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Abstract

In this paper we construct output gap and inflation predictions using a variety of DSGE sticky
price models. Predictive density accuracy tests related to the test discussed in Corradi and Swanson
(2005a) as well as predictive accuracy tests due to Diebold and Mariano (1995) and West (1996) are
used to compare the alternative models. A number of simple time series prediction models (such as
autoregressive and vector autoregressive (VAR) models) are additionally used as strawman models.
Given that DSGE model restrictions are routinely nested within VAR models, the addition of our
strawman models allows us to indirectly assess the usefulness of imposing theoretical restrictions
implied by DSGE models on unrestricted econometric models. With respect to predictive density
evaluation, our results suggest that the standard sticky price model discussed in Calvo (1983) is
not outperformed by the same model augmented either with information or indexation, when used
to predict the output gap. On the other hand, there are clear gains to using the more recent
models when predicting inflation. Results based on mean square forecast error analysis are less
clear-cut, although the standard sticky price model fares best at our longest forecast horizon of 3
years, and performs relatively poorly at shorter horizons. When the strawman time series models
are added to the picture, we find that the DSGE models still fare very well, often winning our
forecast competitions, suggesting that theoretical macroeconomic restrictions yield useful additional
information for forming macroeconomic forecasts.
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1 Introduction

In the analysis of stochastic dynamic general equilibrium models one strand of the recent literature

focuses on the reconciliation of historical and simulation based empirical evidence.1 A different

strand of the literature focuses on out-of-sample model evaluation and on the fact that all models

may well be approximations, and so are misspecified (i.e. no models are “correctly specified”). Eval-

uation is done in a number of ways, including the construction of Bayesian odds ratios/Kullback-

Leibler Information Criterion (KLIC) for comparing RBC models and time series models (see e.g.

DeJong, Ingram and Whiteman (2000), Schorfheide (2000), Chang, Gomes and Schorfheide (2002),

Fernandez-Villaverde and Rubio-Ramirez (2004), and Del Negro and Schorfheide (2005)). Corradi

and Swanson (CS: 2005a,b,c,d) develop an alternative approach applicable in this context, which

is based upon the construction of distributional loss measures and test statistics associated with

either simulations and /or predictions from DSGE models.2

Our intent in this paper is to add to the second strand of research mentioned above. In particu-

lar, we apply the methodology developed by CS (2005a,b,c) to the evaluation of the standard sticky

price model discussed in Calvo (1983), the sticky price with dynamic indexation model discussed

in Christiano, Eichenbaum and Evans (2001), Del Negro and Schorfheide (2005) and Smets and

Wouters (2003), and the sticky information model of Mankiw and Reis (2002). Additionally, we

consider some simple strawman time series models in our evaluation. In this sense, we attempt to

address two issues. First, do recent theoretical advances in the sticky price literature yield models

that provide superior predictive densities? This question addresses the issue of whether or not

recent theoretical advances in price theory translate into better predictions. Second, how do unre-

stricted econometric time series models perform, relative to theoretically intricate DSGE models?

This question addresses the notion that theoretical restriction imposition may or may not yield

superior predictive performance. In particular, as it is well known that the restrictions implied by

theoretical DSGE models can be nested in VAR models (see e.g. Bierens and Swanson (2000) and

Bierens (2005)), our direct comparison of DSGE model predictions with unrestricted VAR predic-

tions should yield new evidence of the usefulness of theory information in economic forecasting.
1See e.g. Watson (1993), Cogley and Nason (1995), Rotemberg and Woodford (1996), Diebold, Ohanian and

Berkowitz (1998), Bierens and Swanson (2000), Schmitt-Grohe (2000), and Bierens (2005).
2For further details on recent predictive density evaluation techniques, see Clements and Smith (2000,2002) and

the references cited therein.
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These questions are addressed via examination of marginal and joint predictive densities for the

output gap and inflation. In addition, mean square forecast errors (MSFEs) are used to construct

predictive accuracy tests using the approach of Diebold and Mariano (1995), West (1996), and

Clark and McCracken (2001).3

The impetus for this paper derives primarily from the observation that new Keynesian Phillips

curves based on standard sticky price assumptions have several shortcomings. For example, Ball

(1994) has found that such models yield the controversial result that an announced credible dis-

inflation causes booms rather than recessions. Additionally, Fuhrer and Moore (1995) show that

the New Keynesian Phillips curve falls short when used to explain inflation persistence, one of the

stylized empirical facts describing US inflation. Finally, Mankiw and Reis (2002) note that such

models have trouble explaining why shocks to monetary policy have delayed and gradual effects

on inflation.4 Some of the problems outlined above are addressed in Christiano et al. (2001), Del

Negro and Schorfheide (2005), Smets and Wouters (2003), and Mankiw and Reis (2002), via the

introduction of sticky prices with dynamic indexation as well as sticky information models. For

example, Mankiw and Reis posit that information about macroeconomic conditions spreads slowly

because of information acquisition and/or re-optimization costs. Compared to the standard sticky

price model, prices in this setup are always readjusted, but decisions about prices are not always

based on the latest available information. The model is representative of the wider class of Rational

Inattention (RI) models developed by Phelps (1970), Lucas (1973), and more recently by Mankiw

and Reis (2002), Sims (2003), and Woodford (2003).

As might be expected, the three models that we consider have very different properties. For

example, Ball, Mankiw and Reis (2005) show that implications with regard to optimal monetary

policy are quite different for sticky price and sticky information models. In the sticky price model,

inflation enters the loss function, which leads to inflation targeting. It is thus optimal to allow

inflation drift in this model. On the other hand, in the sticky information model, inflation drift

or inflation targeting is a suboptimal policy, as it is optimal to target the price level. These

sorts of model implications suggest that the dynamic properties of the alternative models may be

quite different, in turn implying that our predictive density comparison of historical and predicted

inflation and the output gap measures may uncover interesting new evidence concerning the relative

3For further discussion of the use of MSFEs in econometrics, see Clements and Hendry (1993).

4See also Bernanke and Gertler (1995) and Christiano and Eichenbaum and Evans (2000).
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merits of the models. Put another way, our approach allows us to shed light on the issue of whether

theoretical advantages translate into better forecasting performance.

Our findings can be briefly summarized as follows. First, more recent theoretical DSGE models

fare better than the standard sticky price model for various forecast horizons and forecast evaluation

periods, when recursive estimation and prediction methodologies are implemented. However, there

are surprising exceptions to this finding. First, when MSFE loss is the relevant loss measure, the

standard model dominates all theoretical models for our longest horizon forecasts (three years).

Second, under predictive density loss, the standard model fares surprisingly well for predicting the

output gap. These somewhat disparate findings underscore the importance of which loss function

is deemed relevant. Second, simple time series models do not dominate DSGE models under either

MSFE or CS distributional loss, a finding which is somewhat surprising given the often cited

macroeconomic findings supporting the dominance of simple time series models for prediction, and

which suggests that economic theory and restrictions implied by economic theory is useful in the

context of econometric forecasting.

The rest of the paper is organized as follows. Section 2 outlines our DSGE models, in which the

New Keynesian Phillips curve is derived under sticky price, sticky price with indexation, and sticky

information assumptions. In Section 3, we describe the data used to construct historical measures

of inflation and the output gap; and discuss calibration. Section 4 summarizes the predictive

density methodology used to compare the models, and empirical results are gathered in Section 5.

Concluding remarks are gathered in Section 6.

2 New Keynesian DSGE Models for Inflation and the Output Gap

In this section we outline the sticky price, sticky information and sticky price with indexation

models that will be compared and contrasted in the sequel. Our presentation of the models follows

closely along the lines of Gali (2002) and Woodford (2002).

With respect to households, assume that the representative consumer’s preferences are repre-

sented by the following utility function:

U(Ct ,Nt(i)) =
Ct

(1−σ)

1− σ
−

∫ 1

0

Nt(i)
(1+ϕ)

1 + ϕ
di, (1)

where Nt(i) denotes the quantity of labor supplied by a consumer of type “i”, and Ct is an index of
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the different goods consumed. We assume a factor specific labor market, so that production of good

i requires labor of type i to be used. The parameter σ is the inverse of the intertemporal elasticity

of substitution, and the parameter ϕ is the inverse of the elasticity of labor supply. Assume further

that Ct is a constant-elasticity-of-substitution index, namely, Ct =

(∫ 1

0
Ct(i)

(ε−1
ε

) di

)( ε

ε−1
)

, where

ε < 0. The corresponding price index, Pt, is given by Pt =

(∫ 1

0
Pt(i)(1−ε) di

)( 1

1−ε
)

, where Pt(i)

denotes the price of good i ∈ [0, 1]. Subject to a standard sequence of budget constraints and

a solvency condition, the solution to the consumer’s optimization problem can be summarized in

log-linear (xt = lnXt) form by two static conditions:

ct(i) = −ε (pt(i)− pt) + ct (2)

wt(i)− pt = σ ct +ϕnt(i), (3)

where wt(i) is the log nominal wage paid for labor type i; and by the intertemporal Euler equation:

ct = −
1

σ
(rt −Et πt+1 − ρ) +Et ct+1, (4)

where rt is the yield on a nominal riskless one period bond (i.e. the nominal interest rate), πt+1

is the rate of inflation between t and t + 1, ρ = − lnβ represents the time discount rate (as well

as the steady state real interest rate, given the absence of secular growth), and β is the subjective

discount factor. Finally, following Gali (2002) we postulate (without derivation) a standard money

demand equation. Namely, mt − pt = yt − η rt, which has unit income elasticity.

With respect to firms, we assume that there exists a continuum of firms, each producing a

differentiated good, Yt(i) = AtNt(i)α, where log of productivity evolves according to the following

process: �at = ρa�at−1 + εa, t, which is an exogenous, difference-stationary stochastic process.

Assume further that the producer is a wage taker, so that the real marginal cost of supplying good

i is equal to:

MC t (i) =
1

α

Wt (i)

PtAt

(
Yt (i)

At

) 1

α
−1

. (5)

Total demand for good i is thus given by Yt(i) = Ct(i). Now, let Yt =

(∫ 1

0
Yt(i)

( ε−1
ε

) di

)( ε

ε−1
)

denote

aggregate output. Then equilibrium in the goods market implies that Yt = Ct. Combining the

real marginal cost equation together with a market clearing condition and the static first order

condition from the consumer optimization problem, and taking a log transformation yields the
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equilibrium real marginal cost of the individual firm in terms of output produced by the individual

firm, aggregate output and productivity. Namely:

mct (i) = σ yt + ωyt(i)− (1 + ω)at − ln (α) , (6)

where ω = ψ
α
+ 1

α
− 1. We also can combine the Euler equation with the market clearing condition

to get another equilibrium condition, as follows:

yt = −
1

σ
(rt −Et πt+1 − ρ) +Et yt+1. (7)

In deriving equilibrium behavior it remains to discuss how firms set prices. In this section we

describe four alternative models of price setting behavior, the final three of which will be examined

in the sequel.

I. Flexible Prices: First, suppose that all firms choose the price of good i each period, indepen-

dent of prices that were charged in the past, and with full information about current demand and

cost. Due to the fact that real marginal costs are increasing in yt(i), the same quantity of each

good is supplied, and it is equal to Yt. This implies that all firms will choose a common constant

markup given by µ = ε
(ε−1) . The flexible price equilibrium process for output, consumption, and

the expected real rate is given by:

ynt = γ +ψa at, (8)

cnt = γ +ψa at, (9)

rnt = ρ+ σ φa ρa�at−1, (10)

where ψa = 1+ω
σ+ω and γ = lnα−µ

σ+ω . We will refer to the above equilibrium conditions as a natural

levels of the corresponding variables.

II. The Sticky Price Model: Following Calvo (1983), assume that in every period, a fraction,

(1− θ1), of firms can set a new price, independent of the past history of price changes. This set-up

implies that the expected time between price changes is 1
1−θ1

. Also assume that firms that cannot

set their prices optimally have to keep last periods’ price (i.e. Pt(i) = Pt−1(i)).

III. The Sticky Price Model with Indexation: Modifications of the standard sticky price model

have been shown by numerous authors to perform better in empirical applications. For example,

we follow Christiano et al. (2001), Smets and Wouters (2003), and Del Negro and Schorfheide

(2005), who use dynamic inflation indexation. In this model, as in Calvo (1983), only a proportion
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of firms, (1 − θ2), can reset their prices during the current period; but other firms, unable to set

prices optimally, set their price equal to: Pt(i) = πtPt−1(i).

IV. The Sticky Information Model: Following Mankiw and Reis (2002), assume that all firms

reset prices each period. A fraction of firms, (1− θ3), use current information in pricing decisions,

so that the probability that a firm acts upon the newest information available in a given quarter is

1− θ3, independent of the past history of price changes. The remaining fraction of firms use past

or outdated information when they set prices. The sticky information model can be interpreted as

a model where firms, which are unable to set prices optimally, use even more complex updating

schemes than in the case of the sticky price model with indexation. Instead of using past inflation for

indexation, when they have opportunity to use current information, firms in the sticky information

model solve not only for the optimal current price, but also for the infinite path of future prices.

Later, when firms do not have the opportunity to update information, they set price equal to the

appropriate value in their solution set; a set which was calculated based on the old information set.

In these models, the fact that a fraction of firms is not able to adjust prices optimally implies a

difference between the actual and the potential (natural) level of output. We denote this difference

by y
g
t = yt − ynt , and refer to it as the output gap. Now, solving the associated optimization

problems and using a log-linear transformation, we can write expressions for the Phillips curve for

each model.5 In particular, the dynamics of inflation in the sticky price economy is characterized

by New Keynesian Phillips Curve:

πt = β Et πt+1 + λ1 y
g
t , (11)

where λ1 = (1−θ1) (1−β θ1) ξ
θ1

and ξ = ω+σ
1+ε ω . In the sticky price model with indexation the above

equation has a hybrid New Keynesian Phillips Curve analog:

πt =
1

1 + β
πt−1 +

β

1 + β
Et πt+1 +

λ2

1 + β
y
g
t , (12)

where λ2 = (1−θ2) (1−β θ2) ξ
θ2

. Finally, in the sticky information model, dynamics of inflation are

governed by a sticky information Phillips Curve:

πt =
(1− θ3) ξ

θ3
y
g
t + (1− θ3)

∞∑
k=0

Et−k−1θ
k
3(πt + ξ�y

g
t ). (13)

5For a detailed derivation for the sticky price and the sticky price with indexation models, see Woodford (2003).

For derivation using the sticky information model, see Khan and Zhu (2002).
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Notice that the Euler equation above can be written in terms of the output gap. Namely ygt =

−
1

σ
(rt −Et πt+1 − rnt ) +Et y

g
t+1.

To close our models, specify a monetary policy rule by assuming that an exogenous path for the

growth rate of the money supply is given by the following stationary process, �mt = ρm�mt−1 +

εm,t, where ρm ∈ [0, 1]. This yields the desired outcome that: (i) the money demand equation,

(ii) the equilibrium Euler equation, (iii) one of three of the Phillips curve equations: (11), (12) or

(13), (iv) the specification of an exogenous process for technology, and (v) the exogenous process

for the money supply fully describe the equilibrium dynamics of the economy, and in particular,

the dynamics of the (endogenous) output gap and inflation variables in the models. The system is

solved out using standard solution techniques; and the solution for all three models will have the

following form: xt = Θt−1 +Ψzt, where Θ and Ψ are solution matrices, which are functions of the

structural parameters of the models, xt is a vector of variables in economy, and zt is a vector of

exogenous disturbances. For example, for the sticky price model, xt = (πt, y
g
t , rt,�mt,�at)′ and

zt = (εm,t, εa,t)′.

3 Data and Calibration

Our empirical investigation is based upon the use of quarterly U.S. data for the period 1964:1 -

2004:4. For our measure of inflation, we use the consumer price index (CPI).6 We use the output gap

measure constructed by the OECD.7 For the measures of nominal interest rate and money supply

we used the federal funds rate and M2. The federal funds rate and money supply data were taken

from the OECD Main Economic Indicators database (Vol 2005 release 06 Database Edition (ISSN

1608-1234)). Output gap estimates and the CPI were obtained from OECD Economic Outlook

database (Vol 2005 release 01 Database Edition (ISSN 1608-1153)).

With regard to calibration, we follow the approach of Gali (2002). Namely, assume log utility

of consumption, so that σ = 1. Also, set the labor wage elasticity as ψ = 1, and set the value of

the elasticity of money demand with respect to the interest rate as η = 1, which is consistent with

the interest rate elasticity found in empirical work and used in other calibration studies (see e.g.

6The GDP deflator was also used in order to check for the robustness of our results, which are qualitatively similar,

regardless of which index is used. Complete results are available upon request.
7We also constructed the output gap using the Hodrick-Prescott (H-P) filter and the one-sided optimal bandpass

filter. Empirical results were qualitatively the same as those reported here, and are available upon request.
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Chari, Kehoe, and McGrattan (1996)). The Dixit-Stiglitz elasticity of substitution is set to ε = 11,

which implies a 10% markup of price over marginal cost; and the consumer discount factor is set

to β = 0.99, which implies an average annual interest rate 4%. We set the labor share parameter

to α = 2/3.

The degree of information and price stickiness, θ, was chosen to be common across all models and

is set to θ = 0.5.8 This implies twice yearly price or information updating. The motivation for this

level of stickiness comes from Bils and Klenow (2004), who study price stickiness by examining 350

categories of goods and services, constituting about 70% of consumer spending, and find evidence of

more frequent price changes than hitherto suspected. In addition in Korenok and Swanson (2005),

we find that simulated inflation and output gap data from theoretical models is much “closer” (we

evaluate “closeness” using a simulation based model selection framework) to historical levels when

adjustment occurs twice a year instead of the more standard annual adjustment, where θ = 0.75.9

Finally, the exogenous processes are calibrated in the following way. For the technology growth

rate, we set the value of the autoregression coefficient, ρa, equal to zero, and the standard deviation

equal to σa = 0.007. The low value of ρa accounts for the low autocorrelation of output growth. Of

further note is that the usual standard deviation for the technology growth rate is at or below 1%

(see e.g. Gali (2002) or Gali et al. (2003)). The autoregression coefficient of growth in the money

supply is set equal to ρm = 0.5, and the standard deviation is set equal to σm = 0.007; a value

which is close to the estimated parameters for autoregressive processes describing M0, M1 or M2

growth rates in the United States.10 Finally we make a standard assumption for exogenous shocks,

εa,t ∼ i.i.d.N(0, σa) and εm,t ∼ i.i.d.N(0, σm).
8Our motivation for a common value for information and price stickiness comes from the fact that empirical

estimates of information and price stickiness are quite close.
9See e.g. Blinder, Canetti, Lebow and Rudd (1998), Gali and Gertler (1999), Khan and Zhu (2002), Gali (2002),

Sbordone (2002), Gali, Lopez-Salido and Valles (2003), Smets andWouters (2003), andWoodford (2003), and Korenok

(2004).
10See Mankiw and Reis (2002), Cooley and Hansen (1989), Walsh (1998), and Yun (1996) for further justification

of this calibration.
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4 Empirical Methodology

We begin by briefly summarizing an out-of-sample version of the distributional accuracy test dis-

cussed in CS (2005a). In particular, the test discussed below is the same as that in CS, except that

the “simulation period” used in the formation of the simulated distributions in the statistic in CS is

replaced with one constructed using predictions. For discussion of asymptotic distribution theory

closest to the current context, the reader is referred to Bhardwaj, Corradi and Swanson (2005) and

Corradi and Swanson (2005b,c,d). Assume that the objective is to compare the joint (predictive)

distribution of the historical data with the joint distribution of the predicted series. Consider m

DSGE models, and set model 1 as the benchmark model. Let ∆ logXt, t = 1, ..., T denote the

actual historical (output) series, and let ∆ logXj,n, j = 1, ..., m and n = 1, ..., P, denote the output

series predicted under model j, where P denotes the length of the prediction period. Along these

lines, denote ∆ logXj,n(θ̂j,T ), n = 1, ..., P, j = 1, ..., m to be a sample of length P drawn (simulated

or constructed using standard prediction approaches) from model j and evaluated at the parame-

ters estimated, under model j, using the R available historical observations, where T = R + P .11

For simplicity, assume that the forecast horizon is τ = 1, although empirical results are reported

for a number of forecast horizons. The reason why we use differences is that stationarity is as-

sumed in our subsequent analysis (and is borne out in our data via application of standard unit

root tests). For ease of exposition, and in keeping with our focus on current and lagged values of

the variable of interest when we evaluate marginal distributions, let Yt = (∆ logXt,∆ logXt−1),

Yj,n(θ̂j,T ) = (∆ logXj,n(θ̂j,T ),∆logXj,n−1(θ̂j,T )). Also, let F0(u; θ0) denote the distribution of Yt

evaluated at u and Fj(u; θ
†
j) denote the distribution of Yj,n(θ

†
j), where θ

†
j is the probability limit of

θ̂j,T , taken as T →∞, and where u ∈ U ⊂ �2, possibly unbounded. Accuracy is measured in terms

of forecast square error. In particular, the squared (approximation) error associated with model j,

j = 1, ...,m, is measured in terms of the (weighted) average over U of E

((
Fj(u; θ

†
j)−F0(u; θ0)

)2)
,

where u ∈ U , and U is a possibly unbounded set on �2. Thus, the rule is to choose Model 1 over

Model 2 if

Ξ =
∫
U

E

((
F1(u; θ

†
1
)−F0(u; θ0)

)2)
φ(u)du−

∫
U

E

((
F2(u; θ

†
2
)− F0(u; θ0)

)2)
φ(u)du < 0,

11The T in ∆logXj,n(θ̂j,T ) is used for notational convenience, and should be replaced with R (for non-recursive

estimation), and with a t when estimation and prediction is carried our recursively. See Section 5 for further details.
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where
∫
U φ(u)du = 1 and φ(u) ≥ 0 for all u ∈ U ⊂ �2. For any evaluation point, this measure

defines a norm and it implies a usual goodness of fit measure. The hypotheses of interest are:

H0 : maxj=2,...,m Ξ ≤ 0 versus HA : Ξ > 0. Thus, under H0, no model can provide a better

approximation (in square error sense) to the distribution of Yt than the approximation provided

by model 1. In order to test H0 versus HA, the relevant test statistic is
√
TZT,S , where ZT,S =

maxj=2,...,m
∫
U Zj,T ,S(u)φ(u)du, and

Zj,P,S(u) =
1

P

T∑
t=R+1

⎧⎨⎩
(
1{Yt ≤ u} − 1

P

P∑
n=1

1{Y1,n(θ̂1,T ) ≤ u}
)2
−
(
1{Yt ≤ u} − 1

P

P∑
n=1

1{Yj,n(θ̂j,T ) ≤ u}
)2⎫⎬⎭ ,

where θ̂j,T is an estimator of θ†j , which is estimated either recursively, or using a single in-sample

period. In this way, all predictions are truly ex ante. For the above test, we report the simple variety

of critical values constructed as in CS (2005a), although these are not valid for our recursively

estimated models (see CS (2005b,e) for a complete discussion of bootstrap techniques in recursive

prediction contexts), and are only shown in the non-recursive case to be valid when used in-sample

(see CS (2005a)). In light of this, CS type critical values reported here are meant only as “rough

guides” for inference. For these reasons, we also report the CS distributional loss measures used in

the construction of Zj,P,S(u), defined as:

CS =

∫
U

1

P

P∑
t=1

(
1{Yt ≤ u} − 1

P

P∑
n=1

1{Yj,n(θ̂j,T ) ≤ u}
)2

φ(u)du,

where j denotes a particular model. This measure is useful for direct pointwise comparison of

alternative models.

5 Empirical Results

The predictive densities are constructed for the three prediction periods: 1970:1-2004:4, 1982:4-

2004:4 and 1990:1-2004:4. Thus, R = {24, 75, 104}, For each forecast period consider τ = {4, 8, 12},

where τ corresponds to forecast horizons in quarters. All predictions (and prediction models) are

formed (and estimated) both recursively and using models that were estimated only once, at the

beginning of each prediction period. Fixed estimation window results are qualitatively the same,

and are not reported, for the sake of brevity (complete results are available upon request). The three

theoretical models discussed above as well as two time series models (a univariate autoregressive
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model (AR) model and a vector autoregressive (VAR) model are evaluated. In addition forecasts

are constructed using a naive “no change” model.12

Predictive densities for theoretical models are constructed based on the DSGE solution outlined

above. The structure of the DSGE models requires that we first remove the long run average of the

series in order to make the data directly comparable to analogous data simulated using the DSGE

models. Since forecasts are in real time, to compute the mean we use only observations from 1 to

R− (τ − 1). Second, we use historical observations for the output gap, inflation, nominal interest

rate and money supply, and a steady state value for the unobservable processes as a starting point

(i.e. for the sticky price model xt = (ygt , πt, rt,�mt,�ass)′ is the starting point, where the steady

state of technology growth, �ass is equal to zero). Third, we generate a technology shock, εa,t+1,

and money supply shock, εm,t+1 with parameters specified in our calibration discussion above,

where zt+1 = (εm,t+1, εa,t+1)′.13 Fourth, having shocks for the period t + 1 and observations for

period t we can compute forecast for the period t+ 1. Namely:

xt+1|t = Θxt +Ψzt+1, R− (τ − 1) ≤ t ≤ T − τ,

using the theoretical model solution. The τ -period ahead forecast of the theoretical models is thus

obtained by iterating:

zt+k|t = Θzt+k−1|t +Ψzt+k , R− (τ − 1) ≤ t ≤ T − τ,

for k = 2, 3, ..., τ . Finally we add back the mean to make the series directly comparable to our

historical observations, where only that part of the historical distribution corresponding to the

ex ante prediction period is used in subsequent evaluation of the models. We repeat the above

procedure for each forecast period and each forecast horizon.
12For a comprehensive discussion of the uses andmisuses of econometrics models, as well as a discussion of nonlinear

models, structural breaks, forecast pooling, and a whole host of relevant econometric issues that are not discussed in

this paper, the reader is referred to Clements and Hendry (2002,2003,2004), and the references cited therein. The

issues raised in this series of papers are potentially of consequence, but are left to future research.
13When comparing mean square forecast errors, DSGE predictions are formed assuming that the shocks are equal

to zero, corresponding to the standard practice in time series models of comparing conditional mean predictions,

and thus making our time series and theoretical predictions directly comparable. Shocks, however, are added to the

theoretical models when forming predictive densities. Results for the case where predictive densities are constructed

for DSGE models without shocks have been calculated, and yield inferior results. Complete tabulated findings are

available upon request.
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Predictive densities for the AR(p) models are based on the following equation:

xt = c+ φ1xt−1 + φ2xt−2 + ...+ φpxt−p + εt, (14)

which is estimated using maximum likelihood, with lags selected via the Schwarz information

criterion (SIC). In the current context, we set xt = ygt for the output gap, and xt = πt for inflation.

Our VAR(p) model is:

xt = c+Φ1xt−1 +Φ2xt−2 + ...+Φpxt−p + εt, (15)

where xt = (ygt , πt, rt,�mt)′, Φj is (4× 4) matrix of autoregressive coefficients for i = 1, 2, ..., p, c

is (4 × 1) vector of constants and εt is a (4 × 1) vector of errors. Lags are again selected via the

(matrix version of the) SIC, and estimation is via maximum likelihood. An alternative analysis

was carried out with lags selected via the Akaike information criterion. However, predictions were

inferior to those formed using the SIC.

Conditional τ -step ahead forecasts for the AR(p) model are obtained by iterating:

xt+k|t = µ+ φ̂1(xt+k−1|t −µ) + φ̂2(xt+k−2|t −µ)+ ...+ φ̂p(xt+k−p|t− µ), R− (τ − 1) ≤ t ≤ T − τ,

for k = 1, 2, ..., τ, where µ = c/(1−φ̂1−φ̂2−...−φ̂p) and xs|t = xs for s ≤ t. Recursive estimation and

prediction is carried out by re-estimating the model before each successive forecast in the ex ante

period is formed. Conditional τ -step ahead forecasts for VAR(p) model are formed analogously.

Our empirical finding are gather in Tables 1-4 and Figure 1. A number of conclusions emerge

upon inspection of the results.

Predictive Density Analysis

Note that Figure 1 plots predictive densities for the standard sticky price model. It is apparent

that the dispersion of 1-year ahead predictions of the output gap is lower than that for the longer

horizons. The same is not the case for inflation. In the density plots, note also that densities based

upon our smaller out-of-sample periods are apparently further from their historical counterparts

than when longer out-of-sample periods are used. This may be indicative of the need to use many

predictions when forming densities in the manner done in this paper (i.e. we form densities across

a long out-of-sample period rather than for individual observations, allowing for the application

of the CS tests discussed later). As expected, predictive densities appear to “drift” further from

the truth as the forecast horizon is increased from 1 to 3 years. Interestingly, output gap densities

12



appear, in general, to be much closer to their historical counterparts than inflation densities. This

may in part be due to the fact that inflation is more volatile from period to period than the output

gap, as can be noted via examination of the last two rows of plots in Figure 1.

We now turn to a comparison of the three alternative sticky price models. Table 1 contains CS

distributional loss measures (see above discussion), and Table 2 contains associated test statistics

where the standard sticky price model is set equal to the benchmark, against which all other models

(including the time series models) are compared. Notice in Table 1 that when ygt and πt jointly

evaluated (Panel A), the sticky price model yields lower loss in only 2 of 9 forecast horizon/predictive

period cases, and none of these wins occur for the more recent predictive periods. Thus, we have

some evidence that the alternative sticky price models are useful from a predictive standpoint,

confirming earlier theoretical evidence in their support. However, it should also be noted that

there appears to be little to choose between the indexation and information models. Interestingly,

when attention is instead focused on distributions of ygt or on πt (see Panels B and C of the table),

then a different story emerges. Namely, the standard sticky price model dominates the other two

theoretical models in 5 of 9 cases for the output gap. In opposition to this finding, the standard

model “wins” only 1 of 9 times for inflation. Thus, the newer models do not appear to universally

dominate the standard model. In light of the above results, it appears that target variable of

interest is crucial to assessment of alternative models. If the models are to be used only to form

predictive densities for the output gap, then using the standard model may be quite reasonable; the

same cannot be said if interest focuses on inflation. This result is not surprising, and is somewhat

analogous to the oft cited finding that the choice of loss function is crucial to model assessment.

When the time series models are added to the mix, a very interesting finding emerges. Namely,

the simple time series models do not dominate the DSGE models. This is opposed to the usual

finding that VAR models often outpredict DSGE models, for example. Furthermore, given that

simple time series models are difficult to beat in head-on predictive horserace with more complicated

nonlinear models, such as regime switching and threshold models, we have some evidence that there

is little to choose between time series and simple theoretical models, in our context. For example,

in Panel A of Table 1, notice that the theoretical models “win” in 7 of 9 cases (“wins” are denoted

in bold). This sort of surprising result holds also in Panels B and C, where the output gap and

inflation are individually examined.14

14In order to illustrate the varieties of models specified and estimated when forming our predictions based upon
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Thus far, we have discussed only point loss measure estimates. Table 2 contains results anal-

ogous to those reported in Table 1, but presents instead the CS statistics and associated critical

values discussed above. It is immediate upon inspection of this table that there is little to choose

between the different models, with very few rejections of the null hypothesis that no model beats

the standard sticky price model. Of course, it should be stressed that the use of larger samples

and/or prediction periods may yield additional evidence that could be useful for understanding

the whether there is any statistically significant difference between our models when used to form

predictive densities.

Mean Square Forecast Error Analysis

The picture that emerges when MSFEs are examined (see Table 4) is qualitatively the same

as when predictive densities are examined. In the table, MSFEs and Diebold and Mariano (DM:

1995) predictive accuracy test statistics are reported. Starred entries denote rejection of the null

hypothesis that the DM test finds nothing to choose between the standard sticky price model and

each of the alternative models listed across the first row of the table (see Clark and McCracken

(2001) and McCracken (2004) for a detailed discussion of appropriate critical values for the DM

test). Panel A reports results for the output gap, and Panel B contains results for inflation.

Amongst the theoretical models, it again appears that the standard model is sub-optimal. Indeed,

all rejections of the DM test favor the newer theoretical models. There is a surprising exception

to this rule, however. Namely, for inflation, the standard model yields statistically significant

advantage over the other theoretical models whenever the forecast horizon is 3 years, regardless of

which ex ante period is being used. Additionally, the same finding holds for the output gap when the

longest ex ante period is considered. This finding does not manifest itself when predictive densities

are evaluated, and underscores the obvious differences between examining MSFEs versus examining

entire predictive densities. In short, if interest focuses on conditional mean prediction, and square

error loss is deemed the relevant loss measure, then the standard model is clearly preferable at our

longest horizon of three years ahead. It remains to be seen whether this finding will hold up when

time series models, Table 3 gathers estimation results for typical AR and VAR models (the estimation period in all

cases is the first estimation period used for a particular ex ante period). Of note is that the models generally fit quite

well, even though issues of structural breaks are ignored.

Of further note is that the specification of more complex time series models that allow for structural breaks, for

example, is left to future research.
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even longer forecast horizons are examined.

Of final note is that the naive model rarely dominates (notice that the lowest MSFE is achieved

by the naive model in only three cases, across both panels of Table 4).

In summary, the newer theoretical models appear to dominate the standard model in many

cases. Notable exceptions include the case where output gap predictive densities are of interest, and

where 3-year ahead MSFE predictive performance is the yardstick being used to evaluate models.

Furthermore, the simple time series models examined here clearly do not dominate the DSGE

models, even though the time series models are estimated recursively, and use the parsimonious

SIC for lag selection.

6 Conclusion

In this paper we carry out a predictive analysis of various sticky price models using predictive

density and mean square forecast error (MSFE) loss. We find that more recent information and

indexation type sticky price models fare well and often dominate the standard sticky price model.

An important exception to this finding is when MSFE loss is specified, in which case the standard

model dominates the newer models at our longest forecast horizon of 3 years ahead. We also find

that theoretical macroeconomic model based predictions are not dominated by simple econometric

model based predictions, suggesting a role for economic theory in econometric forecasting. It

remains to see whether these findings will hold up when longer forecast horizons are considered. It

also remains to ascertain whether the finding in this paper that simple linear time series models

offer little predictive advantage over DSGE models when predicting the output gap and inflation

holds up under further scrutiny, where, for example, more complex nonlinear econometric models

are specified, such as those discussed in Dahl and Hylleberg (2003).
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Table 1: Corradi and Swanson Distributional Loss Measures for Various Models

Panel A: Joint Distribution of the Output Gap and Inflation

Fcst.Period, τ sp spi si AR,R AR,NR VAR,R VAR,NR

1970:1,4 1.0736 1.0989 1.0680 1.1063 1.9858 1.0940 1.7342

1970:1,8 1.1123 1.1336 1.1649 1.2098 2.3933 1.1781 2.5163

1970:1,12 1.1450 1.2027 1.1675 1.2240 2.4500 1.2504 2.8099

1982:4,4 0.7134 0.6880 0.7212 0.6847 0.7848 0.7395 0.8941

1982:4,8 0.8471 0.8147 0.9138 0.8786 1.2249 0.9103 1.1737

1982:4,12 0.9275 0.8923 0.8836 1.0036 1.4299 1.0242 1.2834

1990:1,4 0.5441 0.5163 0.5123 0.5023 0.5552 0.6001 0.8367

1990:1,8 0.7087 0.6351 0.6655 0.6678 0.7617 0.8925 1.2643

1990:1,12 0.7364 0.6992 0.7121 0.7885 0.9596 1.0102 1.3239

Panel B: Distribution of the Output Gap

Fcst.Period, τ sp spi si AR,R AR,NR VAR,R VAR,NR

1970:1,4 1.0784 1.0746 1.0950 1.0745 2.6712 1.0937 2.1516

1970:1,8 1.1357 1.1979 1.2398 1.1762 3.2760 1.1395 3.7948

1970:1,12 1.2067 1.2898 1.2009 1.1404 3.3715 1.1753 4.2559

1982:4,4 0.6469 0.6865 0.6530 0.6411 0.6510 0.7656 0.9337

1982:4,8 0.6759 0.7126 0.7882 0.7216 1.0478 0.8518 0.8097

1982:4,12 0.7387 0.7427 0.7415 0.7977 1.2537 0.8162 1.0992

1990:1,4 0.4274 0.4177 0.4433 0.4409 0.4593 0.6545 0.9824

1990:1,8 0.4723 0.4749 0.5207 0.5397 0.5578 0.9487 1.3717

1990:1,12 0.5918 0.5590 0.5307 0.6260 0.6616 0.9577 1.2753

Panel C: Distribution of Inflation

Fcst.Period, τ sp spi si AR,R AR,NR VAR,R VAR,NR

1970:1,4 1.1068 1.1196 1.0890 1.1817 1.1849 1.0779 1.2834

1970:1,8 1.1076 1.1022 1.0959 1.2849 1.5253 1.1522 1.1644

1970:1,12 1.1026 1.1094 1.1252 1.3313 1.8553 1.2818 1.3472

1982:4,4 0.6164 0.4952 0.6299 0.5379 0.7656 0.4562 0.5126

1982:4,8 0.8536 0.6305 0.8354 0.8817 1.2680 0.6553 1.1116

1982:4,12 0.9433 0.8275 0.8171 1.0840 1.5173 0.9981 1.1575

1990:1,4 0.5631 0.5234 0.4675 0.4351 0.5294 0.3170 0.3183

1990:1,8 0.8625 0.6143 0.6869 0.6753 0.8782 0.5200 0.8399

1990:1,12 0.6943 0.6480 0.7882 0.8447 1.2152 0.8511 1.2739

Notes: Entries in the table are Corradi and Swanson (CS: 2005a) distributional loss measures (i.e. an estimate of

E

((
Fj(u; θ

†
j )− F0(u; θ0)

)2)
. Namely, we report CS =

∫
U

1
P

∑P

t=1

(
1{Yt ≤ u}− 1

P

∑P

n=1
1{Yj,n(θ̂j,T ) ≤ u}

)2

φ(u)du,

where j denotes a particular model (see Section 4 for complete details). The CS distributional loss measure is cal-

culated for the sticky price (sp), sticky price with indexation (spi) and sticky information (si) theoretical models, as

well as for AR and VAR models. For the latter two models, predictions and predictive densities are constructed using

two different estimation and prediction construction methods; namely recursive (R) and non-recursive (NR). Hence

the notation AR,R; AR,NR; VAR,R; and VAR,NR. Boldface entries indicate the lowest CS measure for a particular

model.
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Table 2: Distributional Accuracy Tests Based on the Comparison of Actual and
Predicted πt and y

g
t

Panel A: Tests Based on the Joint Distribution of the Output Gap and Inflation

1970:1 1982:4 1990:1

Critical Value Critical Value. Critical Value.

τ, l Z 5% 10% Z 5% 10% Z 5% 10%

4,l1 0.0056 0.2295 0.2087 0.0287 0.1586 0.1396 0.0418 0.2760 0.2383

4,l2 0.0056 0.3042 0.2622 0.0287 0.1786 0.1532 0.0418 0.2571 0.2223

4,l3 0.0056 0.3681 0.2669 0.0287 0.1720 0.1624 0.0418 0.3079 0.2509

4,l4 0.0056 0.3709 0.3220 0.0287 0.1809 0.1575 0.0418 0.3297 0.2678

4,l5 0.0056 0.3045 0.2829 0.0287 0.1968 0.1656 0.0418 0.3026 0.2556

8,l1 -0.0213 0.3501 0.2806 0.0323 0.2223 0.1882 0.0736 0.1916 0.1723

8,l2 -0.0213 0.4654 0.3638 0.0323 0.2615 0.2015 0.0736 0.1933 0.1583

8,l3 -0.0213 0.3726 0.3152 0.0323 0.2333 0.2100 0.0736 0.1815 0.1576

8,l4 -0.0213 0.3895 0.3675 0.0323 0.2445 0.2104 0.0736 0.1733 0.1613

8,l5 -0.0213 0.3595 0.2997 0.0323 0.2408 0.1937 0.0736 0.1670 0.1079

12,l1 -0.0224 0.3665 0.3339 0.0439 0.2179 0.1904 0.0371 0.2118 0.1473

12,l2 -0.0224 0.4223 0.4058 0.0439 0.2616 0.2022 0.0371 0.2494 0.1709

12,l3 -0.0224 0.4250 0.3606 0.0439 0.2764 0.2458 0.0371 0.2325 0.1846

12,l4 -0.0224 0.5739 0.5039 0.0439 0.3010 0.2342 0.0371 0.2749 0.2495

12,l5 -0.0224 0.5088 0.4475 0.0439 0.2441 0.2292 0.0371 0.2553 0.1919

Panel B: Tests Based on the Distribution of the Output Gap

1970:1 1982:4 1990:1

Critical Value. Critical Value. Critical Value.

τ, l Z 5% 10% Z 5% 10% Z 5% 10%

4,l1 0.0039 0.3891 0.3258 0.0058 0.1813 0.1697 0.0096 0.2494 0.2321

4,l2 0.0039 0.4768 0.3687 0.0058 0.2036 0.1679 0.0096 0.2562 0.2167

4,l3 0.0039 0.4870 0.3793 0.0058 0.2324 0.2000 0.0096 0.2845 0.2346

4,l4 0.0039 0.5226 0.4511 0.0058 0.2312 0.1843 0.0096 0.3957 0.2928

4,l5 0.0039 0.3989 0.3500 0.0058 0.2024 0.1791 0.0096 0.3336 0.2535

8,l1 -0.0037 0.6340 0.4304 -0.0368 0.2530 0.2155 -0.0026 0.3151 0.2742

8,l2 -0.0037 0.6947 0.5334 -0.0368 0.2800 0.2082 -0.0026 0.3854 0.3099

8,l3 -0.0037 0.6250 0.4839 -0.0368 0.2669 0.2471 -0.0026 0.3675 0.2934

8,l4 -0.0037 0.6045 0.5472 -0.0368 0.2953 0.2427 -0.0026 0.3478 0.3056

8,l5 -0.0037 0.4803 0.4549 -0.0368 0.2935 0.2403 -0.0026 0.2756 0.2221

12,l1 0.0663 0.5392 0.4821 -0.0028 0.2513 0.2358 0.0611 0.1616 0.1390

12,l2 0.0663 0.6096 0.5376 -0.0028 0.3330 0.2888 0.0611 0.2539 0.1956

12,l3 0.0663 0.5814 0.5048 -0.0028 0.3555 0.3253 0.0611 0.2222 0.1696

12,l4 0.0663 0.6905 0.5877 -0.0028 0.3670 0.3286 0.0611 0.3138 0.2372

12,l5 0.0663 0.5791 0.5126 -0.0028 0.3741 0.3068 0.0611 0.2492 0.1894

Panel C: Tests Based on the Distribution of Inflation

1970:1 1982:4 1990:1

Critical Value. Critical Value. Critical Value.

τ, l Z 5% 10% Z 5% 10% Z 5% 10%

4,l1 0.0289 0.1987 0.1731 0.1602 0.3544 0.2744 0.2461 0.3581 0.3241

4,l2 0.0289 0.2589 0.2371 0.1602 0.3333 0.2971 0.2461 0.3787 0.3043

4,l3 0.0289 0.3160 0.2523 0.1602 0.3434 0.3053 0.2461 0.4213 0.3714

4,l4 0.0289 0.4085 0.3112 0.1602 0.3524 0.3208 0.2461 0.3805 0.3125

4,l5 0.0289 0.4123 0.3156 0.1602 0.3779 0.3089 0.2461 0.3723 0.3474

8,l1 0.0118 0.3320 0.2916 0.2231∗ 0.2615 0.2216 0.3425∗∗ 0.1710 0.1333

8,l2 0.0118 0.4041 0.2948 0.2231 0.3046 0.2634 0.3425∗∗ 0.1781 0.1208

8,l3 0.0118 0.4680 0.3147 0.2231 0.3267 0.2890 0.3425∗∗ 0.1784 0.1190

8,l4 0.0118 0.5453 0.4450 0.2231 0.3989 0.3032 0.3425∗∗ 0.1005 0.0724

8,l5 0.0118 0.5630 0.4591 0.2231 0.4294 0.2899 0.3425∗∗ 0.1355 0.1218

12,l1 -0.0068 0.3769 0.3147 0.1262 0.2272 0.1905 0.0463 0.4400 0.3369

12,l2 -0.0068 0.4858 0.4239 0.1262 0.2761 0.2212 0.0463 0.4114 0.3570

12,l3 -0.0068 0.5517 0.4425 0.1262 0.3241 0.2589 0.0463 0.4174 0.3528

12,l4 -0.0068 0.7061 0.5930 0.1262 0.2496 0.2246 0.0463 0.3903 0.3491

12,l5 -0.0068 0.6667 0.5797 0.1262 0.2407 0.2281 0.0463 0.4188 0.3612

Notes: The benchmark is the sticky price model, which is tested against all other models. For each forecast period,

there are three columns of entries: the 1st column reports the numerical values of the test statistic; the next two

columns report 5% and 10% bootstrap critical values based on bootstrap statistics constructed allowing for parameter

estimation error. ∗ indicates rejection of null hypothesis at a 10% and ∗∗ at a 5% significance level. We compare

three τ step ahead forecasts, where we choose τ = 4, 8,or 12. The block length used in the bootstrap is set as

follows: l1 = 5, l2 = 8, l3 = 10, l4 = 16, and l5 = 20. All statistics are constructed using grids of 20x20 values

for u, distributed uniformly across the historical data ranges of πt and y
g
t . Bootstrap empirical distributions are

constructed using 100 bootstrap replications. See Sections 4 and 5 for complete details.
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Table 3: Estimation Summary Statistics for Selected AR and VAR(p) Models

Panel A: AR(p) models

xt = y
g

t
xt = πt

1964:1-1969:1 1964:1-1981:4 1964:1-1989:1 1964:1-1969:1 1964:1-1981:4 1964:1-1989:1

c 0.0104∗∗ 0.0001 -0.0001 0.0037∗ 0.0025∗∗ 0.0021∗∗

(-2.2923) (0.0516) (-0.1187) (2.1449) (2.2413) (2.3274)

xt−1 1.0002∗∗ 1.1339∗∗ 1.2227∗∗ 0.6093∗∗ 0.8082∗∗ 0.8180∗∗

(3.9946) (9.1465) (12.539) (3.0481) (6.3919) (8.1346)

xt−2 −0.3635∗ −0.2502∗∗ −0.3149∗∗ -0.134882 −0.2169∗

(-1.7818) (-2.0093) (-3.2239) (-0.8665) (-1.8118)

xt−3 0.5421∗∗ 0.5299∗∗

(3.3887) (4.4245)

xt−4 −0.3625∗∗ −0.2749∗∗

(-2.7921) (-2.7639)

R2 0.6114 0.8074 0.8778 0.3989 0.7738 0.7418

Adj. R2 0.5516 0.8014 0.8752 0.3560 0.7593 0.7305

Log Likl. 59.763 211.74 313.15 73.909 275.84 391.72

DW 1.7674 2.0114 2.1168 1.9119 1.8722 2.0040

AIC -7.0954 -6.2312 -6.4615 -8.9887 -8.0848 -8.0567

SIC -6.9506 -6.1325 -6.3813 -8.8921 -7.9202 -7.9232
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Table 3 (cont): Estimation Summary Statistics for Selected AR and VAR(p)Models

Panel B: VAR(p) models

1964:1-1969:1 1964:1-1981:4 1964:1-1989:1

y
g

t
πt rt �mt y

g

t
πt rt �mt y

g

t
πt rt �mt

c 0.0099 −0.0102∗∗ 0.0012 0.0066 0.0039 -0.0031 -0.0020 0.0163∗∗ 0.0096∗∗ -0.0017 -0.0031 0.0148∗∗

(0.5115) (-2.4149) (0.5323) (0.6132) (0.6896) (-1.3048) (-0.7233) (4.6632) (2.2014) (-0.8905) (-1.4776) (3.8478)

y
g

t−1
0.7384∗∗ 0.0888∗∗ 0.0020 -0.1315 0.9304∗∗ 0.0650∗∗ 0.0658∗∗ −0.1605∗∗ 0.9547∗∗ -0.0039 0.1290∗∗ -0.0732

(-3.9127) (2.1537) (0.0899) (-1.2535) (15.318) (2.5615) (2.2149) (-4.2753) (9.6603) (-0.0869) (2.7128) (-0.8435)

y
g

t−2
-0.0943 0.0500 -0.0633 -0.0380

(-0.9694) (1.1452) (-1.3511) (-0.4444)

πt−1 0.3414 0.4433∗∗ 0.2594∗∗ -0.6303 -0.3319 0.6583∗∗ 0.1355 0.0343 -0.0930 0.6744∗∗ −0.3337∗∗ -0.1135

(0.4028) (2.3950) (2.5750) (-1.3377) (-1.4574) (6.9167) (1.2166) (0.2440) (-0.4337) (7.0104) (-3.2340) (-0.6026)
πt−2 0.0093 0.1255 −0.4332∗∗ 0.3222∗

(0.0447) (1.3535) (4.3550) (1.7737)

rt−1 -0.2461 0.4561 0.6734∗∗ 0.9938 -0.1778 0.2742∗∗ 0.8131∗∗ -0.1347 0.2732 0.6317∗∗ 0.6838∗∗ −0.4168∗∗

(-0.1426) (1.2105) (3.2829) (1.0360) (-0.8168) (3.0135) (7.6346) (-1.0011) (1.2951) (6.6764) (6.7377) (-2.2492)

rt−2 −0.8271∗∗ −0.5659∗∗ 0.2420∗∗ 0.1907

(-3.5275) (-5.3812) (2.1457) (0.9261)

�mt−1 -0.1168 0.4061∗∗ 0.0586 0.4114 0.2188 0.1588∗ 0.1555∗ 0.3599∗∗ -0.0335 0.2078∗∗ 0.0047 0.2842∗

(-0.2610) (4.1555) (1.1009) (1.6535) (1.2315) (2.1384) (1.7894) (3.2777) (-0.2629) (3.6407) (0.0769) (2.5416)

�mt−2 0.1432 -0.0430 0.1643∗∗ 0.0517

(1.0872) (-0.7273) (2.5945) (0.4473)

R2 0.6846 0.8034 0.8631 0.3838 0.8405 0.7783 0.7527 0.5158 0.9158 0.8161 0.8003 0.3994

Adj. R2 0.5944 0.7472 0.8240 0.2078 0.8302 0.7640 0.7367 0.4846 0.9080 0.7992 0.7820 0.3442

DW 1.4558 2.0933 1.7403 1.7283 2.0185 1.9680 2.3498 1.9872 1.9850 2.1200 2.0453 2.0080

Log Likl. 346.02 1010.0 1486.3

AIC -34.318 -29.552 -30.214

SIC -33.324 -28.894 -29.252

Notes: The first row specifies in each panel of the table states the estimation sample size for each regression, and the second row

of specifies the endogenous variable in the regression. First column of the table specifies the exogenous variables used in the

regressions, as well as regression diagnostics where we use following notation: R2 for R-squared; Adj. R2 to denote adjusted

R-squared; Log Likl. for log likelihood; DW for the Durbin-Watson statistic; AIC for the Akaike information criterion; and

SIC for the Schwarz information criterion. Columns from two to six contain estimates of regression coefficients with t-statistic

in parentheses, ∗ indicates rejection of null hypothesis associated with a standard t-test at 10% and ∗∗ and 5% significance

levels.
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Table 4: Mean Square Forecast Errors for Various Models

Fcst. Period τ sp spi si AR,R AR,NR VAR,R VAR,NR Naive

Panel A: Output Gap

1970:1 4 0.0357 0.0322 0.0424∗∗ 0.0422∗∗ 0.1218∗∗ 0.0317 0.1166∗∗ 0.0473∗∗

DM -0.8083 4.4794 2.4926 10.9531 -0.7596 7.7678 2.5308

1970:1 8 0.0617 .0534∗∗ 0.0636∗∗ 0.0729∗∗ 0.1599∗∗ 0.0563 0.3822∗∗ 0.1027∗∗

DM -3.8321 2.0709 3.2168 12.7517 -0.5117 8.4801 4.4708

1970:1 12 0.0609 0.0660∗∗ 0.0617∗ 0.0974∗∗ 0.1953∗∗ 0.1065∗ 0.2994∗∗ 0.126∗∗

DM 3.8714 1.9042 4.2189 13.7508 1.7093 14.0641 5.7827

1982:4 4 0.0200 0.0230 0.0208 0.0221 0.0179 0.0227 0.0322∗∗ 0.0254

DM 1.0506 1.1867 0.5059 -0.7557 0.7513 3.1006 0.9182

1982:4 8 0.0367 0.0371 0.0395∗∗ 0.0396 0.0428∗∗ 0.0359 0.0746∗∗ 0.0629∗∗

DM 0.2487 2.2959 1.1747 2.9171 -0.0826 2.9531 2.6272

1982:4 12 0.0397 0.0426∗∗ 0.0393 0.0439∗∗ 0.0544∗∗ 0.0439 0.0695∗∗ 0.0843∗∗

DM 2.6717 -1.4498 2.0405 4.9313 0.4887 2.2628 3.8381

1990:1 4 0.0140 0.0128 0.0133∗ 0.0129 0.0130 0.0251∗∗ 0.0550∗∗ 0.0179

DM -0.4503 -1.6457 -0.6359 -0.5726 4.7504 6.9762 1.2321

1990:1 8 0.0210 .0185∗ 0.0207 0.0215 0.0206 0.0538∗∗ 0.1065∗∗ 0.0367∗∗

DM -1.9215 -0.5335 0.2727 -0.2801 5.0880 7.3993 3.0334

1990:1 12 0.0202 0.0223∗∗ 0.0201 0.0234∗∗ 0.0212 0.0583∗∗ 0.0842∗∗ 0.0479∗∗

DM 2.3149 -0.4305 2.3315 0.9324 5.0360 7.3419 5.2353

Panel B: Inflation

1970:1 4 0.0651 0.0595∗ 0.0517∗∗ 0.0437∗∗ 0.0452∗∗ 0.0510 0.1116∗∗ .0431∗∗

DM -1.8729 -4.3657 -3.6129 -5.4637 -1.4436 2.3029 -2.7485

1970:1 8 0.0734 0.0789∗ .0710∗∗ 0.0767 0.0820 0.1223 0.0712 0.0795

DM 1.6423 -3.3187 0.4212 1.3495 1.3694 -0.3944 0.5498

1970:1 12 0.0893 0.0953∗∗ 0.0894 0.0854 0.1024∗ 0.4037 .0750∗∗ 0.0914

DM 4.4845 0.0217 -0.4389 1.7208 1.0972 -3.1820 0.1477

1982:4 4 0.0335 0.0283∗∗ 0.0322 .0261∗∗ 0.0367 0.0263∗∗ 0.0292 0.0266

DM -2.0838 -0.7349 -2.1117 1.0240 -1.9635 -1.1660 -1.2187

1982:4 8 0.0400 .0245∗∗ 0.0420∗∗ 0.0435 0.0654∗∗ 0.0485 0.0898∗∗ 0.0437

DM -7.6745 4.1755 0.7679 5.8424 0.8970 4.2343 0.3526

1982:4 12 0.0459 0.0494∗∗ 0.0481∗∗ 0.0627 0.0874∗∗ 0.0610 0.0644∗∗ 0.0677

DM 2.9649 5.2596 1.4847 5.8120 1.0055 3.3275 1.1183

1990:1 4 0.0345 0.0251∗∗ 0.0306∗∗ 0.0204∗∗ 0.0246∗∗ 0.0173∗∗ .0161∗∗ 0.0195∗∗

DM -6.4908 -2.7655 -3.6930 -3.0479 -4.9228 -5.3171 -2.8851

1990:1 8 0.0411 0.0267∗∗ 0.0414 0.0295∗∗ 0.0395 0.0239∗∗ 0.0386 .0202∗∗

DM -9.5679 1.1816 -5.3215 -1.1083 -6.6900 -1.0043 -4.3158

1990:1 12 0.0476 0.0501∗∗ 0.0490∗∗ 0.0385∗∗ 0.0653∗∗ 0.0386∗∗ 0.0776∗∗ .0193∗∗

DM 2.6164 4.4862 -5.8662 10.7507 -3.5972 8.6139 -4.9834

Notes: Forecast accuracy results are presented in this table for models of the output gap (Panel A) and inflation (Panel B).

Numerical entries are mean square forecast errors (x100 in Panel A; x1000 in Panel B) and Diebold and Mariano (DM: 1995)

statistics for the sticky price (sp), sticky price with indexation (spi) and sticky information (si) theoretical models; as well as

for AR and VAR, and naive no change models based on recursive (R) and non-recursive (NR) estimation and forecast

construction schemes. Boldface entries indicate the minimum mean square error among alternative models. The first

column of entries reports the start date of the forecast period, and the second column gives the forecast horizon. The

null hypothesis of the DM test is that the sticky price model and each alternative model perform equally well based

on their mean square forecast errors. ∗ indicates rejection of null hypothesis at 10% and ∗∗ denotes rejection at 5%

significance level. See Section 5 for complete details.
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Figure 1: Predictive Summary Plots for Standard Sticky Price Model
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Notes: Predictive densities, rows one and two, and forecasts, rows three and four, are computed using the theoretical

sticky price model for three forecast periods: 1970:1, 1982:4 and 1990:1 in the first, second and third columns,

respectively. X-axes on each density graph are growth rates in percent, Y-axes are empirical probability density

functions, f(x). Y-axes on each forecast graph are growth rates in percent. Each graph reports actual observations -

blue solid line; one year ahead forecasts - green, dashed line; two year ahead forecasts - red, dotted line; and 3 year

ahead forecasts - light blue, dash-dotted line.
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