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Abstract

In this paper, we draw on both the consistent specification testing and the predictive ability testing literatures
and propose an integrated conditional moment type predictive accuracy test that is similar in spirit to that
developed in Bierens (1982,1990) and Bierens and Ploberger (1997). The test is consistent against generic
nonlinear alternatives, and is designed for comparing nested models. One important feature of our approach
is that the same loss function is used for in-sample estimation and out-of-sample prediction. In this way,
we rule out the possibility that the null model can outperform the nesting generic alternative model. It
turns out that the limiting distribution of the ICM type test statistic that we propose is a functional of a
Gaussian process with a covariance kernel that reflects both the time series structure of the data as well as
the contribution of parameter estimation error. As a consequence, critical values are data dependent and
cannot be directly tabulated. One approach in this case is to obtain critical value upper bounds using the
approach of Bierens and Ploberger (1997). Here, we establish the validity of a conditional p-value method
for constructing critical values. The method is similar in spirit to that proposed by Hansen (1996) and
Inoue (2001), although we additionally account for parameter estimation error. In a series of Monte Carlo
experiments, the finite sample properties of three variants of the predictive accuracy test are examined. Our
findings suggest that all three variants of the test have good finite sample properties when quadratic loss is
specified, even for samples as small as 600 observations. However, non-quadratic loss functions such as linex
loss require larger sample sizes (of 1000 observations or more) in order to ensure reasonable finite sample
performance.
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1 Introduction

In recent years, much attention has been given in the econometrics literature to the issue of pre-

dictive ability. One of the most important recent contributions is the seminal paper of Diebold

and Mariano (DM: 1995), in which a quite general test of equal predictive accuracy between two

competing models is proposed. Since then, efforts have been made to generalize DM type tests in

order to: account for parameter estimation error (West (1996) and West and McCracken (1998));

allow for non differentiable loss functions together with parameter estimation error (McCracken

(2000)); extend the DM framework to the case of integrated and cointegrated variables (Clements

and Hendry (1999a,b, 2001) and Corradi, Swanson and Olivetti (2001)); and address the issue of

joint comparison of more than two competing models (Sullivan, Timmermann and White (1999)

and White (2000)). Other papers approach the issue of predictive accuracy testing via the use

of encompassing and related tests (see e.g. Chao, Corradi and Swanson (2001), Clark and Mc-

Cracken (2001), Harvey, Leybourne and Newbold (1997) and McCracken (1999)).1 One of the

common features of many of the papers cited above is that nonnested forecasting models are com-

pared. However, applied econometricians are often interested in comparing the predictive accuracy

of nested competing models. The most obvious context in which nested models should be com-

pared is when predictive ability is equated with out-of-sample Granger causality, for example. In

particular, it is often of interest to assess whether historical data from one variable are useful when

constructing a forecasting model for another variable, hence our use of terminology such as “out-of-

sample Granger causality”.2 Another feature of the above papers is that they compare a given and

known set of models. More precisely, they either compare two different models or they compare a

given benchmark (or reference) model with multiple alternative models. Needless to say, there may

exist some other model which, although not included in the finite set of competing models, yields

superior forecasts. This is a feature of predictive ability (or accuracy) tests which has been ad-
1Even though the DM paper signalled renewed interest in the area, it should be stressed that related tests had

been proposed in the past (see e.g. Granger and Newbold (1986)).
2Granger (1980) summarizes his personal viewpoint on testing for causality, and outlines what he considers to

be a useful operational version of his original definition of causality (Granger (1969)). This operational version is

based on a comparison of the one-step ahead predictive ability of competing models. However, Granger concludes his

discussion by noting that it is common practice to test for Granger causality using in-sample F-tests. This practice

continues to be prevalent.
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dressed in other areas of econometrics. For example, in the consistent specification testing literature

it is customary to test the validity of a null (or reference) model against a generic alternative. This

can be accomplished by constructing conditional moment tests which employ an infinite number

of moment conditions (see e.g. Bierens (1982,1990), Bierens and Ploberger (1997), de Jong (1996),

Hansen (1996), Lee, Granger and White (1993) and Stinchcombe and White (1998)).

In this paper, we draw on both the consistent specification and predictive ability testing lit-

eratures and propose a test for predictive accuracy which is consistent against generic nonlinear

alternatives, and which is designed for comparing nested models. Broadly speaking, given a par-

ticular reference model, assume that the objective is to test whether there exists any unknown

alternative model that has better predictive accuracy than the reference model, for a given loss

function. A typical example is the case in which the reference model is a simple autoregressive

model and we want to check whether a more accurate forecasting model can be constructed by

including possibly unknown (non)linear functions of the past of the process or of the past of some

other process(es).3 Although this is the example that we focus on, the reference model can be any

(non)linear model. One important feature of our approach is that the same loss function is used

for in-sample estimation and out-of-sample prediction (see Granger (1993) and Weiss (1996)). In

particular, we use least squares (LS) to estimate parameters when the loss function is quadratic,

and use a more general m−estimator when the loss function is non-quadratic. In this way, we rule

out the possibility that the null model can outperform the nesting generic alternative model. Thus,

the null hypothesis is that the null and alternative models have equal predictive accuracy, while

the alternative is that the null model is outperformed.

The most natural approach to forming the desired test is to use an out of sample version of

the integrated conditional moment (ICM) test of Bierens (1982,1990) and Bierens and Ploberger

(1997). One reason why we propose an ICM type rather than, say, a DM type test, is that we use

the same loss function throughout.4 To explain the problem that arises with DM type tests more

clearly, note first that the difference between functionals of the “true” forecast errors is identically

zero when the null model is nested. Additionally, parameter estimation error vanishes whenever the
3For example, Swanson and White (1995,1997) compare the predictive accuracy of various linear models against

neural network models using both in-sample and out-of-sample model selection criteria.
4The applicability of the ICM test in our context, as well as the importance of using the same loss function, both

in- and out-of-sample, was pointed out to us by one of the referees.
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same loss function is used both in- and out-of-sample, regardless of the value of π = limT→∞ P/R,

where P is the length of the out-of-sample evaluation period, and R is the length of the in-sample

regression period used to construct the first of a sequence of P recursive ex ante forecasts. This

second characteristic of DM type tests follows from West (1996), where it is shown that parameter

estimation error vanishes, regardless of the value of π, when the expectation of the derivative

(with respect to the parameters of the model) of the out-of-sample loss function, evaluated at the

probability limit of the estimated parameters, is equal to zero. However, this is always the case

when the same loss function is used both in- and out-of-sample. As a consequence, when the same

loss function is used throughout, and the null model is nested, the numerator of DM type tests

vanishes in probability under the null.5

It should perhaps be stressed that our ICM type test differs from those developed by Bierens

(1982,1990) and Bierens and Ploberger (1997) in a number of respects. First, parameters are

estimated recursively. Second, the test statistic is computed over the out-of-sample forecast period.

Third our null hypothesis is that the reference model is the best “loss function specific” predictor,

for a given information set.

It turns out that the limiting distribution of the ICM type test statistic that we propose is a

functional of a Gaussian process with a covariance kernel that reflects both the time series structure

of the data as well as the contribution of parameter estimation error. As a consequence, critical

values are data dependent and cannot be directly tabulated. We could in principle obtain critical

value upper bounds using the approach of Bierens and Ploberger (1997). However, it is well known

that inferences based on upper bounds is conservative. For this reason, we also consider another

approach. In particular, we propose an extension of Inoue (2001) which allows for non vanishing

parameter estimation error.6 In practice, our approach is to simply augment the simulated statistics

(used in the construction of the empirical distribution) by adding an extra term which is a strong

consistent estimator of the contribution of parameter estimation error to the covariance kernel of

the limiting distribution of the test statistic. We establish that under the null hypothesis the actual

statistic and the simulated statistic have the same limiting distribution. Under the alternative, the
5Note that McCracken (1999) shows that a particular version of the DM test in which a null model is compared

against a fixed alternative and the numerator is multiplied by
√

P has a nonstandard limiting distribution. However,

his approach does not apply in our case, as we consider generic alternatives.
6Inoue (2001) is an extension of the conditional p-value approach of Hansen (1996) to the case of non martingale

difference errors.
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actual statistic diverges to infinity at rate P, while the simulated statistic grows at most at rate l,

where l plays the same role as the block length in the block bootstrap (e.g. see Künsch (1989)).

Thus, conditional on the sample, we can generate many simulated statistics, and for each of these

compute the relevant functional over γ, the nuisance parameter over which integration is done.

The empirical distribution of these functionals can then be used to construct critical values for the

test. In particular, we reject (do not reject) the null hypothesis whenever we obtain a value above

(below) the (1 − α)th−percentile, thereby ensuring that the test has asymptotic size equal to α,

and unit asymptotic power.

The rest of the paper is organized as follows. Section 2.1 describes the set up and outlines

the assumptions needed in the rest of the paper. Section 2.2 examines the asymptotic behavior of

the test statistic and establishes the asymptotic validity of the conditional p-value approach. The

findings from a series of Monte Carlo experiments are reported in Section 3, and Section 4 contains

concluding remarks. All proofs are collected in an Appendix.

2 Comparing the Predictive Accuracy of the Linear Model Against

Generic Nonlinear Alternatives

2.1 Set-up and Assumptions

In applied time series analysis there has been a long standing debate concerning whether simple

linear models (e.g. ARMA models) provide out of sample forecasts which are (at least) as accurate

as more sophisticated nonlinear models. If this were shown to be the case, then there would be

no point in using nonlinear models for out-of-sample prediction, even if the linear models could

be shown to be incorrectly specified, say based on the application of in-sample nonlinearity tests

such as the Ramsey (1969) RESET test, the Luukkonen, Saikkonen, and Teräsvirta (1988) smooth

transition autoregressive test, or the Lee, White and Granger (1993) neural network test (for a

detailed discussion of numerous nonlinearity tests, see Granger and Teräsvirta (1993)).

The debate on the usefulness of linear versus nonlinear models discussed in the previous para-

graph is addressed, for example, in Swanson and White (1997), who find that adaptive (vector)

autoregressive models are not outperformed (in a predictive sense) by more sophisticated adaptive

neural network models. Teräsvirta and Anderson (1992), on the other hand, find some evidence
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that smooth transition autoregressive models can be useful for characterizing nonlinearities in busi-

ness cycles. Regardless of the outcome of this debate, however, it is natural to use linear models

as benchmarks when evaluating the usefulness of more general (non)linear models. We follow suit,

and use a simple autoregressive model as our reference model.7 Further, we confine our attention

to one-step ahead forecasts. Extension to multi-step ahead forecasts follows directly. As we do

not in general assume that the reference or alternative models are dynamically correctly specified,

we do not explicitly write down data generating processes. Nevertheless, we can define the “true”

one-step ahead forecast errors for the reference model (say model 0) and for the generic alternative

model (say model 1). More precisely, let the reference model be:

xt = β∗1 + β∗2xt−1 + u0,t, (1)

where β∗ = (β∗1 , β∗2)′ = arg minβ∈B E(f(xt − β1 − β2xt−1)), β = (β1, β2)′, xt is a scalar, f is the

loss function used both for in-sample estimation and out-of-sample prediction evaluation, and B is

a generic compact set defined on the real line. The generic alternative model is:

xt = δ∗1(γ) + δ∗2(γ)xt−1 + δ∗3(γ)g(zt−1, γ) + u1,t(γ), (2)

where δ∗(γ) = (δ∗1(γ), δ∗2(γ), δ∗3(γ))′ = arg minδ∈∆ E(f(xt − δ1 − δ2 − δ3g(zt−1, γ))),

δ(γ) = (δ1(γ), δ2(γ), δ3(γ))′, γ ∈ Γ, with Γ a compact subset of <d, zt−1 = (z1,t−1, z1,t−2, . . . ) is

a finite vector of lagged variables, possibly including lags of xt. The alternative model is called

“generic” because of the presence of g(zt−1, γ), which is a generically comprehensive function, such

as Bierens’ exponential, a logistic, or a cumulative distribution function (see e.g. Stinchcombe

and White (1998) for a detailed explanation of generic comprehensiveness). Examples of g(zt−1, γ)

include: g(zt−1, γ) = exp(
∑q

i=1 γiΦ(zt−i)), or g(zt−1, γ) = 1/(1 + exp(c − ∑q
i=1 γiΦ(zt−i))), with

c 6= 0 and Φ a measurable one to one mapping from < to a bounded subset of <. In general, zt−1

could contain: lags of the dependent variable (when testing for neglected nonlinearity); lags of other

variables (when testing for nonlinear Granger causality)8; or both. Note also that Assumptions A2

(below) ensures that β∗ and δ∗(γ) are uniquely identified. The hypotheses of interest are:

H0 : E(f(u0,t+1)− f(u1,t+1(γ))) = 0 versus HA : E(f(u0,t+1)− f(u1,t+1(γ))) > 0. (3)

7The results obtained in the sequel generalize in a straightforward manner to the case where the reference model

is a possibly nonlinear AR(p) model (see e.g. Granger and Teräsvirta (1993)).
8In a recent interesting paper Rothman, van Dijk and Franses (2000) discusses alternative approaches to nonlinear

Granger causality testing.
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Clearly, the reference model is nested within the alternative model, and given the definitions of β∗

and δ∗(γ), the null model can never outperform the alternative. For this reason, H0 corresponds

to equal predictive accuracy, while HA corresponds to the case where the alternative model out-

performs the reference model, as long as the errors above are loss function specific forecast errors.

(Below, we discuss how to form appropriate recursively estimated forecast errors in our context.)

It follows that H0 and HA can be restated as:

H0 : δ∗3(γ) = 0 versus HA : δ∗3(γ) 6= 0,

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Now, given the definition of δ∗(γ),

note that

E((f ′(xt+1 − δ∗1(γ)− δ∗2(γ)xt − δ∗3(γ)g(zt, γ)))×




−1
−xt

−g(zt, γ)


) = 0,

where f ′ denotes the first derivative of f with respect to its argument. Thus, under H0 we have

that δ∗3(γ) = 0, δ∗1(γ) = β∗1 , δ∗2(γ) = β∗2 , and E(f ′(u0,t+1)g(zt, γ)) = 0. Thus, we can once again

restate H0 and HA as:

H0 : E(f ′(u0,t+1)g(zt, γ)) = 0 versus HA : E(f ′(u0,t+1)g(zt, γ)) 6= 0, (4)

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure.

It is now clear that we can implement an integrated conditional moment type test. The null

hypothesis in (4) corresponds to that of equal predictive ability of model (1) and (2). When

zt = (yt, ..., yt−q) or zt = (xt, ..., xt−q), say, and when the loss function is quadratic, H0 corresponds

to correct specification of the conditional mean, given zt. In fact, in the quadratic loss case the

conditional mean is the best mean square predictor. When the loss function is a linex (i.e. f(u) =

eau−au−1), it has been shown (see e.g. Christoffersen and Diebold (1997)) that the best predictor,

given the information in zt, is E(xt+1|zt) + 0.5aV ar(xt+1|zt). Here, the joint correct specification

of the conditional mean and conditional variance are implicit to the null hypothesis. When zt =

(yt, ..., yt−q), the null hypothesis can be interpreted as no Granger causality from yt to xt, in the

sense that the past yt does not help to predict xt, either linearly or nonlinearly. Before writing down

the test statistic, it is worth noting that we use an m−estimator in order to obtain a consistent

estimator of β∗. In particular, define:

β̂t = (β̂1,t, β̂2,t)′ = arg min
β∈B

1
t

t∑

j=2

f(xj − β1 − β2xj−1).
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Also, define û0,t+1 = xt+1 − x̃′tβ̂t, where x̃t = (1, xt)′. The test statistic is:

MP =
∫

Γ
mP (γ)2φ(γ)dγ, (5)

where
∫
Γ φ(γ)dγ = 1, and φ(γ) ≥ 0, and absolutely continuous with respect to Lebesgue measure.

mP (γ) =
1

P 1/2

T−1∑

t=R

f ′(û0,t+1)g(zt, γ). (6)

Two comments are worth making at this point. First, in this setup, R is defined to be the length of

the “initial” in sample-period, and P is the length of the out-of-sample period, where the sample

size is T = R + P . We begin by estimating the reference model using the first R observations,

and computing a single one-step ahead forecast error, û0,R+1, where û0,R+1 = xR+1 − x̃′Rβ̂R. The

forecasting model is then re-estimated using R + 1 observations, and a new “real-time” forecast

error is constructed. This process is continued until the entire sample is exhausted, and a sequence

of P one-step ahead forecast errors is constructed. Second, Monte Carlo experiments reported on

in Section 3 examine other functionals of mP (γ), including M sup
P = supγ∈Γ |mP (γ)| and |MP | =

∫
Γ |mp(γ)|φ(γ)dγ.

Hereafter, let ft(β) = f(xt−β1−β2xt−1), with f ′t(β) defined analogously. Further, let ft+1(β̂t)

= f(û0,t+1) = f(xt+1− x̃′tβ̂t), with f ′t+1(β̂t) again defined analogously. Finally, the operators ∇β(·),
and ∇2

β(·) denote first and second derivatives with respect to β, respectively. In the sequel, the

following assumptions are used.

Assumption A1: (i) (xt, zt) is a strictly stationary and absolutely regular strong mixing sequence

with size −4(4 + ψ)/ψ, ψ > 0, (ii) f is three times continuously differentiable in β, over the

interior of B, and ∇βf, ∇2
βf, ∇βf ′, ∇2

βf ′ are 2r−dominated9 uniformly in B, with r ≥ 2(2 + ψ),

(iii) E
(
−∇2

βft(β)
)

is negative definite, uniformly in B, (iv) g is a bounded, twice continuously

differentiable function on the interior of Γ and ∇γg(zt, γ) is bounded uniformly in Γ and (v)

∇γ∇βf ′t(β)g(zt−1, γ) is continuous on B × Γ, Γ a compact subset of Rd and is 2r−dominated

uniformly in B × Γ, with r ≥ 2(2 + ψ).

Assumption A2: (i) E(f ′(xt − β1 − β2xt−1)) > E(f ′(xt − β∗1 − β∗2xt−1)), ∀β 6= β∗ and

(ii) E(f ′(xt− δ1− δ2xt−1− δ3g(zt−1, γ))) > infγ E(f ′(xt− δ∗1(γ)− δ∗2(γ)xt−1− δ∗3(γ)g(zt−1, γ))) for

δ 6= δ∗(γ).
9Let ∇βf(xt−β1−β2xt−1)i be the i− th element of ∇βf(xt−β1−β2xt−1)i, i = 1, 2. By r−domination, we mean

that supβ∈B |∇βf(xt − β1 − β2xt−1)|i ≤ h(xt), with E((h(xt))
r) < ∞.
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Assumption A3: T = R + P, and as T →∞, P
R → π, with, 0 ≤ π < ∞.

Assumption A4: For any t, s; ∀ i, j, k = 1, 2; and for ∆ < ∞ :

(i) E

(
supβ×γ×γ+∈B×Γ×Γ

∣∣∣f ′t(β)g(zt−1, γ)∇k
βf ′s(β)g(zs−1, γ+)

∣∣∣
4
)

< ∆,

where ∇k
β(·) denotes the k−th element of the derivative of its argument with respect to β.

(ii) E

(
supβ∈B

∣∣∣
(
∇k

β(∇i
βft(β))∇j

βfs(β)
)∣∣∣

4
)

< ∆, and

(iii) E

(
supβ×γ∈B×Γ

∣∣∣
(
f ′t(β)g(zt−1, γ)∇k

β(∇j
βfs(β))

)∣∣∣
4
)

< ∆.

The assumptions stated above are essentially memory, moment, smoothness and identifiability

conditions. A1 requires (xt, zt) to be strictly stationary and absolutely regular.10 This memory

condition is stronger than α−mixing, but weaker than (uniform) φ−mixing. In addition to the

smoothness conditions placed on f and g, the absolute regularity assumption is needed to establish

stochastic continuity along the lines of Hansen (1996). Additionally, the differentiability of the loss

function assumed in A1 is a rather standard assumption (see e.g. West (1996)), although it rules out

interesting cases such as comparisons based on non-differentiable loss functions. Finally, we assume

that g is differentiable, thus ruling out threshold type nonlinearities, for example. However, this

does not mean that our test has no power against data generated according to threshold nonlinear

processes (see Monte Carlo results for further details). Note that all the examples for g outlined

above satisfy A1(iv). A2 is a standard unique identifiability condition for m−estimators in the

case of strictly stationary observations. A sufficient condition for A2 to hold is that f be strictly

convex, which is the case when the loss is quadratic or linear exponential (linex), for example.

(Linex loss is defined as f(u) = eau − au − 1, when a > 0 (a < 0) positive (negative) errors are

more (less) costly than negative (positive) errors).11 In the Monte Carlo analysis reported below,

we consider both quadratic and linex loss. A3 states the allowable rate of growth for the length of

the regression period, R, and the prediction period, P. We require P to grow at a rate not faster

than R. Finally, A4 is a uniform moment condition which is used in showing that the limiting

distribution of the simulated statistic and the limiting distribution of the actual statistic have the

same covariance structure, uniformly in γ.

10The definition of β−mixing coefficient first appeared in a paper by Wolkonski and Rozanov (1959). For a detailed

treatment of β−mixing and absolute regularity see also the Doukhan (ch.1.1 and 1.2 (1995)).
11Prediction using linex loss function is studied in Zellner (1993), Christoffersen and Diebold (1996, 1997) and

Granger (1999), for example.

8



2.2 Asymptotic Results

We begin by obtaining the limiting distribution of
∫
Γ mP (γ)2φ(γ)dγ.

Theorem 1: Let A1, A2 and A3 hold. Then, the following results hold: (i) Under H0,

MP =
∫

Γ
mP (γ)2φ(γ)dγ

d→
∫

Γ
Z(γ)2φ(γ)dγ,

where mP (γ) is defined in equation (6) and Z is a Gaussian process with covariance kernel given

by:

K(γ1, γ2) = Sff (γ1, γ2) + 2ΠF (β∗, γ1)′B(β∗)−1ShhB(β∗)−1F (β∗, γ2) + ΠF (β∗, γ1)′B(β∗)−1Sfh(γ2)

+ΠF (β∗, γ2)′B(β∗)−1Sfh(γ1),

with F (β∗, γ) = E(∇β(f ′t+1(β
∗)g(zt, γ))), B(β∗)−1 = (−E(∇2

βf(β∗)))−1,

Sff (γ1, γ2) =
∑∞

j=−∞E(f ′q(β∗)g(zq−1, γ1)f ′q+j(β
∗)g(zq+j−1, γ2)),

Shh =
∑∞

j=−∞E(∇βf1(β∗)∇βf1+j(β∗)′),

Sfh(γ1) =
∑∞

j=−∞E(f ′q(β∗)g(zq−1, γ1)∇βfq+j(β∗)′),

Π = 1 − π−1 ln(1 + π), for π > 0 and Π = 0 for π = 0, zq = (z1, ..., zq)′, and γ, γ1, γ2 are generic

elements of Γ.

(ii) Under HA, for ε > 0 and δ < 1,

lim
P→∞

Pr
(

1
P δ

∫

Γ
mP (γ)2φ(γ)dγ > ε

)
= 1.

When f is a quadratic function, it follows that β̂t is the LS estimator, computed using obser-

vations up to time t, mP (γ) = 1
P 1/2

∑T−1
t=R û0,t+1g(zt, γ), F (β∗, γ) = E

(−x̃′tg(zt, γ)
)
, B(β∗)−1 =

(−E(x̃tx̃
′
t))

−1, and ∇βft+1(β∗) = x̃tu0,t+1, for example. Note also that the limiting distribution

under H0 is a Gaussian process with a covariance kernel that reflects both the dependence struc-

ture of the data and, for π > 0, the effect of parameter estimation error. Hence, critical values are

data dependent and cannot be tabulated. One possibility in this case is to use the upper bounds

suggested by Bierens and Ploberger (1997), as K(γ1, γ2) satisfies their Lemma 1. Thus, from their

Theorem 7, it follows that:

lim
P→∞

Pr
(

MP > ε

∫

Γ
K̂(γ, γ)φ(γ)dγ

)
≤ Pr(W > ε),

where W = sups≥1
1
s

∑s
j=1 ξ2

j , with ξj an i.i.d. N(0, 1) random variable, and where K̂(γ, γ) is a

consistent estimator of K(γ, γ). For example, we can set:

K̂(γ, γ) = Ŝff (γ, γ) + 2Π̂F̂ (β̂T , γ)′B̂(β̂T )−1ŜhhB̂(β̂T )−1F̂ (β̂T , γ) + 2Π̂F̂ (β̂T , γ)′B̂(β̂T )−1Ŝfh(γ),

9



where Π̂ = (1−π̂−1 ln(1+π̂)), with π̂ = P/R, F̂ (β̂T , γ) = 1
T

∑T
t=q+1∇βf ′t(β̂T )g(zt−1, γ), B̂(β̂T )−1 =

(
− 1

T

∑T
t=2∇2

βft(β̂T )
)−1

,

Ŝff (γ, γ) = 1
P

∑T−1
t=R (f ′(û0,t+1)g(zt, γ))2+ 2

P

∑bT
τ=1 wτ

∑T−1
t=τ+R f ′(û0,t+1)g(zt, γ)f ′(û0,t−τ+1)g(zt−τ , γ),

Ŝhh = 1
P

∑T
t=R+1∇βft(β̂T )∇βft(β̂T )′ + 2

P

∑bT
τ=1 wτ

∑T
t=τ+R∇βft(β̂T )∇βft−τ (β̂T )′,

Ŝfh(γ) = 1
P

∑T−1
t=R f ′(û0,t+1)g(zt, γ)∇βft(β̂T ) + 2

P

∑bT
τ=1 wτ

∑T−1
t=τ+R f ′(û0,t+1)g(zt, γ)∇βft−τ (β̂T ),

with wτ an appropriately defined weighting function (e.g. wτ = 1− τ
bT +1) and bT an appropriately

defined lag truncation parameter (e.g. such that bT grows with T and bT = o(T 1/4)).

Under A1-A4, by an argument similar to that used in the proof of Lemma A in the appendix,

it follows that K̂(γ, γ) − K(γ, γ)
pr→ 0, uniformly in γ.12 Bierens and Ploberger (1997, pp. 1144)

provide the 10%, 5% and 1% quantiles of W. The decision rule in this case is to reject H0 at the

5% level if:

MP > 4.26
∫

Γ
K̂(γ, γ)φ(γ)dγ.

It is well known that inference based on these upper bounds is conservative. In addition, note

that these bounds are not valid if we take different functionals over mP (γ), such as the supremum

statistic, supγ∈Γ |mP (γ)|.
One approach for obtaining data dependent but asymptotically correct critical values is to

use the bootstrap. For example, White (2000) considers the case in which the statistic does not

depend on γ, and establishes the validity of the Politis and Romano (1994) stationary bootstrap,

when parameter estimation error vanishes asymptotically.13 Additionally, the validity of the block

bootstrap has been established for the case where test statistics are constructed using functionals

of empirical processes, when parameter estimation error (PEE) does not vanish (i.e. see Corradi

and Swanson (2001)). An alternative approach which avoids resampling, and which we consider

here, is the conditional p-value approach of Hansen (1996). Recently Inoue (2001) has extended

this approach to allow for non-martingale difference score functions. However, Inoue’s approach

does not take into account non vanishing PEE. For our purposes, it suffices to extend Inoue’s result

to the case of nonvanishing PEE.

Let εt, ηt be i.i.d. N(0, 1/l) random variables, with E(εtηs) = 0, ∀t, s and where l plays the role of

the blocksize in a block bootstrap, or equivalently of the lag truncation parameter in the estimation

12In Lemma A we provide an almost sure result, so that we need bT log T/T 1/4 → 0 as T →∞.
13White’s result has also been shown to be valid in the case of cointegrated variables (i.e. see Corradi, Swanson

and Olivetti (2001)).
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of the HAC covariance matrix. The appropriate “simulated” statistic is:

m∗
P (γ) = m

∗(1)
P (γ) + m

∗(2)
P (γ),

where

m
∗(1)
P (γ) =

1
P 1/2

T−l∑

t=R

εt

t+l−1∑

i=t

(
f ′(û0,i+1)g(zi, γ) + Π̂F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T )

)
(7)

with û0,i+1 = xi+1 − x̃iβ̂i and

m
∗(2)
P (γ) = (2Π̂− Π̂2)1/2 1

P 1/2

T−l∑

t=R

ηt

t+l−1∑

i=t

F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T ),

with Π̂, F̂ (β̂T , γ)′, B̂(β̂T )−1 defined as above.14

In order to motivate the use of this statistic, it is first worth considering the case in which

we set l = 1 and Π = 0. In particular, consider the case where the block length is unity, and

there is no parameter estimation error (Π = 0). This is the same framework used in Hansen

(1996), and in this case we can write m∗
P (γ) = m

∗(1)
P (γ) = 1

P 1/2

∑T−1
t=R εt

(
f ′(û0,i+1)g(zi, γ)

)
, as

m
∗(2)
P (γ) = 0. Note that conditional on the sample, m∗

P (γ) is a zero mean normal random vari-

able, with variance equal to 1
P

∑T−1
t=R

(
f ′(û0,i+1)g(zi, γ)

)2
, which converges almost surely to the

second moment of f ′(u0,i+1)g(zi, γ), which in turn only coincides with the long run variance of

mP (γ) = 1
P 1/2

∑T−1
t=R f ′(û0,t+1)g(zt, γ) (i.e. K(γ, γ)) when f ′(u0,i+1)g(zi, γ) is a martingale differ-

ence sequence and when there is no parameter estimation error. Now, consider a generic value

for l. That is, consider m∗
P (γ) = m

∗(1)
P (γ) = 1

P 1/2

∑T−l
t=R εt

∑t+l−1
i=t

(
f ′(û0,i+1)g(zi, γ)

)
. In this case,

conditional on the sample, m∗
P (γ) is a zero mean normal random variable, with variance equal to

1
Pl

∑T−l
t=R

(∑t+l−1
i=t f ′(û0,i+1)g(zi, γ)

)2
, which converges almost surely to Sff (γ, γ), as defined in the

statement of Theorem 1. However, Sff (γ, γ) only coincides with K(γ, γ) when there is no param-

eter estimation error. This, in turn, suggests accounting for parameter estimation error by writ-

ing m∗
P (γ) = m

∗(1)
P (γ) = 1

P 1/2

∑T−l
t=R εt

∑t+l−1
i=t

(
f ′(û0,i+1)g(zi, γ) + Π̂F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T )

)
.

Here, we capture data dependence and parameter estimation error. However, the variance of the

simulated statistic in this case converges to some positive definite kernel which differs from K(γ, γ)

by one constant term. In particular, the second term in the definition of K(γ, γ) is multiplied by

Π2 instead of 2Π. This explains why we need to define m
∗(2)
P (γ), which serves the desired role, given

that εt and ηt are uncorrelated.

14Note that the results reported below also hold when F̂ (β̂T , γ)′, B̂(β̂T )−1 are replaced with F̂ (β̂t, γ)′, B̂t(β̂t)
−1.
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To recap how we account for parameter estimation error in the simulated statistic, notice that

conditionally on the sample, and for all samples except a set of measure zero,

1
P 1/2

T−l∑

t=R

εt

t+l−1∑

i=t

f ′(û0,i+1)g(zi, γ) ∼ N


0,

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

f ′(û0,i+1)g(zi, γ)

)2



and
1

P 1/2

T−l∑

t=R

εt

t+l−1∑

i=t

f ′(u0,i+1)g(zi, γ) ∼ N


0,

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

f ′(u0,i+1)g(zi, γ)

)2

 .

Under the assumptions given above, and as P → ∞, these two variance expressions converge

to the same limit, for all samples except a set of measure zero. Thus, the effect of parameter

estimation error in the simulated statistic would vanish if the second term were not added to

m
∗(1)
P (γ). However, the second term in (7) only provides a consistent estimator of the contribution

of parameter estimation error up to a constant depending on Π. To overcome this additional problem

we have added m
∗(2)
P (γ) to m∗

P (γ), where m
∗(2)
P (γ) is normally distributed, and is independent of

m
∗(1)
P (γ), conditional on the sample and for all samples except a set of measure zero. This result is

summarized in the following theorem:

Theorem 2: Let A1-A4 hold. Also, assume that as P → ∞, l → ∞ and l(log P )1/2

P 1/4 → 0. Then,

conditional on the sample and for all samples except a set of measure zero, the following results

hold: (i) Under H0,

M∗
P =

∫

Γ
m∗

P (γ)2φ(γ)dγ
d∗→

∫

Γ
Z(γ)2φ(γ)dγ, a.s.− ω,

where d∗ denotes convergence in distribution with respect to P ∗, P ∗ is the probability law governing

εt and ηt, conditional on the sample, Z is a Gaussian process with the same covariance as that

given in Theorem 1, and a.s. − ω means conditional on the sample, and for all samples excpet a

set of measure zero.

(ii) Under HA,M∗
P = OP ∗(l), a.s.− ω.

Thus, MP and M∗
P have the same limiting distribution, conditional on the sample and for all

samples except a set of measure zero, under H0. Under HA, MP diverges to infinity at rate P

while M∗
P diverges at most at rate l, conditionally on the sample and for all samples except a set

of measure zero. For any independent draw of εt, ηt, t = R, . . . , T − 1, it thus suffices to compute

M∗
P . By carrying out a large number of draws of εt, ηt, percentiles of this simulated statistic can

be obtained. The decision rule in this case is to reject (do not reject) H0 if the value of MP which

12



is obtained is above (equal to or below) the (1 − α)th−percentile. This rule provides a test with

asymptotic size equal to α, and unit asymptotic power.

3 Monte Carlo Results

In this section we carry out a series of Monte Carlo experiments using data generated as follows:

yt = a1 + a2yt−1 + u1,t, u1,t ∼ iidN(0, 1)

Size1: xt = a1 + a2xt−1 + u2,t, u2,t ∼ iidN(0, 1)

Size2: xt = a1 + a2xt−1 + a3u2,t−1 + u2,t

Power1 : xt = a1 + a2xt−1 + exp(tan−1(yt−1/2)) + u2,t

Power2 : xt = a1 + a2xt−1 + 2 exp(tan−1(yt−1/2)) + u2,t

Power3 : xt = a1 + a2xt−1 + yt−1 + u2,t

Power4 : xt = a1 + a2xt−1 + 2yt−1 + u2,t

Power5 : xt = a1 + a2xt−1 + yt−11{yt−1 > a1/(1− a2)}+ u2,t

Power6 : xt = a1 + a2xt−1 + 2yt−11{yt−1 > a1/(1− a2)}+ u2,t

Power7 : xt = a1 + a2xt−1 + exp(tan−1(yt−1/2)) + a3u2,t−1 + u2,t

Power8 : xt = a1 + a2xt−1 + 2 exp(tan−1(yt−1/2)) + a3u2,t−1 + u2,t

Power9 : xt = a1 + a2xt−1 + yt−1 + a3u2,t−1 + u2,t

Power10: xt = a1 + a2xt−1 + 2yt−1 + a3u2,t−1 + u2,t

Power11: xt = a1 + a2xt−1 + yt−11{yt−1 > a1/(1− a2)}+ a3u2,t−1 + u2,t

Power12: xt = a1 + a2xt−1 + 2yt−11{yt−1 > a1/(1− a2)}+ a3u2,t−1 + u2,t.

The reference models (Size1 and Size2) are AR(1) and ARMA(1,1) processes. Following our

above discussion, the null hypothesis is that no competing model outperforms the reference model.

The alternative models all include (non)linear functions of yt−1. Thus, our focus is on (non)linear

out-of-sample Granger causality testing. The functional forms that are specified under the alter-

native include: (i) exponential (Power1,Power2); (ii) linear (Power3,Power4); and (iii) self exciting

threshold (Power5,Power6). In addition, Power7-Power12 are the same as Power1-Power6, except

that an MA(1) term is added. Notice that Power1 and Power2 include a nonlinear term that

is similar in form to the test function, g(·). Also, Power3 and Power4 serve as linear causality

benchmarks. In all experiments, we set g(zt−1, γ) = exp(
∑2

i=1(γi tan−1((zi,t−1 − zi)/2σ̂zi))), with

z1,t−1 = yt−1, z2,t−1 = xt−1, and γ1, γ2 scalars. Additionally, define Γ = [0.0, 5]x[0.0, 5] (overall,
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1000 grid points on this interval are evaluated, with the point {0,0} being omitted). We consider

two loss functions, namely: (i) quadratic loss and (ii) linex loss (i.e. f(c) = exp(ac)− ac− 1). We

set a = 1. Note that for quadratic loss, when the DGPs are as in Size1 and Size2, the best predictor

is the conditional mean, i.e. a1 + a2xt; on the other hand, for the linex loss the best predictor is

E(xt+1|xt) + 0.5V ar(xt+1|xt),15 that is, a1 + 0.5 + a2xt for Size1, and a1 + 0.5(1 + a3) + a2xt for

Size2. Also note that the m−estimator for the slope parameter converges to a2, while the intercept

estimators converges for a1+0.5 and a1+0.5(1+a3), respectively for Size1 and Size2. All results are

based on 500 Monte Carlo replications, and samples of T=400, T=600, and T=1000 observations

are used, although only results for the latter two samples are reported. In addition, the following

parametrizations are used: a1 = 0.1, a2 = {0.2, 0.4}, and a3 = 0.3. Finally, conditional p-values are

constructed using 100 simulated statistics, and l is set equal to {30, 40, 50} (see Inoue (2001) for

further discussion of the choice of l in the current context).

Our findings are summarized in Tables 1-2 (quadratic loss) and Table 3 (linex loss). The first

two columns in the tables state the model type (e.g. Size1). In addition, sample sizes, l values, and

versions of the mP (γ) statistic that are reported on are given in the tables. Finally, all numerical

entries represent rejection frequencies, and correspond to the case where P is set equal to 0.5T .

Additional results for T = 400, and for P = 0.4T and P = 0.6T are qualitatively the same as

those reported, and are available upon request from the authors. Results based on quadratic loss

are fairly clear-cut, as is evidenced by inspection of Tables 1 and 2. Under H0, the empirical level

of the test is rather close to the nominal 10% level, regardless of whether MP , M sup
P , or |MP | is

used (with values usually between 0.10 and 0.15). Also, the finite sample rejection frequency is

high (usually above 0.60) when T = 600, and approaches unity quite rapidly, as evidenced by much

higher rejection frequencies when T is increased to 1000. Overall, our findings are rather robust to

the choice of the lag truncation parameter l. Results for the linex loss function are reported in Table

3. We report only the results for M sup
P . It is immediate to notice that the findings for linex loss

are not particularly encouraging. The rejection frequencies in the experiments carried out under

H0 are between 0.20− 0.25, and do not improve substantially when we increases the sample from

600 to 1000 observations. On the other hand, rejection frequencies under the alternative increase

substantially with the sample size. However, observed rejection frequencies under the alternative of

15see e.g. Christoffersen and Diebold (1997).
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between 0.5−0.7 are not unusual for T = 1000, suggesting that very large samples are needed before

these rejection frequencies will approach unity.16 The unsatisfactory finite sample performance of

the test in the linex loss case is mainly attributable to the fact that the m−estimator converges to

its probability limit very slowly. This suggests that the use of other non-quadratic loss functions

should be viewed with caution when samples are small. In summary, then, while the tests appear

to perform very well under quadratic loss, somewhat larger samples are needed under linex loss in

order to ensure reasonable finite sample test performance.17

4 Concluding Remarks

In this paper we have drawn from the literatures on predictive accuracy and consistent specification

testing in order to develop a test for out of sample predictive accuracy which is consistent against

generic (non)linear alternatives. In particular, we outline an out-of-sample variant of the Bierens

ICM test whose limiting distribution is a functional of a Gaussian process with a covariance kernel

that captures both the time series structure of the data as well as the contribution of parameter

estimation error (PEE). As critical values are data dependent, we develop a conditional p-value

procedure which extends the work of Inoue (2001) by allowing for non vanishing PEE. In a series

of Monte Carlo experiments, we examine versions of the test that are valid in the case of quadratic

and nonquadratic loss functions. In particular, we evaluate the finite sample performance of the

test when forecasts are compared using mean square error and linex loss functions. Our focus in

these experiments is on (non)linear out of sample Granger causality, and our findings show that

the test has good finite sample properties, at least in the case of quadratic loss.

16This is not surprising, as the exponential term in the linex loss function blows up the variance of the statistic,

and therefore slows down the speed with which the law of large numbers and the functional central limit theorem

work.
17An interesting experiment which we leave to future research is the comparison of the finite sample properties of

the test when critical values are constructed using our conditional p-value approach with the finite sample properties

when critical values are constructed using the upper bounds approach of Bierens and Ploberger (1997).
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5 Appendix

Recall from above that ft(β) = f(xt − β1 − β2xt−1), with f ′t(β) and f ′′t (β) defined analogously;

ft+1(β̂t) = f(û0,t+1) = f(xt+1 − x̃′tβ̂t), with f ′t+1(β̂t) and f ′′t+1(β̂t) again defined analogously; and

the operators∇β(·), and ∇2
β(·) denote first and second derivatives with respect to β. In addition, let

‖A‖ = (tr(A′A))1/2 denote the Euclidian norm of a matrix, A, and let ‖A‖p = (E((tr(A′A))1/2)p)1/p

denote the Lp−norm of a random matrix. For a vector b, |b| denotes the vector whose elements are

the absolute values of the elements of b. Further, → denotes the limit as P →∞ and γ, γ′, γ+, γ1,

and γ2 are all generic elements of Γ. Also, ∆, ∆̃ are constants, which may take different values

depending on the context in which they are used.

Proof of Theorem 1: (i) We first show convergence in distribution pointwise in γ. By a second

order Taylor expansion around β∗,

mP (γ) =
1

P 1/2

T−1∑

t=R

f ′t+1(β
∗)g(zt, γ)− 1

P 1/2

T−1∑

t=R

(β̂t − β∗)′∇βf ′t+1(β
∗)g(zt, γ)

+0.5
1

P 1/2

T−1∑

t=R

(β̂t − β∗)′∇2
βf ′t+1(βt)g(zt, γ)(β̂t − β∗), (8)

where βt ∈ (β̂t, β
∗). Now, note that,

(β̂t − β∗) =


−1

t

t∑

j=2

∇2
βfj(βt)



−1 

1
t

t∑

j=2

∇βfj(β∗)


 = B̂(βt)

−1Ht.

Let F (β, γ) = E
(∇βf ′t+1(β)g(zt, γ)

)
and (E(B̂(β)))−1 = B(β)−1. We begin by showing that the

last term on the RHS of equation (8) is op(1), uniformly in γ. Note that the absolute value of this

term is majorized by,
∣∣∣∣∣sup
t≥R

P 1/4(β̂t − β∗)′
1
P

T−1∑

t=R

∇2
βf ′t+1(βt)g(zt, γ) sup

t≥R
P 1/4(β̂t − β∗)

∣∣∣∣∣ .

By the Ranga-Rao uniform strong law of large numbers (USLLN) for stationary ergodic processes

(see e.g. White (1994, pp. 351)), and, given the uniform negative definiteness of B(β),

(a) B̂(βt)−1 −B(β∗)−1 a.s.→ 0.

In addition, given A1, and by the same argument used in the proof of Lemma 3.1(i) and (ii) in

Altissimo and Corradi (2001), it follows that,

(b) supt≥R tθHt
a.s.→ 0, for θ < 1/2, and so
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(c) supt≥R tθ(β̂t − β∗) = oa.s.(1), for θ < 1/2.

Thus, given A3, supt≥R P 1/4(β̂t−β∗) = oa.s.(1). Finally, given the size, smoothness and domination

conditions in A1, and by the uniform strong law of large numbers for stationary strong mixing

processes,

(d) supγ∈Γ

(
1
P

∑T−1
t=R ∇2

βf ′t+1(βt)g(zt, γ)− E
(
∇2

βf ′t+1(β
∗)g(zt, γ)

))
= oa.s.(1).

Thus, the last term on the RHS of equation (8) is op(1), uniformly in γ. The second term on the

RHS of equation (8) can be treated by first writing it as,

1
P 1/2

T−1∑

t=R

F (β∗, γ)′B(β∗)−1Ht +
1

P 1/2

T−1∑

t=R

(∇βf ′t+1(β
∗)g(zt, γ)− F (β∗, γ))′B(β∗)−1Ht

+
1

P 1/2

T−1∑

t=R

F (β∗, γ)′(Bt(βt)
−1 −B(β∗)−1)Ht

+
1

P 1/2

T−1∑

t=R

(∇βf ′t+1(β
∗)g(zt, γ)− F (β∗, γ))′(Bt(βt)

−1 −B(β∗)−1)Ht. (9)

We begin by showing that the second, third and fourth terms on the RHS of equation (9) are op(1),

uniformly in γ. Given A1,

(e) supγ∈Γ
1
P

∑T−1
t=R (∇βf ′t(β∗)g(zt−1, γ)− F (β∗, γ)) a.s.→ 0.

Now, given (a),(b),(c), and (e) the second, third and fourth terms on the RHS of equation (9) are

op(1), pointwise in γ, by the same argument as that used in Lemma A4 of West (1996). In order to

show that they are also op(1) uniformly in γ, it remains to establish stochastic equicontinuity on Γ.

We begin this part of the proof by considering the second term on the RHS of equation (9). Given

the absolute regularity assumption and the domination condition in A1, stochastic equicontinuity

can be shown, along the lines of Hansen (1996, proof of Theorem 1). In particular,

sup
γ∈Γ

∥∥∥(∇βf ′t+1(β
∗)g(zt, γ)− F (β∗, γ))′B(β∗)−1Ht

∥∥∥
2+ψ

≤ sup
γ∈Γ

∥∥∥(b11 + b12)(∇β1f
′
t(β

∗)g(zt−1, γ)− F1(β∗, γ))(H1t + H2t)
∥∥∥
2+ψ

+sup
γ∈Γ

∥∥∥(b12 + b22)(∇β2f
′
t+1(β

∗)g(zt, γ)− F2(β∗, γ))(H1t + H2t)
∥∥∥
2+ψ

, (10)

where Fi(β∗, γ) and Hit are the i− th components of F (β∗, γ) and Ht, respectively, and bij is the

ij−th element of B(β∗)−1, for i, j = 1, 2. The second term on the RHS of equation (10) is majorized

by,

sup
γ∈Γ

∥∥∥(b22 + b12)(∇β2f
′
t+1(β

∗)g(zt, γ)− F2(β∗, γ))
∥∥∥
2(2+ψ)

‖H1t + H2t‖2(2+ψ) < ∞,
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because of A1(ii), and A1(iv), ‖H1t + H2t‖2(2+ψ) < ∞. Now, for any γ1, γ2 ∈ Γ, for v > 1,

∥∥∥(b22 + b12)(∇β2f
′
t+1(β

∗)((g(zt, γ1)− F2(β∗, γ1))− (g(zt, γ2)− F2(β∗, γ2))))
∥∥∥
2v

≤
∥∥∥(b22 + b12)(∇β2f

′
t+1(β

∗)(g(zt, γ1)− g(zt, γ2)))
∥∥∥
2v

+
∥∥(b22 + b12)(∇β2f

′
t+1(β

∗)(F2(β∗, γ1)′ − F2(β∗, γ2)))
∥∥
2v

≤ |b22 + b12|1/2v
∥∥∥∇β2f

′
t+1(β

∗)∇γg(zt, γ)(γ1 − γ2)
∥∥∥
2v

+|b22 + b12|1/2v
∥∥∇β2f

′
t+1(β

∗)∇γF2(β∗, γ)(γ1 − γ2)
∥∥
2v

≤ |b22 + b12|1/2v
d∑

i=1

∥∥∥(∇β2f
′
t+1(β

∗)∇γg(zt, γ))i

∥∥∥
2v
|(γ1 − γ2)i|

+|b22 + b12|1/2v
d∑

i=1

∥∥(∇β2f
′
t+1(β

∗)∇γF2(β∗, γ))i

∥∥
2v
|(γ1 − γ2)i|

≤ ∆
d∑

i=1

|(γ1 − γ2)i| ≤ ∆̃ ‖γ1 − γ2‖2 ,

where γ ∈ (γ1, γ2), (u)i denotes the i−th component of u, and ∆, ∆̃ < ∞. The above statement fol-

lows given the domination condition in A1 and given the fact that∇γF (β∗, γ) = E
(∇γ∇βf ′t(β∗)g(zt, γ

)
)

is uniformly bounded because of A1(ii),(iv),(v). The inequality above ensures the integrability of

the bracketing number, and thus the second term in equation (9) is stochastic equicontinuous in Γ.

The last two terms in equation (9) can also be shown to be stochastic equicontinuouos, by the

same arguments as those used above. Thus, the second term in equation (8) is equal to the first

term in equation (9), up to an op(1) term, uniformly in γ. This ensures that equation (8) can be

written as,

mP (γ) =
1

P 1/2

T−1∑

t=R

f ′t+1(β
∗)g(zt, γ) +

1
P 1/2

T−1∑

t=R

F (β∗, γ)′B(β∗)−1Ht + op(1), (11)

where the op(1) term holds uniformly in Γ. Further, it follows by the same arguments used in West

(1996, Lemmas A5,A6, and A1), that ∀γ ∈ Γ,

mP (γ) d→ N(0,K(γ, γ)),

pointwise in γ, where

K(γ, γ) = Sff (γ, γ) + 2Π(F (β∗, γ)′B(β∗)−1ShhB(β∗)−1F (β∗, γ)) + 2Π(F (β∗, γ)′B(β∗)−1Sfh(γ)),
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with Sff (γ, γ), Shh, and Sfh(γ) defined as in the statement of the theorem, and with Π = 1 −
π−1 ln(1 + π), for π > 0, and Π = 0 for π = 0.

Finally, the convergence of the finite dimensional distribution of (mP (γ1), . . . , mP (γk)), follows

as a direct consequence of the Cramer-Wold device. In addition, given A1(v), the smoothness of g,

and the domination condition in A1, the stochastic equicontinuity over Γ of the two terms on the

RHS of equation (11) follows by the same arguments as those used above. Thus, as a straightfoward

application of the continuous mapping theorem,

MP =
∫

Γ
mP (γ)2π(γ)dγ

d→
∫

Γ
Z(γ)2π(γ)dγ,

where Z is a Gaussian process with covariance kernel given by,

K(γ1, γ2) = Sff (γ1, γ2) + 2Π(F (β∗, γ1)′B(β∗)−1ShhB(β∗)−1F (β∗, γ2))

+Π(F (β∗, γ1)′B(β∗)−1Sfh(γ2)) + Π(F (β∗, γ2)′B(β∗)−1Sfh(γ1)). (12)

(ii) Follows immediately, by noting that given the same arguments as those used in the first

part of this proof,

mP (γ) =
1

P 1/2

T−1∑

t=R

(f ′t+1(β
∗)g(zt, γ)−E

(
f ′t+1(β

∗)g(zt, γ)
)
)

+P 1/2E
(
f ′t+1(β

∗)g(zt, γ)
)

+
1

P 1/2

T−1∑

t=R

F (β∗, γ)′B(β∗)−1Ht + op(1),

with the op(1) terms holding uniformly in γ. The first and third term term above are bounded in

probability as they converge in distribution, while the second term diverges at rate P 1/2, and so at

rate P when squared.

Before moving to the proof of Theorem 2 we need the following Lemma. Lemma A will be used

in the proof of Theorem below in order to show that the simulated statistic, conditional on the

sample, converges to a Gaussian process with the same covariance kernel as the actual statistic.

Lemma A: Let A1, A2, A3 and A4 hold. If l → ∞ and l
√

log P/P 1/4 → 0, as P → ∞, then the

following statements hold, uniformly in γ1 and γ2:

(i)
1
P

T−l∑

t=R+l

f ′t+1(β̂t)g(zt, γ1)f ′t+1(β̂t)g(zt, γ2) +
2
P

T−l∑

t=R+l

t+l−1∑

j=t+1

f ′t+1(β̂t)g(zt, γ1)f ′j+1(β̂j)g(zj , γ2)

a.s.→ Sff (γ1, γ2),
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(ii)
1
P

T−l∑

t=R+l

F (β̂T , γ1)′B(β̂T )−1∇βft(β̂T )∇βft(β̂T )′B(β̂T )−1F (β̂T , γ2)

+
2
P

T−l∑

t=R+l

t+l−1∑

j=t+1

F (β̂T , γ1)′B(β̂T )−1∇βft(β̂T )∇βfj(β̂T )′B(β̂T )−1F (β̂T , γ2)

a.s.→ F (β∗, γ1)′B(β∗)−1ShhB(β∗)−1F (β∗, γ2),

and

(iii)
1
P

T−l∑

t=R+l

f ′t+1(β̂t)g(zt, γ1)∇βft(β̂T )′B(β̂T )−1F (β̂T , γ2)

+
2
P

T−l∑

t=R+l

t+l−1∑

j=t+1

f ′t+1(β̂t)g(zt, γ1)∇βfj(β̂T )′B(β̂T )−1F (β̂T , γ2)

a.s.→ Sfh(γ1)B(β∗)−1F (β∗, γ2).

Proof of Lemma A: (i) First note that

2
P

T−l∑

t=R+l

t+l−1∑

j=t+1

f ′t+1(β̂t)g(zt, γ)f ′j+1(β̂j)g(zj , γ+)

− 2
P

l∑

j=1

T−1∑

t=R+j+l

f ′t+1(β̂t)g(zt, γ)f ′t−j+1(β̂t−j)g(zt−j , γ+) = oa.s.(1),

as the two differ by at most 2l terms and l/P = o(1). We begin by showing that

2
P

l∑

j=1

T−1∑

t=R+j+l

f ′t+1(β̂t)g(zt, γ)f ′t−j+1(β̂t−j)g(zt−j , γ+)

− 2
P

l∑

j=1

T−1∑

t=R+j+l

f ′t+1(β
∗)g(zt, γ)f ′t−j+1(β

∗)g(zt−j , γ+) = oa.s.(1), (13)

where the oa.s.(1) term holds uniformly in γ, γ+. Via a mean value expansion around β∗, the LHS

of (13) can be written as,

2
P

l∑

j=1

T−1∑

t=R+j+l

f ′t+1(β
∗)g(zt, γ)∇βf ′t−j+1(βt−j)

′g(zt−j , γ+)(β̂t−j − β∗)

+
2
P

l∑

j=1

T−1∑

t=R+j+l

(β̂t − β∗)′∇βf ′t+1(βt)g(zt−1, γ)∇βf ′t−j+1(βt−j)
′g(zt−j , γ+)(β̂t−j − β∗)

+
2
P

l∑

j=1

T−1∑

t=R+j+l

(β̂t − β∗)′∇βf ′t+1(βt)g(zt−1, γ)f ′t−j+1(β
∗)g(zt−j , γ+). (14)
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We now show that the first term in (14) is oa.s.(1), uniformly in γ, γ+. The second and third terms

can be treated in an analogous way, given A4(ii)-(iii). Now,

sup
t≥R

√
t

log log t
|β̂t − β∗| ≤ sup

t≥R


1

t

t∑

j=2

∇2
βfj(βt)



−1

sup
t≥R

∣∣∣∣∣∣
1√

t log log t

t∑

j=2

∇βfj(β∗)

∣∣∣∣∣∣

= Oa.s.(1) sup
t≥R

∣∣∣∣∣∣
1√

t log log t

t∑

j=2

∇βfj(β∗)

∣∣∣∣∣∣
= Oa.s.(1),

This follows from the strong invariance principle for strong mixing processes (Eberlain (1986,)),

given A1 and A2, as in this case, supt≥R

∣∣∣∣ 1√
t log log t

∑t
j=2∇βfj(β∗)

∣∣∣∣ = Oa.s.(1). By the same argu-

ment as that used in the proof of Lemma 3.1(iii) in Altissimo and Corradi (2001), and given A4(i),

for all k = 1, 2,

Pr




∣∣∣∣∣∣
2
√

R log log R

P
sup

β×γ×γ+∈B×Γ×Γ

l∑

j=1

t+l−1∑

t=R+j+l

f ′t(β
∗)g(zt−1, γ)∇k

βf ′t−j(βt−j)g(zt−j−1, γ+)

∣∣∣∣∣∣
> ε




≤ l4(log log R)2

ε4R2
E

(
sup

β×γ×γ+∈B×Γ×Γ
f ′t(β

∗)g(zt−1, γ)∇k
βf ′t−j(βt−j)g(zt−j−1, γ+)

)4

≤ l4(log log R)2

ε4R2
∆.

Given A3, and given that l
√

log P/P 1/4 → 0, as P → ∞, l4(log log R)2

R2 = o(P−1). Thus, by the first

Borel Cantelli Lemma, the first term in (14) converges to zero almost surely, uniformly in γ, γ+.

As mentioned above, the second and third terms in (14) can be treated in an analogous way. For

fixed γ and γ+, given A1,

1
P

T−2l∑

t=R+l

f ′t+1(β
∗)g(zt, γ1)f ′t+1(β

∗)g(zt, γ2) +
2
P

l∑

j=1

t+l−1∑

t=R+j+l

f ′t(β
∗)g(zt−1, γ)f ′t−j(β

∗)g(zt−j−1, γ+)

a.s.→ Sff (γ, γ+),

by Theorem 1 in de Jong (2000). In order to obtain almost sure convergence, uniformly in γ,

we need to show strong stochastic equicontinuity in Γ. Given the mixing conditions in A1(i), and

the domination conditions in A1(ii) and in A1(iv)-(v), the result follows from Lemma 3.1(iii) in

Altissimo and Corradi (2001)18, which extends the pointwise result of de Jong (2000) to a uniform

result.

In addition, (ii) and (iii) follow by the same arguments as those used to show (i).

18Note that Assumption A5 in that paper is trivially satisfied because of the strict stationarity of (xt, z
t).
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Proof of Theorem 2: (i) We begin by considering m
∗(1)
P (γ). Thereafter, m

∗(2)
P (γ) is treated anal-

ogously. Hereafter, E∗(·), V ar∗(·), and Cov∗(·) denote mean, variance, and covariance, conditional

on the sample. Finally a.s. − ω means conditional on the sample and for all samples but a set of

measure zero. Note first that, conditional on the sample, m
∗(1)
P (γ) is a zero mean normal random

variable with variance equal to:

V ar∗(m∗(1)
P (γ)) =

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

(
f ′(û0,i+1)g(zi, γ) + Π̂F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T )

))2

and

Cov∗(m∗(1)
P (γ1),m

∗(1)
P (γ2)) =

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

(
f ′(û0,i+1)g(zi, γ1) + Π̂F̂ (β̂T , γ1)′B̂(β̂T )−1∇βfi(β̂T )

))

×
(

t+l−1∑

i=t

(
f ′(û0,i+1)g(zi, γ2) + Π̂F̂ (β̂T , γ2)′B̂(β̂T )−1∇βfi(β̂T )

))

We need to show that, a.s.− ω,

Cov∗(m∗(1)
P (γ1),m

∗(1)
P (γ2))

→ Sff (γ1, γ2) + Π2F (β∗, γ1)′B(β∗)−1ShhB(β∗)−1F (β∗, γ2)

+ΠF (β∗, γ2)′B(β∗)−1Sfh(γ1) + ΠF (β∗, γ1)′B(β∗)−1Sfh(γ2) (15)

uniformly in γ1, and γ2. Given (a)-(e) in the proof of Theorem (1) and given Lemma A above, it

follows that, a.s.− ω,

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

(
f ′(û0,i+1)g(zi, γ1) + Π̂F̂ (β̂T , γ1)′B̂(β̂T )−1∇βfi(β̂T )

))

×
(

t+l−1∑

i=t

(
f ′(û0,i+1)g(zi, γ2) + Π̂F̂ (β̂T , γ2)′B̂(β̂T )−1∇βfi(β̂T )

))

=
1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

(
f ′(u0,i+1)g(zi, γ1) + ΠF (β∗, γ1)′B(β∗)−1∇βfi(β∗)

))

×
(

t+l−1∑

i=t

(
f ′(u0,i+1)g(zi, γ2) + ΠF (β∗, γ2)′B(β∗)−1∇βfi(β∗)

))
(1 + o(1)),
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where the o(1) term is uniform in γ1 and γ2. Now, a.s.− ω,

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

(
f ′(u0,i+1)g(zi, γ1) + ΠF (β∗, γ1)′B(β∗)−1∇βfi(β∗)

))

×
(

t+l−1∑

i=t

(
f ′(u0,i+1)g(zi, γ2) + ΠF (β∗, γ2)′B(β∗)−1∇βfi(β∗)

))

=
1
P

T−l∑

t=R+l

(
f ′(u0,t+1)g(zt, γ1) + ΠF (β∗, γ1)′B(β∗)−1∇βft(β∗)

)

×
(
f ′t+1(β

∗)g(zt, γ2) + ΠF (β∗, γ2)′B(β∗)−1∇βft(β∗)
)

+
1
P

T−l∑

t=R+l

t+l−1∑

i=t+1

(
f ′(u0,t+1)g(zt, γ1) + ΠF (β∗, γ1)′B(β∗)−1∇βft(β∗)

)

×
(
f ′(u0,i+1)g(zi, γ2) + ΠF (β∗, γ2)′B(β∗)−1∇βfi(β∗)

)
+ o(1).

From Lemma A(i)-(iii), it follows that Cov∗(m∗(1)
P (γ1),m

∗(1)
P (γ2)) converges uniformly in γ1 and γ2,

a.s− ω to the expression in (15). Similarly, we can show that

Cov∗(m∗(2)
P (γ1),m

∗(2)
P (γ2)) = (2Π̂− Π̂2)

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

F̂ (β̂T , γ1)′B̂(β̂T )−1∇βfi(β̂T )

)

×
(

t+l−1∑

i=t

F̂ (β̂T , γ2)′B̂(β̂T )−1∇βfi(β̂T )

)

→ (Π−Π2)1/2F (β∗, γ1)′B(β∗)−1ShhB(β∗)−1F (β∗, γ2), a.s.− ω,

uniformly in γ1, γ2. As E(εtηs) = 0, ∀t, s Cov∗(m∗(1)
P (γ1),m

∗(2)
P (γ2)) = 0, ∀γ1, γ2, and so a.s− ω,

Cov∗(m∗
P (γ1),m∗

P (γ2)) → Sff (γ1, γ2) + 2Π(F (β∗, γ1)′B(β∗)−1ShhB(β∗)−1F (β∗, γ2))

+Π(F (β∗, γ1)′B(β∗)−1Sfh(γ2)) + Π(F (β∗, γ2)′B(β∗)−1Sfh(γ1)) = K(γ1, γ2)

where K(γ1, γ2) is defined as in the statement of Theorem 1. Thus, for any given γ1 and γ2,

(m∗
P (γ1),m∗

P (γ2))′
d→ N

(
0,

(
K(γ1, γ1) K(γ1, γ2)
K(γ1, γ2) K(γ2, γ2)

))
, a.s.− ω

Hereafter let,

Ŝ1,i+1(γ) = f ′(û0,i+1)g(zi, γ) + Π̂F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T )

and

Ŝ2,i(γ) = (2Π̂− Π̂2)1/2F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T ),
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so that

m∗
p(γ) =

1
P 1/2

T−l∑

t=R

εt

t+l−1∑

i=t

Ŝ1,i+1(γ) +
1

P 1/2

T−l∑

t=R

ηt

t+l−1∑

i=t

Ŝ2,i(γ).

In order to show that under the null, m∗
P (γ) converges to a Gaussian process with the same

covariance structure as mP (γ), we need to show that a.s.− ω,

(ia) lim sup
P→∞

E∗
(

sup
γ∈Γ

1
P 1/2

T−l∑

t=R

εt

t+l−1∑

i=t

Ŝ1,i(γ)

)2

< ∞,

and

(ib) lim sup
P→∞

E∗
(

sup
γ∈Γ

1
P 1/2

T−l∑

t=R

ηt

t+l−1∑

i=t

Ŝ2,i(γ)

)2

< ∞.

Also, we require that, a.s.− ω,

(ii) limP→∞E∗((
(

1
P 1/2

∑T−l
t=R

(
εt

∑t+l−1
i=t Ŝ1,i+1(γ1) + ηt

∑t+l−1
i=t Ŝ2,i+1(γ1)

))

−
(

1
P 1/2

∑T−l
t=R

(
εt

∑t+l−1
i=t Ŝ1,i+1(γ2) + ηt

∑t+l−1
i=t Ŝ2,i+1(γ2)

))
)2)1/2

= Ψ(γ1, γ2) ≤ ∆ ‖γ1 − γ2‖2 .

Now, it suffices to show (ia) and (ii), as (ib) follows directly from (ia). Note first that (ia) can be

written as:

lim sup
P→∞

sup
γ∈Γ

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

f ′(û0,i+1)g(zi, γ) + Π̂F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T )

)2

,

which is finite, a.s.− ω, by Lemma A. Now, note that (ii) can be written as:


 1

Pl

T−l∑

t=R

((
t+l−1∑

i=t

(Ŝ1i(γ1) + Ŝ2i(γ2))

)
−

(
t+l−1∑

i=t

(Ŝ1i(γ1) + Ŝ2i(γ2))

))2



1/2

= (V ar∗(m∗
P (γ1)) + V ar∗(m∗

P (γ2))− 2Cov∗(m∗
P (γ1),m∗

P (γ2)))
1/2

→ (K(γ1, γ1) + K(γ2, γ2)−K(γ1, γ2)−K(γ1, γ2))
1/2 ,

Now the square on the right hand side above, it majorized by

|K(γ1, γ1)−K(γ1, γ2)|+ |K(γ2, γ2)−K(γ1, γ2)| . (16)

From equation (12), we see that

|K(γ1, γ1)−K(γ1, γ2)| ≤ (17)

|Sff (γ1, γ1)− Sff (γ1, γ2)|+
∣∣∣2Π(F (β∗, γ1)′B(β∗)−1ShhB(β∗)−1(F (β∗, γ1)− F (β∗, γ2))

∣∣∣
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+
∣∣∣Π(F (β∗, γ1)′B(β∗)−1(Sfh(γ1)− Sfh(γ2))

∣∣∣ +
∣∣∣Π((F (β∗, γ1)′ − F (β∗, γ2)′)B(β∗)−1Sfh(γ1)))

∣∣∣ .

The first term on the RHS of (17) is equal to
∣∣∣∣∣∣

∞∑

j=−∞
E(f ′q(β

∗)g(zq−1, γ1)f ′q+j(β
∗)(g(zq+j−1, γ1)− g(zq+j−1, γ2)))

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

j=−∞
E(f ′q(β

∗)g(zq−1, γ1)f ′q+j(β
∗)(∇γg(zq+j−1, γ)′(γ1 − γ2))

∣∣∣∣∣∣

≤
d∑

i=1

∣∣∣∣∣∣

∞∑

j=−∞
E((f ′q(β

∗)g(zq−1, γ1)f ′q+j(β
∗)(∇γg(zq+j−1, γ))))i(γ1 − γ2)i

∣∣∣∣∣∣

≤ ∆

∣∣∣∣∣∣

∞∑

j=−∞
E((f ′q(β

∗)g(zq−1, γ1)f ′q+j(β
∗)(∇γg(zq+j−1, γ))))i

∣∣∣∣∣∣
2v

d∑

i=1

|(γ1 − γ2)i|

≤ ∆̃ ‖γ1 − γ2‖2 , for γ ∈ (γ1, γ2) and for v > 1,

given the size condition in A1(i) and given A1(iv). As for the second term on the RHS of (17), it

is equal to

∣∣∣2Π(F (β∗, γ1)′B(β∗)−1ShhB(β∗)−1∇γF (β∗, γ)′(γ1 − γ2)
∣∣∣

≤
d∑

i=1

∣∣∣2Π(F (β∗, γ1)′B(β∗)−1ShhB(β∗)−1(∇γF (β∗, γ))i(γ1 − γ2)i

∣∣∣

≤ ∆̃ ‖γ1 − γ2‖2 , and γ ∈ (γ1, γ2)

as because of A1(v),

∇γF (β∗, γ) = ∇γE
(
∇βf ′t(β

∗)g(zt, γ
)
) = E

(
∇γ∇βf ′t(β

∗)g(zt, γ)
)

is finite, uniformly in Γ. The third as fourth terms on the RHS of (17), as well as the second term

on the RHS of (16) can be treated in an analogous way. Thus (ii) follows. Now, (ii) ensures that

the covering number condition in Pollard (1990, Theorem 10.6) is satisfied (see also Hansen (1996,

proof of Theorem 2)). This, together with (ia)-(ib) and the convergence of the finite dimensional

distribution ensures that m∗
P (γ) is stochastic equicontinuouos over Γ, a.s.−ω. The desired outcome

then follows from the continuous mapping theorem.

(ii) Under the alternative E(f ′t+1(β
∗)g(zt, γ)) = µγ 6= 0, for all γ ∈ Γ. Now, a.s.− ω,

V ar∗(m∗(1)
P (γ)) =

1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

(
f ′(û0,i+1)g(zi, γ) + Π̂F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T )

))2
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=
1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

(
(f ′(β̂i)g(zq+i−1, γ)− µγ) + ΠF̂ (β̂i, γ)′Bi(β̂i)−1∇βf(β̂i) + µγ

))2

= O(1) +
1
Pl

T−l∑

t=R

(
t+l−1∑

i=t

µγ

)2

= O(l), a.s.− ω,

uniformly in γ. By the same argument used in Part (i), we can show that l−1/2m∗
P (γ) is stochastic

equicontinuous on Γ, conditionally on the sample and for all samples except of measure zero. Thus

supγ∈Γ l−(1+η)m∗
P (γ) = oP ∗(1), ∀η > 0, and so l−1/2m∗

P (γ) = OP ∗(1) uniformly in γ. The desired

result then follows.
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Table 1: Monte Carlo Rejection Frequencies Based on Quadratic Loss, T=600 ∗

Model l=30 l=40 l=50
MP M sup

P |MP | MP M sup
P |MP | MP M sup

P |MP |
Panel A: a2 = 0.2

Size1 0.110 0.125 0.120 0.125 0.140 0.125 0.145 0.160 0.155
Size2 0.110 0.120 0.125 0.125 0.140 0.125 0.140 0.160 0.150

Power1 0.720 0.635 0.800 0.705 0.610 0.795 0.725 0.635 0.780
Power2 0.890 0.815 0.935 0.880 0.810 0.920 0.870 0.780 0.910
Power3 0.915 0.860 0.945 0.910 0.835 0.945 0.890 0.805 0.935
Power4 0.930 0.880 0.975 0.930 0.885 0.980 0.930 0.875 0.965
Power5 0.790 0.705 0.870 0.760 0.710 0.835 0.775 0.710 0.835
Power6 0.805 0.760 0.875 0.825 0.760 0.895 0.835 0.755 0.880
Power7 0.725 0.630 0.785 0.700 0.620 0.785 0.730 0.635 0.785
Power8 0.895 0.825 0.930 0.885 0.810 0.930 0.870 0.785 0.925
Power9 0.920 0.845 0.945 0.900 0.840 0.945 0.895 0.815 0.940
Power10 0.930 0.875 0.970 0.930 0.875 0.975 0.940 0.870 0.970
Power11 0.780 0.715 0.865 0.760 0.690 0.840 0.785 0.700 0.830
Power12 0.805 0.755 0.870 0.825 0.760 0.890 0.810 0.750 0.890

Panel B: a2 = 0.4
Size1 0.100 0.110 0.120 0.130 0.145 0.140 0.150 0.165 0.155
Size2 0.105 0.125 0.120 0.140 0.145 0.115 0.150 0.155 0.145

Power1 0.695 0.635 0.775 0.710 0.635 0.775 0.715 0.640 0.765
Power2 0.865 0.820 0.935 0.860 0.810 0.920 0.855 0.780 0.910
Power3 0.895 0.830 0.940 0.885 0.820 0.930 0.865 0.810 0.925
Power4 0.910 0.865 0.950 0.920 0.870 0.960 0.910 0.870 0.950
Power5 0.795 0.700 0.855 0.770 0.685 0.835 0.760 0.715 0.820
Power6 0.810 0.765 0.875 0.810 0.770 0.865 0.800 0.740 0.870
Power7 0.715 0.625 0.785 0.710 0.645 0.770 0.715 0.630 0.770
Power8 0.860 0.810 0.945 0.840 0.805 0.925 0.855 0.790 0.905
Power9 0.895 0.840 0.950 0.880 0.820 0.940 0.865 0.810 0.930
Power10 0.910 0.870 0.960 0.915 0.865 0.960 0.900 0.865 0.950
Power11 0.790 0.695 0.865 0.760 0.665 0.830 0.775 0.700 0.820
Power12 0.815 0.765 0.870 0.795 0.770 0.870 0.805 0.750 0.865

∗ Notes: All entries are rejection frequencies of the null hypothesis of equal predictive accuracy based on 10% nominal size
critical values constructed using the conditional p-value approach discussed in Section 2. For all models denoted Poweri,
i = 1, ..., 12, data are generated with (non) linear Granger causality. In all experiments, the ex ante forecast period is of length
P , which is set equal to 0.5T, where T is the sample size. All models are estimated using rolling windows of data so that all
forecasts used in test construction are real-time. See above for further details.
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Table 2: Monte Carlo Rejection Frequencies Based on Quadratic Loss, T=1000 ∗

Model l=30 l=40 l=50
MP M sup

P |MP | MP M sup
P |MP | MP M sup

P |MP |
Panel A: a2 = 0.2

Size1 0.130 0.115 0.140 0.135 0.135 0.130 0.130 0.145 0.125
Size2 0.135 0.130 0.150 0.150 0.135 0.150 0.140 0.140 0.150

Power1 0.940 0.865 0.965 0.925 0.855 0.955 0.910 0.840 0.955
Power2 0.985 0.970 0.990 0.970 0.960 0.990 0.965 0.935 0.990
Power3 0.985 0.960 1.000 0.975 0.960 0.990 0.970 0.945 0.990
Power4 0.985 0.975 1.000 0.985 0.975 1.000 0.985 0.960 0.995
Power5 0.950 0.905 0.980 0.940 0.890 0.960 0.925 0.890 0.955
Power6 0.965 0.940 0.975 0.965 0.920 0.970 0.935 0.915 0.970
Power7 0.930 0.845 0.965 0.930 0.865 0.955 0.910 0.845 0.955
Power8 0.985 0.970 0.995 0.970 0.950 0.980 0.960 0.940 0.990
Power9 0.985 0.960 1.000 0.975 0.955 0.995 0.965 0.945 0.985
Power10 0.985 0.975 1.000 0.985 0.975 1.000 0.985 0.965 0.995
Power11 0.945 0.895 0.980 0.945 0.885 0.965 0.925 0.880 0.955
Power12 0.965 0.940 0.975 0.960 0.930 0.975 0.945 0.910 0.970

Panel B: a2 = 0.4
Size1 0.135 0.125 0.145 0.145 0.140 0.140 0.140 0.135 0.135
Size2 0.130 0.135 0.125 0.135 0.160 0.135 0.155 0.170 0.135

Power1 0.915 0.825 0.965 0.930 0.830 0.960 0.895 0.825 0.955
Power2 0.985 0.955 0.990 0.970 0.945 0.990 0.955 0.930 0.990
Power3 0.985 0.955 1.000 0.965 0.950 0.990 0.960 0.935 0.990
Power4 0.985 0.975 1.000 0.980 0.970 0.995 0.985 0.975 0.995
Power5 0.935 0.905 0.975 0.935 0.885 0.955 0.890 0.850 0.955
Power6 0.955 0.905 0.980 0.950 0.910 0.975 0.925 0.890 0.970
Power7 0.910 0.825 0.970 0.915 0.820 0.955 0.885 0.830 0.950
Power8 0.985 0.955 0.990 0.965 0.940 0.990 0.960 0.925 0.990
Power9 0.985 0.955 1.000 0.970 0.960 0.990 0.965 0.930 0.990
Power10 0.985 0.975 1.000 0.980 0.970 0.995 0.985 0.965 0.990
Power11 0.940 0.875 0.975 0.940 0.870 0.955 0.905 0.850 0.950
Power12 0.945 0.910 0.980 0.945 0.905 0.975 0.930 0.890 0.965

∗ See notes to Table 1.
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Table 3: Monte Carlo Rejection Frequencies Using M sup
P and Based on Linex Loss∗

Model T=600 T=1000
l=30 l=40 l=50 l=30 l=40 l=50

Panel A: a2 = 0.2
Size1 0.235 0.230 0.225 0.240 0.225 0.210
Size2 0.225 0.230 0.235 0.245 0.250 0.250

Power1 0.300 0.280 0.295 0.540 0.530 0.520
Power2 0.265 0.260 0.250 0.575 0.565 0.560
Power3 0.495 0.505 0.460 0.685 0.680 0.705
Power4 0.360 0.390 0.345 0.475 0.530 0.545
Power5 0.395 0.375 0.375 0.635 0.615 0.605
Power6 0.270 0.315 0.285 0.390 0.390 0.445
Power7 0.315 0.300 0.305 0.525 0.550 0.530
Power8 0.270 0.275 0.220 0.570 0.590 0.550
Power9 0.530 0.500 0.485 0.715 0.700 0.690
Power10 0.345 0.395 0.360 0.480 0.525 0.525
Power11 0.390 0.415 0.390 0.625 0.635 0.615
Power12 0.270 0.305 0.265 0.395 0.420 0.450

Panel B: a2 = 0.4
Size1 0.230 0.245 0.235 0.260 0.245 0.240
Size2 0.245 0.230 0.240 0.255 0.270 0.250

Power1 0.290 0.270 0.275 0.500 0.540 0.515
Power2 0.215 0.175 0.180 0.480 0.455 0.460
Power3 0.480 0.480 0.460 0.635 0.680 0.665
Power4 0.315 0.350 0.330 0.450 0.470 0.455
Power5 0.360 0.395 0.380 0.560 0.600 0.575
Power6 0.255 0.280 0.270 0.355 0.350 0.355
Power7 0.280 0.270 0.260 0.515 0.535 0.510
Power8 0.190 0.155 0.150 0.455 0.450 0.430
Power9 0.485 0.485 0.475 0.665 0.670 0.665
Power10 0.325 0.335 0.305 0.450 0.470 0.460
Power11 0.355 0.380 0.365 0.570 0.585 0.590
Power12 0.255 0.285 0.280 0.340 0.350 0.370

∗ See notes to Table 1.
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