1.18) which we discuss below.

For Case 2, we consider linear models containing the following regressors: a constant; lags of

F τ,t − Fτ−1,t from orders zero to two; and lags of Rt+τ  − Rt+τ−1 from observable order one to three. As in

Case 1, we consider separately models with a constant only, a constant and lags of F τ,t − Fτ−1,t, a constant

and observable lags of Rt+τ  − Rt+τ−1, and a constant, lags of F τ,t − Fτ−1,t and observable lags of

Rt+τ  − Rt+τ−1. Table 1 provides a summary of the regressors included in the Case 2 regressions, with linear

regressions designated as Models 2.0 through 2.16. Also referenced are models 2.17 and 2.18, which are

discussed below. Model 2.2 coincides with (2) above, while Model 2.0 is again the random walk

(α = β = 0).
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3.2 Nonlinear Models

Cognitive scientists have proposed a class of flexible nonlinear models inspired by certain features

of the way that the brain processes information. (A good introduction to the cognitive science literature is

Rumelhart and McClelland (1986).) Because of their biological inspiration, these models are referred to

as "artificial neural network models" or simply "artificial neural networks" (ANNs). Because of their flexi-

bility and simplicity, and because of demonstrated successes in a variety of empirical applications where

linear models fail to perform well (see White (1989) and Kuan and White (1994) for some specifics),

ANNs have become the focus of considerable attention as a possible vehicle for forecasting financial vari-

ables. Among recent applications are those of White (1988), Dutta and Shekhar (1988), Moody and Utans

(1991), Dorsey, Johnson and van Boening (1991), Dropsy (1992), and Kuan and Liu (1992). See also the

recent book by Trippi and Turbau (1993).

For those interested in a detailed discussion of ANNs and their econometric applicability, we refer

to Kuan and White (1994). For present purposes, it suffices to treat these models as a potentially interest-

ing black box, delivering a specific class of nonlinear regression models. In particular, the ANN nonlinear

regression models considered here have the form:

f(x,  θ) = x̃´α + 
j =1
Σ
q

 G(x̃ ´  γj) βj (3)

where x̃ is a (column) vector of explanatory variables, x̃  = (1, x´)´ augments x by the inclusion of a con-

stant term, θ = (α´, β´, γ́ )´, β = (β1, . . . ,βq)´, γ = (γ́ , . . . ,γq́ )´, q is a given integer and G is a given non-

linear function, in our case, the logistic cumulative distribution function (c.d.f.) G (z) = 1/(1 + exp(− z)).

A network interpretation of (3) is as follows. "Input units" send signals x 0(= 1), x 1, . . . ,xr over

"connections" that amplify or attenuate the signals by a factor ("weight") γji , i =0, . . . , r, j =1, . . . ,  q.

The signals arriving at "intermediate" or "hidden" units are first summed (resulting in x̃´γj) and then con-

verted to a "hidden unit activation" G(x̃´γj) by the operation of the "hidden unit activation function" G.

The next layer operates similarly, with hidden activations sent over connections to the "output unit." As

before, signals are attenuated or amplified by weights βj and summed. In addition, signals are sent directly

from input to output over connections with weights α. A nonlinear activation transformation at the output
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is also possible, but we avoid it here for simplicity.

In network terminology, f (x,  θ) is the "network output activation" of a "hidden layer feedforward

network" with "inputs" x and "network weights" θ. The parameters γj are called "input to hidden unit

weights," while the parameters βj are called "hidden to output unit weights." The parameters α are called

"input to output unit weights."

Hornik, Stinchcombe and White (1989, 1990) (among others, see also Cybenko 1989, Carroll and

Dickinson 1989 and Funahashi 1989) have shown that functions of the form (3) are capable of approximat-

ing arbitrary functions of x arbitrarily well given q sufficiently large and a suitable choice of θ. This

"universal approximation" property is one reason for the successful application of ANNs. In fact, White

(1990) establishes that ANN models can be used to perform nonparametric regression, consistently

estimating any unknown square integrable conditional expectation function.

Here we apply model (3) to the problem of forecasting Rt+τ  − Rt+1 (Case 1) or Rt+τ  − Rt+τ−1 (Case 2)

using explanatory variables x corresponding to all the variables considered in the linear forecasting models

described above, and with q  = 4. Note that when β1 = β2 = β3 = β4 = 0, we have Models 1.16 and 2.16 as

a special case. Inclusion of the nonlinear terms G(x´ γj) should enhance forecasting ability, if overfitting

is properly avoided.

These nonlinear artificial neural networks appear in Table 1 as Models 1.18 and 2.18. We also con-

sider a final linear model, designated as Model 1.17 or 2.17, in which no hidden units are included, but for

which the linear regressors are selected stepwise (with regressors added one at a time as in the ANN

models - see Section 4). Due to constraints in the manner in which inputs can be specified for considera-

tion in our software, it was necessary to permit a fourth observed lag of the dependent variable to be avail-

able to the Models 1.17, 1.18, 2.17, and 2.18, for selection. In no case was the 4th lag selected, however,

so that while the possible presence of this variable is indicated in Table 1, its inclusion in fact had no

impact on the relative forecasting performance of our models.

4. ESTIMATION AND MODEL SELECTION PROCEDURES
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The parameters of Models 1.0-1.16 and 2.0-2.16 are estimated by the method of least squares. How-

ever, because of the possibility that the underlying relation between forward and future spot rates is evolv-

ing through time, we estimate parameters using only a finite window of past data rather than all previously

available data. Window sizes of 42, 60, 78 and 96 months are used for our regressions.

To evaluate the linear regression models and the various window widths, a sequence of out-of-

sample one-step ahead forecast errors is generated by performing the regression over a given window ter-

minating at observation T, say, and then computing the error in forecasting RT+τ+1 − RT+2 (Case 1) or

RT+τ+1 − RT+τ (Case 2) using data available at time T + 1 and the coefficients estimated using data in the

window terminating at time T. Each time the window rolls forward one period, a new out-of-sample resi-

dual is generated, simulating true out-of-sample predictions and prediction errors made in real-time by this

process. For our study, the smallest value for T corresponds to February of 1979 and the largest to June of

1986. We therefore have a sequence of 89 out-of-sample one-step forecast errors with which to evaluate

our models. This period was selected to cover the most recent Federal Reserve policy regimes observable

in the data (occurring in October 1979 and October 1982), while still obtaining a computationally manage-

able out-of-sample period.

By simulating forecasts in real-time, we obtain measures of forecasting performance analogous to

those recently discussed by Diebold and Rudebusch (1991). Our procedure differs from theirs in that: (1)

Diebold and Rudebusch (1991) use a growing data window with fixed first observation, as they are not

concerned with tracking a possibly evolving system; and (2) Diebold and Rudebusch (1991) focus on the

effects of using unrevised instead of revised leading indicators in real-time simulations, for predicting

economic upturns and downturns. As we focus on financial market data which is accurately available in

real-time, we have no need to worry about revision effects.

Four measures of out-of-sample model/window performance are computed in this paper. The first is

the forecast mean squared error (FMSE) of the 89 one-step forecast errors for each model and window,

and for each horizon τ = 2, . . . , 6. Using this measure, we can precisely address the question "Does the

model/window combination with the smallest FMSE include the forward rate?" If so, we have direct and

specific evidence of the value of forward rates in predicting future spot rates. The out-of-sample forecast
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R2 is also calculated, where

R2 = 1 − FMSE /SY
2, (4)

and SY
2 is the sample variance of the dependent variable in the out-of-sample period. Of note is that (4) can

take negative values because the FMSE can exceed SY
2 , out-of-sample.

The second measure of forecast performance which is calculated is how well a given forecasting

procedure identifies the direction of change in the spot rate, regardless of whether the value of the change

is closely approximated. To examine this aspect of forecast performance, we calculate the "confusion

matrix" of the model/window combination. A hypothetical confusion matrix is given as (5).

  
predicted

  
  
  

  

down
up
  
  

  

H
I 12

36  26
15J

K

  
up  down

actual

(5)

The columns in (5) correspond to actual spot rate moves, up or down, while the rows correspond to

predicted spot rate moves. In this way, the diagonal cells correspond to correct directional predictions,

while off-diagonal cells correspond to incorrect predictions. We measure overall performance in terms of

the model’s "confusion rate," the sum of the off-diagonal elements, divided by the sum of all elements. As

(5) is simply a 2×2 contingency table, the hypothesis that a given model/window combination is of no

value in forecasting the direction of spot rate changes can be expressed as the hypothesis of independence

between the actual and predicted directions. Methods for testing the independence hypothesis in the con-

text of forecasting the direction of asset price movements have been given by Henriksson and Merton

(HM, 1981). Based on the hypergeometric distribution, the p-values delivered by HM’s method require

for their validity the independence of the directional forecast from the magnitude of the asset price change.

We present the HM p-values. As with the FMSE, a finding that the least confused model contains the for-

ward rate is direct evidence that forward rates are useful predictors of the direction of spot rate changes.

As a third measure of the relevance of forward rates in predicting future spot rates it is determined

whether profitable trading strategies can be devised that make use of forward rate information. Although

mean-variance values for the trading strategy are calculated, it should be noted that a relevant question is

whether the investment is on the conditional mean-variance frontier at each point in time. Unfortunately,
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resolving this question is beyond the scope of the present work. Because of the nature of the forecasts

involved, the profitability analysis can be conducted only for Case 1 models. Further discussion of this

performance measure is given in Section 6.

A drawback of the use of out-of-sample based model selection procedures is that they can be quite

computationally intensive. Much less demanding procedures that use only in-sample information can be

based on a variety of complexity-penalized likelihood measures. Among those most commonly used are

the Akaike Information Criterion (AIC) (Akaike 1973, 1974) and the Schwarz Information Criterion (SIC)

(Schwarz 1978, Sawa 1978). These information criteria add a complexity penalty to the usual sample

log-likelihood, and the model that optimizes this penalized log-likelihood is preferred. Because the SIC

delivers the most conservative models (i.e. least complex) and because the SIC has been found to perform

well in selecting forecasting models in other contexts (for example, see Engle and Brown 1986), we exam-

ine its behavior in the present context as a final measure of forecast performance. Two questions are of

interest: First, taking the SIC at face value as a reasonable model selection criterion, does the SIC-

selected model contain the forward rate? Second, what sort of guide is the in-sample SIC to out-of-sample

performance? The first question is directed to our main issue of interest. The second question is of nearly

equal importance, however, for if the relatively straightforward SIC reliably identifies the model that per-

forms best according to one of our out-of-sample criteria, then we may use SIC as a welcome computa-

tional shortcut.

For a model with p parameters estimated on a window of size n, the SIC is

SIC = log s2 + p(log n)/n  , (6)

where s2 is the regression mean-squared-error. The first term is a goodness of fit measure, and the second

is the complexity penalty. We report the mean of the 89 values for the SIC, called MSIC, for given

model/window combinations.

So far, no mention has been made of how the ANN models are estimated. It is to this issue that we

now turn. In estimating the ANN models 1.18 and 2.18, it is inappropriate to simply fit the network param-

eters with q  = 4 hidden units by least squares, as the resulting network typically will have more parameters

than observations, achieving a perfect or nearly perfect fit in sample, with disastrous performance out-of-
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sample. To enforce a parsimonious fit, the ANN models were estimated by a process of forward stepwise

(nonlinear) least squares regression, using the SIC to determine included regressors and the appropriate

value for q. Specifically, a forward stepwise linear regression is performed first, with regressors added one

at a time until no additional regressor can be added to improve the SIC. The linear regression coefficients

are thereafter fixed. Next a single hidden unit is added (i.e. q is set to 1), and regressors are selected one

by one for connection to the first hidden unit, until the SIC can no longer be improved. Then a second hid-

den unit is added and the process repeated, until four hidden units have been tried, or the SIC for q hidden

units exceeds that for q −1 hidden units. This ANN model selection procedure is begun anew each time the

data window moves forward one period. A different set of regressors and a different number of hidden

units connected to different inputs may therefore be chosen at each point in time. We thus simulate a fairly

sophisticated real time ANN forecasting implementation. We should expect the ANN models to have SIC

values superior to (i.e smaller than) those of the linear models, as the ANN model can choose any of the

linear models as a special case.

Interestingly, even this fairly conservative procedure did not entirely eliminate the tendency for the

neural network model to overfit, as evidenced by occasional totally wild one-step forecasts from network

models that fit very nicely in sample. Accordingly, we impose a simple "insanity filter" on the network

forecasts: if a one-step ahead predicted change exceeds the maximum change observed during the estima-

tion window, then the forecast from Model 1.1 (or Model 2.1) - which includes only a constant - is used

instead. Thus, we substitute ignorance for craziness. The performance of the ANN models and the linear

forward stepwise regression models (Models 1.17 and 2.17) are evaluated in the same way as Models 1.0-

1.16 and 2.0-2.16. For each we calculate the FMSE averaged over the 89 out-of-sample observations, the

out-of-sample R2, the confusion matrix, confusion rate and HM p-values, and we perform a profitability

analysis.

5. THE RESULTS FOR STATISTICAL PERFORMANCE MEASURES

To aid in the discussion of the results, a list of the acronyms used is given.

HM  p −value
  
FMSE
  
MSIC
  
SIC
 
ANN

         P−value for Henriksson−Merton test of the
 
Forecast Mean Squared Error:  avg of 89 1−step forecasts
 
Mean Schwarz Information Criterion
 
Schwarz Information Criterion:  SIC = log s2 + p(log n)/n
 
nonlinear model: artificial neural network
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The results for Case 1 are summarized in Table 2, while those for Case 2 are in Table 3. In each case, a

number of fairly clear-cut conclusions emerge. It should be noted that in both tables, statistical ties some-

times occur. For the sake of brevity, though, this information has not been included, and the best models

with the smallest window size, and fewest parameters are reported. More detailed results are available by

request from the authors.

In Case 1, our main question of interest is answered affirmatively. For the period 3/79 through 7/86,

the forward rate is valuable in predicting future spot rates, in that it appears in the model with the best

FMSE for all but horizon τ = 6 and in the model exhibiting the least confusion, for all time horizons,

τ = 2,..., 6. In fact, for the shortest horizon, τ = 2, the FMSE-best model is the simplest model including

the forward-spot differential, Model 1.2 (corresponding to equation (1)), with maximum window size of 96

observations. For other horizons, more complex models are FMSE-best. Model 1.10, which adds three

observable lags of the dependent variable to the simple Model 1.2 is FMSE-best at horizon τ = 3,4,5.

However, at τ = 6, forward rates no longer enter the FMSE-best model (Model 1.5), which contains only a

single observable lag of the dependent variable. A notable feature of our results is the fairly impressive

out-of-sample R2’s obtained for each of the FMSE-best models. These range from a low of .062 for τ = 6

to a high of .142 for τ = 4. In each case, a window size of 96 observations is among the FMSE-best, but

smaller window sizes also deliver identical performance for horizons τ = 3 and τ = 4. In fact, for τ = 4

window sizes of 42, 60 and 96 deliver identical FMSE performance, suggestive of a mild degree of time

instability.

Not surprisingly, the FMSE-best models are not generally the least confused (based on the HM p-

value), as forecast errors for individual observations can simultaneously be small in magnitude and associ-

ated with a prediction of the wrong sign. This is especially likely in prediction of small changes in spot

rates. In all cases, the least confused model includes the forward-spot differential. Model 1.10 appears as

least confused at τ = 2 and τ = 3, while Model 1.18 (the non-linear ANN model) appears as least confused

at horizons τ = 4 and 5. Model 1.3 is least confused for τ = 6. Model 1.13 matches the performance of

Model 1.10 at τ = 2, while Model 1.16 matches the performance of Model 1.18 at τ = 5. In each case, the

HM p-values are rather low, suggesting that correct directional prediction is not simply due to chance. In
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fact, the least confused models are correctly predicting the direction of spot rate change approximately 2/3

of the time or better. The window widths for the least confused model are, in all but one case, smaller than

the maximum size of 96. This is more strongly suggestive of time instability in the underlying process

than the results for the FMSE. However, we cannot rule out the possibility that an estimation technique

targeted directly on forecasting the direction of change (e.g., logit) would lead to out-of-sample confusion

optimized by choosing the largest window sizes. We leave such analysis for future research.

As a final statistical performance measure, we consider the relation between the models identified as

best in Table 2 using the (in-sample) MSIC and those identified as best by the out-of-sample FMSE, or the

confusion criterion. As should be expected, the MSIC-best model is in each case the ANN model (Model

1.18), as these models are arrived at by minimizing the SIC in each window. However, in no case does the

ANN model deliver best out-of-sample FMSE performance. Instead, the ANN model delivers least con-

fused directional prediction at horizons τ = 4 and 5. This is interesting, as it suggests that (at least in the

present context) the MSIC cannot be used as a reliable shortcut to identifying models that will perform

optimally out-of-sample. In network jargon, the MSIC-best model is not necessarily the model that "gen-

eralizes" best when presented with data not included in the "training set". Instead, it is necessary to do the

appropriate out-of-sample analysis to find the best model, when using non-linear artificial neural networks.

Because of the combinatorial nature of this analysis for neural networks with hidden units, we defer this to

subsequent work.

We note that the SIC is widely believed to select very parsimonious models, and that such models

usually "win" forecasting competitions. Our results suggest that, at least in the present case, the SIC is not

selecting sufficiently parsimonious models. As the SIC imposes the most severe penalty among the various

alternatives (AIC, Hannan-Quinn, etc.), use of other such criteria would likely give worse-performing

results. Out-of-sample analysis remains the only recourse.

Table 2 also provides summary statistics for models other than those deemed as best, using the per-

formance measures. In particular, Table 2 contains results for Models 1.1 and 1.18, to provide background

against which to compare the best models, and to provide additional insight into how well the least (Model

1.1) and most (Model 1.18) complex models perform. Recall that Model 1.1 contains only a constant term,
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and so implements a random walk with drift. The R2’s for these models are effectively zero. However, for

τ = 1, 2, 3, 4, 5 the nonlinear ANN model is no more confused than the best model (based on a p-value of

0.05). Thus, there is some evidence that the nonlinear models can help to predict the direction of change

of the spot rate.

The results for the Case 2 regressions are less emphatic in their evidence for the value of the forward

rate in predicting future changes in spot rates. For these regressions, the best FMSE at all horizons is

achieved for the model containing only a constant (Model 2.1). (Note that only horizons τ = 3, . . . , 6 are

reported, as horizon τ = 2 coincides with Case 1.) For the confusion measures, forward rates do appear in

the least confused models at three of the four horizons. The ANN model is the least confused model for

τ = 3, with the least confusion achieved by differing models (Models 2.7, 2.3, 2.5 and 2.9) for other hor-

izons. In all cases, the best confusion rates are worse than those seen in Case 1. Nevertheless, the least

confused models achieve statistical significance at the 10% level or better according to the HM p-values,

at all four horizons, with correct directional predictions approximately 60% of the time. Again, the SIC

does not identify either the FMSE- or confusion-best model, out-of-sample. Note that for all horizons

(except τ = 5), the SIC best neural network on average contains zero hidden units. In this sense, Model

2.17 dominates Model 2.18 in Case 2.

6. RESULTS FOR PROFITABILITY PERFORMANCE MEASURES

Let ∆τt ≡ Rt+τ  − Rt+1 be the change in the spot rate (the dependent variable for the Case 1 regres-

sions) and for a given model/window combination, let ∆̂τT+1 denote the first out-of-sample predicted

change in spot rates from a window terminating at time T. A forecast of the future spot rate is then given

by

R̂T+1+τ  = ∆̂τT+1 + RT+2 (7)

A simple "straddle" or "spread" trading strategy can be based on (7). Specifically, sell the horizon  τ 

forward instrument short if

R̂T+1+τ  > τ F τ,T +1 − (τ−1)F τ−1,T +1 ,      τ = 2, . . . , 6 . (8)

With the proceeds from the short sale, buy the τ−1 horizon forward instrument, and when it matures use
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the proceeds to purchase the spot instrument. If

R̂T+1+τ  < τ F τ,T +1 − (τ−1)F τ−1,T+1 ,      τ = 2, . . . , 6 , (9)

undertake the reverse strategy. For simplicity we assume a standard contract of size $1 MM = $1,000,000.

The profit (negative profit represents loss) for such a transaction is given by

Πτ,T +1 ≡ $1 MM(e [τ FτT +1 − (τ−1) F(τ−1)T +1]  − e−RT +1+τ ) − Tτ,T +1 , (10)

where T τ,T +1 is the total transactions cost associated with the spread. This cost includes both commissions

and the effects of the bid-ask spreads. To avoid complexities associated with bid-ask spreads and with the

effects of investor characteristics on commission costs, we consider a range of fixed values for T τ,T +1,

chosen to represent plausible possibilities for average total transactions costs. A simple measure of

model/window performance is then given by the sum (undiscounted) of profits over the 89 out-of-sample

observation periods.

Conditional on the realized history of asset prices, this profit measure is dependent on the particular

realized pattern of correct directional predictions. This dependence can be removed under appropriate

conditions by Monte Carlo simulation. To avoid having our conclusions adversely affected by dependence

on a particular pattern of correct predictions, we report the results of a relevant Monte Carlo simulation.

We follow an approach to trading-rule evaluation given by Leitch and Tanner (1991) and Dorfman and

McIntosh (1992). The idea is that if a trading system gives a correct signal (i.e. one profitable apart from

transactions costs) d  × 100% of the time (0 ≤ d ≤ 1), and if correctness of a given signal is independent of

correctness of prior signals and also independent of the magnitude of profit, then one can simulate the pro-

bability distribution of trading system profits conditional on a realized price series of length n by repeat-

edly drawing length n sequences of i.i.d. signals correct d  × 100% of the time and computing the empiri-

cal distribution of the resulting profits over a large number of replications.

In our case, our signals are "correct" if

(R̂T+τ+1 + (τ−1)F τ−1,T +1 − τ F τ,T +1 )(RT+τ+1 + (τ−1)F τ−1,T +1 − τ F τ,T +1) > 0 . (11)

The number of times this occurs divided by 89 gives our value for d. For each horizon, we identify the

model/window combination giving the highest value for d. These are reported in Table 4. Generally, d is

never less than 0.82, with d  = 0.90 for τ = 2. This rather good performance was pleasantly surprising to
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us. To investigate whether this performance is consistent with pure luck, we again compute the HM p-

values associated with the confusion matrices. We reject the null hypothesis of independence in all cases

rather decisively.

Of particular interest is the fact that in three of the five horizons, τ = 2, 3, and 5, forward rates or

their lags enter the best model. This provides additional evidence of the value of forward rates in predict-

ing future spot rates. We note that in no case does the d-best model correspond to the confusion best

model for Rt+τ  − Rt+1, and that there is no necessary correspondence. Also of interest is the fact that the

d-best model for τ = 2 is the ANN model, with the highest observed value for d, and that the ANN is

nearly d-best in all other cases (not shown in the table).

Next, we investigate whether signal correctness is independent of prior signal correctness. For this,

we construct a sequence of Bernoulii random variables equal to 1 for a correct signal and 0 otherwise. We

then perform a standard runs test (e.g., Mendenhall, Wackerly and Scheaffer 1990) on the observed

sequence for the d-best model at each horizon. The null hypothesis of independence is decisively rejected

for all horizons. These results are available from the authors, by request. Because lack of independence

could presumably be used to improve a trading system, profit computations such as those reported here,

which are based on independence, will be conservative.

As a final check on the relevance of the simulation framework, we investigated whether profit mag-

nitude is independent of signal correctness by regressing A R̂T +1+τ  + (τ−1)F τ−1,T +1
 − τ F τ,T +1 A on a constant

and a signal correctness dummy variable, DT +1. Under the null hypothesis of independence, the coefficient

on the dummy variable should be zero. Marginally significant results appear at τ = 5 and τ = 6 with p-

values of 0.045 and 0.06 respectively. Results otherwise are far from significance at conventional levels.

These results are available, by request.

Thus, Dorfman and McIntosh’s (1992) simulation method for approximating the probability distribu-

tion of trading system profits for a system correct d  × 100% of the time should give some reasonably infor-

mative benchmarks. Our results, reported in Table 5, are based on 10,000 replications. Results are

reported for total transactions cost levels of from $0 to $1250, in increments of $250 per spread. Analysis

of bid-ask spreads by Shen (1992) suggests that average costs of $250 may be realistic for large
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institutional investors. Only the first moments are shown in Table 5. The simulated variances of the profits

shown in the table are very small, in all cases below $20. As pointed out by an anonymous referee, it might

also be useful to consider variances which are simulated by taking the average of the variance of profits for

each of the 10,000 trials. In this case, the mean should also be the average of the average of each trial (i.e.

the average profit per monthly transaction). Thus, since the experimental forecast horizon is 89 months

long, the mean profit reported by us is 89 times as big as the mean profit which results from the suggested

alternative method for reporting the simulation results. In this case, however, the variances estimated are

still 3 orders of magnitude less than the mean. To illustrate the difference between the two methods for

calculating the mean and variance of profits acruing from the trading strategy, (12) shows the mean and

corresponding variance of profits which are reported here, while (13) does likewise for the alternative

reporting strategy. With n=10,000 we have
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The story that emerges from the simulated profits reported in Table 5 is coherent and rather interest-

ing. Positive profits occur at all horizons with total transactions costs per spread of up to $500, with posi-

tive profits persisting to the $1250 level at τ = 5. The standard deviation of profit is quite small, relative to

the typical magnitude of the average. While this suggests that potentially profitable information may be

publicly available, and in particular in forward rates for horizons τ = 2, 3 and 5, the lack of a proper

mean-variance frontier analysis and caution dictate that further detailed analysis should be carried out

before the approach described here is used to trade debt instruments. Nevertheless, the rather good perfor-

mance in predicting directions of rate movements could well be valuable to market makers and primary

dealers.

7. SUMMARY AND CONCLUDING REMARKS

We have used a model selection approach based on out-of-sample forecasting performance to inves-
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tigate the extent to which forward interest rates are useful as predictors of future spot rates. We offer the

following conclusions. First, for our out-of-sample period, the best Case 1 model contains forward rates in

four out of five horizons, based on a forecast mean squared error performance measure, and five out of five

horizons, when chosen using a confusion performance measure. The best models from a trading

profitability standpoint contain the forward rate for three of the five horizons. Forward rates are thus use-

ful in predicting future changes in spot rates, to this extent. Second, windows of observations of less than

maximal size occasionally appear as forecast mean squared error-optimal, generally appear as confusion-

optimal and often appear as d-best (providing the best trading rule signal), suggesting instability in the

relationships of interest. Third, the in-sample Schwarz Information Criterion does not appear to be a reli-

able guide to out-of-sample performance, so it fails to offer a convenient shortcut to true out-of-sample

performance measures for selecting models, and for configuring nonlinear artificial neural network

models. Finally, artificial neural network (ANN) models appear to be promising for use in this forecasting

context, and further refinement and application of ANN methods is warranted.

The work reported here is merely a starting point. A wide variety of further questions present them-

selves for subsequent research, both theoretical and empirical. On the theoretical side, it is of interest to

establish the statistical properties of the model selection procedures followed here. Of particular interest

is obtaining asymptotic distributions for a test that the true rolling-window root mean squared error of two

models is equal based on the realized difference in forecast mean squared errors.

Interesting empirical projects include conducting a similar analysis using even larger windows;

adding post-1986 data to the sample; extending the out-of-sample period in both directions; adding addi-

tional interesting predictor variables; using robust regression methods and/or regression methods based on

maximizing in-sample excess returns; using out-of-sample criteria to configure ANN models; and investi-

gating the performance of alternatives to ANN models such as Multivariate Adaptive Regression Splines

(Friedman 1988). All of these projects we leave to future work.
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Table 1: Included  Regressors for Case  1 and 2 Regressions1

Case 1: Rt+τ−Rt+1 = a1 + 
i
Σα1,i(F τ,t −i−Rt+1−i) + 

i
Σβ1,i(Rt+τ−i−Rt+1−i) + u1,t

Case 2: Rt+τ−Rt+τ−1 = a2 + 
i
Σα2,i(F τ,t −i−F τ−1,t −i) + 

i
Σβ2,i(Rt+τ−i−Rt+τ−1−i) + u2,t

__________________________________________________________________________________________________________________________________

Number  of Lags Included,  p Hidden
Dependent Exogenous Units

Model # 0 1 2 1 2 3 4_________________________________________________________________
c. 0
c. 1
c. 2 x
c. 3 x x
c. 4 x x x
c. 5 x
c. 6 x x
c. 7 x x x
c. 8 x x
c. 9 x x x
c. 10 x x x x
c. 11 x x x
c. 12 x x x x
c. 13 x x x x x
c. 14 x x x x
c. 15 x x x x x
c. 16 x x x x x x
c. 17 x x x x x x x
c. 18 x x x x x x x x_________________________________________________________________

1 The c in Model # corresponds to Case 1 and Case 2, so that Model 1.0 is model 0 for Case 1, and Model 2.0 is model
0 for Case 2, for example. For Cases 1 and 2, the dependent variables are Rt +τ−Rt +1 and Rt +τ−Rt +τ−1 respectively.
The exogenous variables are lags of F τ,t−Rt +1 and F τ,t−F τ−1, t respectively. For models 1.18 and 2.18, up to 4 hidden
unit are included as regressors. All regressions include an intercept, except for Models 1.0 and 2.0.
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Table 4: Best  d −Value  Model  by  Window  and Horizon1

Case 1: Rt+τ−Rt+1 = a1 + 
i
Σα1,i(F τ,t −i−Rt+1−i) + 

i
Σβ1,i(Rt+τ−i−Rt+1−i) + u1,t

________________________________________________________________________________________________________________

Horizon Best Window Confusion HM d-Value
Model Matrix p-value________________________________________________________

τ = 2 1.18 42 H
I 8

3  76
1 J

K 0.01 0.90

τ = 3 1.15 60 H
I 10

4   72
3 J

K 0.01 0.85

τ = 4 1.6 60 H
I 9

11  65
4 J

K 0.00 0.85

τ = 5 1.8 60 H
I 10

8   70
1 J

K 0.00 0.88

τ = 6 1.6 96 H
I 13

8   65
3 J

K 0.00 0.82

________________________________________________________

1 Models 1.18, 1.15, and 1.8 contain the current and/or lagged forward rate. The matrices shown in square brackets are
confusion matrices (diagonal cells correspond to correct directional predictions, while off-diagonal cells correspond to
incorrect predictions). The d-Values are based on the number of times that
(R̂T+τ+1  + (τ−1)F τ−1,T +1  − τF τ,T +1)(RT +τ+1  + (τ−1)F τ−1,T +1  − τF τ,T +1) > 0 , divided by the out-of-sample size, 89.
Thus, the trading system gives a correct signal (one profitable apart from transactions costs) dx100 percent of the
time. The HM (Henriksson and Merton (1981)) p-values are based on the null hypothesis that a given model is of no
value in predicting the direction of spot interest rate changes.
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Table 5: Mean  Profit  Analysis by  Horizon − in Dollars1

Case 1: Rt+τ−Rt+1 = a1 + 
i
Σα1,i(F τ,t −i−Rt+1−i) + 

i
Σβ1,i(Rt+τ−i−Rt+1−i) + u1,t

________________________________________________________________________________________________________________

Trans. Expected Profit by τ and Model
Costs (T) τ = 2 τ = 3 τ = 4 τ = 5 τ = 6________________________________________________________

       Model 1.18 1.15 1.6 1.8 1.6________________________________________________________

0 66580 76210 87210 118160 101710

250 44260 53960 64960 95910 79450

500 22010 31710 42710 73660 57200

750 -240 9460 20460 51410 34950

1000 -22480 -12780 -1780 29170 12710

1250 -44730 -35040 -24040 6920 -9540
________________________________________________________

1 Best Models are chosen by d-Value, as listed in Table 4. The trading strategy entails risk, so no arbitrage is detected,
and a proper financial evaluation entails consideration of not only mean profit (or return), but also risk, which is not
considered here. The trading strategy assumes a standard contract of size $1MM, and follows equations (7)-(10),
where the profit for a single transaction is given by: Πτ,T +1  ≡ $1MM(e [τFτ,T+1 − (τ−1)Fτ−1,T+1]  − e−RT+1+τ ) − T τ,T +1 , where
T τ,T +1 is the total transactions cost associated with the spread and is fixed at T in the simulations. Numerical values
are based on 10000 simulations.
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