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Abstract

Many recent modelling advances in finance topics ranging from the pricing of volatility-based derivative products
to asset management are predicated on the importance of jumps, or discontinuous movements in asset returns. In light
of this, a number of recent papers have addressed volatility predictability, some from the perspective of the usefulness
of jumps in forecasting volatility. Key papers in this area include Andersen, Bollerslev, Diebold and Labys (2003),
Corsi (2004), Andersen, Bollerslev and Diebold (2007), Corsi, Pirino and Reno (2008), Barndorff, Kinnebrock, and
Shephard (2010), Patton and Shephard (2011), and the references cited therein. In this paper, we review the extant
literature and then present new empirical evidence on the predictive content of realized measures of jump power
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instantaneous returns, i.e., |7’t|q, 0 < g < 6, in the spirit of Ding, Granger and Engle (1993) and Ding and Granger
(1996). We also present new empirical evidence on the predictive content of realized measures of truncated large jump
variations, constructed using truncated squared instantaneous return, i.e., Tt2 X I|Tt|>7, where 7y is the threshold
jump size. Our prediction experiments use high frequency price returns constructed using S&P500 futures data as well
as stocks in the Dow 30, and our empirical implementation involves estimating linear and nonlinear heterogeneous
autoregressive realized volatility (HAR-RV) type models. We find that past "large" jump power variations help
less in the prediction of future realized volatility, than past "small" jump power variations. Additionally, we find
evidence that past realized signed jump power variations, which have not previously been examined in this literature,
are strongly correlated with future volatility, and that past downside jump variations matter in prediction. Finally,

incorporation of downside and upside jump power variations does improve predictability, albeit to a limited extent.
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1 Introduction

Many recent modelling advances in asset pricing and management are predicated on the impor-
tance of jumps, or discontinuous movements in asset returns. Indeed, if jumps are found to be
present in the data, the economic implications of including jump processes in dynamic asset pricing
exercises are substantial. For example, the incorporation of jumps leads to break-downs in typical
market completeness conditions needed for portfolio replication strategies in derivatives valuations.
Additionally, jumps complicate the implementation of "state of the art" change of risk measures
in risk neutral pricing. As a result, asset allocation and risk management, which heavily depend
on risk measures and underlying asset return dynamics, are affected. In volatility measurement, it
is necessary to separate out the volatility due to jumps or construct variables that appropriately
summarize information generated by jumps. The above considerations are of particular importance,
given recent evidence on the importance of jumps, both "finite activity jumps" (see e.g., Huang
and Tauchen (2005)) and "infinite activity jumps" (see e.g., Ait-Sahalia and Jacod (2009b)) that
is reported in the literature.!

In this paper, we add to the empirical literature on volatility prediction by carrying out a
series of experiments in order to ascertain the usefulness of a variety of jump variables, including
realized measures of jump power variations that are designed to estimate upside and downside risk,
jump asymmetry, and truncated "large" jumps, for example. Key earlier related papers include
Andersen, Bollerslev, Diebold and Labys (2003), Corsi (2004), Andersen, Bollerslev and Diebold
(ABD: 2007), Corsi, Pirino and Reno (2008), Barndorff, Kinnebrock, and Shephard (BKS: 2010),
Patton and Shephard (PS: 2011), and the references cited therein.

There are two ingredients in the experiments that we carry out. The first ingredient involves
the choice of volatility estimator. One available estimator is based on "backing out" volatility
from parametric ARCH, GARCH, stochastic volatility, or derivatives pricing models. Another
estimator, which we use, is "model free". Examples include realized volatility (RV), as examined in
the seminal paper by Andersen, Bollerslev, Diebold and Labys (2001), and variants thereof such as
bipower variation, tripower variation, multipower variation, semivariance, and various others.? One
reason for the use of model free realized measures (RMs), is that they allow us to treat volatility
as if it is observed, when we subsequently fit regressions in order to assess predictability. * The

RMs that we implement are predicated on recent theoretical advances due to Jacod (2008), BKS

'For other examples of work in this area, see Ait-Sahalia (2002), Carr, Geman, Madan, Yor (2002), Barndorff-
Nielsen and Shephard (2004, 2006), Cont and Mancini (2007), Jacod (2008), Jiang and Oomen (2008), Lee and
Mykland (2008), Ait-Sahalia and Jacod (2009a), Todorov and Tauchen (2010), and the references cited therein.

?See Barndorff-Nielsen and Shephard (2004), Ait-Sahalia, Mykland and Zhang (2005), Zhang (2006), Barndorf-
Nielsen, Hansen, Lunde, and Shephard (2008), Jacod (2008), BKS (2010), and the references cited therein.

3Modeling and forecasting RMs is important not only because RMs are natural proxies for volatility, but also
because of the many practical applications and uses of RMs in constructing synthetic measures of risk in the financial
markets (see e.g., Duong and Swanson (2011) for a discussion of the VIX and other derivatives constructed using
RMs). Additionally, see Andersen, Bollerslev, Diebold and Labys (2003), Corsi (2004), and ABD (2007), and Corradi,

Distaso and Swanson (2009, 2011) for a discussion of prediction using RMs.



(2010), Todorov and Tauchen (2010), and Ait-Sahalia and Jacod (2012). In particular, the limit
theory that we adopt allows us to use RMs to construct estimators of downside and upside jump
power variations using intra-daily positive and negative returns. These estimators are suggested
by BKS (2010) as alternatives to the semivariances implemented in Patton and Shephard (2011).
We also examine jump asymmetry (i.e., realized signed jump power variation).

The second ingredient involves which variables to use to measure jumps. Once jumps are
found, one approach to capture large jump variations is to use the jump decomposition technique
implemented in Duong and Swanson (2011) to construct realized measures (RMs) of the variational
contribution of large and small jumps to total variation. Another approach, which is the main focus
of this paper is to examine various different RMs of jump power variations, formed using power
transformations of the instantaneous return, i.e., |r¢|9. The analysis of power transformations
of returns is not new. Ding, Granger and Engle (1993) and Ding and Granger (1996) develop
long memory asymmetric power ARCH models based on power transformations of daily absolute
returns. They find that the autocorrelations of power transformations of S&P500 returns are the
strongest for ¢ < 1. In the context of high frequency data, Liu and Maheu (2005) and Ghysels
and Sohn (GS: 2009) study the predictability of future realized volatility using past absolute power
variations and multipower variations. Ghysels and Sohn (2009) find that the optimal value of ¢ is
approximately unity. However, their empirical evidence considers the continuous class of models,
and does not account for jumps. In related recent work that is closest to that reported in this
paper, BKS (2010) construct new estimators of downside (and upside) risk (i.e., so-called realized
semivariances), using square transformations of positive and negative intra-daily return, and find
that downside risk measures are important when attempting to model and understand risk. They
note, as quoted from Granger (2008), that: ‘It was understood that risk relates to an unfortunate
event occurring, so for an investment this corresponds to a low, or even negative, return. Thus
getting returns in the lower tail of the return distribution constitutes this “downside risk.” However,
it 1s not easy to get a simple measure of this risk.” This point is noteworthy, since it is argued in
the literature (see e.g., Ang, Chen and Xing (2006)), that investors treat downside losses differently
than upside gains. 4

Of note is that the role of the size of jumps in forecasting can be gauged (to some extent)
through examination of the order of g. For this reason, we consider jump power variations with
0 < ¢ < 6. While previous authors have focused on ¢ < 2, allowing for a wider range of values
for ¢ is sensible, given that convergence to jump power variation occurs only when ¢ > 2 (see e.g.,
Todorov and Tauchen (2010) and BKS (2010)). ® As discussed above, our prediction experiments

4In the parametric framework, some authors also develop approaches to modeling time-varying higher order
conditional moments (see e.g., Timmermann (2000) and Perez-Quiros and Timmermann (2001). Maheu and Curdy
(2004) take this sort of analysis one step further and incorporate past jumps as a new source of asymmetry, and find
improved volatility forecastability.

5In our implementation, prediction results for ¢ > 6 are qualitatively the same as those for ¢ = 6, and are therefore
not reported on.



are designed to separately analyze "large" and "small" jumps using jump power variation RMs.
For completeness, we also analyze jumps using RMs of truncated large jump variations. These
are constructed using squared instantaneous returns, i.e., 77 x I re|>y Where I}, |~ is an indicator
taking the value 1 if |r;| > 7 and 0 otherwise. Analogous to the choice of ¢, large jumps variations
depend on the truncation level v > 0. A grid search is carried out in order to provide evidence on
"optimal" v values for use in volatility prediction.

The dataset used in our empirical investigation consists of high frequency price returns con-
structed using S&P500 futures index data for the period 1993-2009, as well as stocks in the Dow 30,
for the period 1993-2008; and our empirical implementation involves estimating linear and nonlinear
extended heterogeneous autoregressive realized volatility (HAR-RV) type models. Our findings can
be summarized as follows. First, we find evidence that jumps characterize the structure of both the
S&P500 futures index and the individual stocks that we examine. Second, our experiments indicate
accuracy improvements, both in- and out-of-sample, when RMs of jump power variations are used
as additional predictors in HAR-RV type models. However, past "large" jump power variations help
less in the prediction of future realized volatility, than past "small" jump power variations. In a
related finding, we note that seemingly rare and possibly iid jumps do not help in prediction, while
smaller, less rare and possibly serially correlated jumps do help. Third, the continuous component
dominates in all prediction experiments, which is consistent with previous findings in the literature
on volatility forecasting using high frequency data. Fourth, incorporation of downside and upside
jump power variations does improve predictability, albeit to a limited extent. Fifth, comparing "no
jump test" cases with "jump test" cases indicates that findings do change, to some degree, when
jump tests are used in the construction of jump variation variables. Additionally, the power of ¢
associated with our R%2—"best" model is higher when S&P500 index returns are predicted, than
when individual DOW components are predicted. This suggests that aggregation plays a role in
risk prediction. Values of ¢ less than 2 dominate for individual stocks, while values greater than
2 dominate for our index variable. Finally, our prediction experiments based on the use of RMs
of truncated large jump variations constructed using the jump decomposition approach (see above
discussion) are consistent with the above finding that larger jump variations help less in the pre-
diction of future realized volatility than smaller jump variations. In particular, out-of-sample R?
values associated with the grid of truncation levels, 7, are monotonically decreasing in 7.

A general finding that permeates all of our experiments is that what’s best for in-sample analysis
is far from best for out-of-sample analysis. Another general finding is that jumps do play a role,
at least when modelling aggregate (index) data such as S&P500 futures returns; and while jump
risk power variations may not be important for in-sample fit, they clearly play an important role
in out-of-sample volatility prediction.

The rest of the paper is organized as follows. Section 2 discusses volatility and jumps, while

Section 3 discusses the various realized measures of price jump variation that we examine. Section 4



outlines our experimental setup, and Section 5 gathers our empirical findings. Concluding remarks

are contained Section 6.

2  Volatility and Price Jump Variations
2.1 Set-up

We adopt a general semi-parametric specification for asset prices. Following Todorov and Tauchen

(2010), the log-price of asset, p; = log(P;), is assumed to be an It6 semimartingale process,
t t
p=m+ [ bads [ odB.s &
0 0

where pg + fg bsds + f(f 0sdBs is a Brownian semi-martingale and J; is a pure jump process which

is the sum of all "discontinuous" price movements up to time ¢,

Ji=Y_ Aps.

s<t
Jy is assumed to be finite® and a jump at time s is defined as Ap, = ps— ps—.
When the jump component is a compound Poisson process (CPP) - i.e. a finite activity jump

process - then,
Ny
Jt = ZY:M (2)
i=1

where N; is number of jumps on [0,¢]. N; follows a Poisson process, and the jump magnitudes,
i.e. the Y/s are iid random variables. The CPP assumption has been widely used in the literature
on modeling, forecasting, and testing for jumps. However, jumps may arise in other model setups,
such as when infinite activity jumps are specified (see Todorov and Tauchen (2010)).

The empirical evidence discussed in this paper involves examining the variation of the log-price
jump component using an equally spaced path of historically observed prices, i.e. {po, 1A, ,DP2A, s PnA,
where the sampling frequency, A, = %, is deterministic. The intra-daily return or increment of p;
is

Tim = Pid, — P(i—1)An-

Returns are observed at various frequencies. However, volatility of log-prices is often treated as

an unobserved variable. The "true" price variance (risk) is defined in this paper by the quadratic

variation of the process py, i.e.,

t
Vi=Ip,pl = / o2ds + QJ;,
0

6See, for example Jacod (2008) or Todorov and Tauchen (2010) for the conditions for the finiteness of jumps.



where the variation of the continuous component (integrated volatility) is

t
IV, = / o2ds,
0

and the variation of the price jump component is

QJ; = (Aps).

s<t

Realized volatility (RV), is constructed by simply summing up all successive intra-daily squared

returns, and converges to the quadratic variation of the process, as n — 0o 7,
n
RV, =Y 1}, =B Vi =1V, + QJj, (3)
i=1

where ucp denotes uniform convergence in probability.

2.2 Jump Tests and Jump Decompositions

In this section, we review results on jump tests applied in this paper and the jump decomposition
approach used in Duong and Swanson (2011) and Ait-Sahalia and Jacod (2012).

2.2.1 Testing for Jumps

Jump detection is useful as a "pre-test", prior to constructing RMs of jump and continuous com-
ponents of a variable. We implement the jump test methodology of Huang and Tauchen (2005)
and BNS (2006), extended to processes such as (1).8 The key point of the test methodology is that
under the null hypothesis of no jumps, the difference between the estimators of variation of the
continuous component and total quadratic variation should be close to 0. We follow the empirical
strategy in Duong and Swanson (2011) in which adjusted jump ratio statistics developed by Huang
and Tauchen (2005) are used, i.e.,

n

v

— t t

Ziy = — = (1 S (rim)?
\ Omaz(t=,10:/(1V,)?) i=1(Tin

"This is a standard result in high frequency econometrics. For instance, see Todorov and Tauchen (2010).

¥ As discussed in Duong and Swanson (2011), the extension is based on limit theorems recently developed by Jacod

(2008) and Ait-Sahalia and Jacod (2009a). For instance, let f(z) = 2™, let po, be the law N(0,02), and let po, (f)
be the integral of f with respect to this law. Then:

ya (méf(j—&_;f— / pas<f)ds> =2 [ oo () =t (na. ()

Here, L — S denotes stable convergence in law, which also implies convergence in distribution. For m = 2, the above
theorem is the same as BNS (2006), which is the key limit theorem for their jump test statistics derivation.

) 2, N(0, 1).




where IV, (tripower variation) and 1Q (multipower variation) are estimators of fot o2ds and of
fg otds, respectively. In particular,

IV, = Vs

3

2 g;g?’ and f@t = A;1V4 4 4/@37 (5)
3’3 3 3’3 3

3 3

where pi; = E(|Z]9) and Z is a N(0,1) random variable, with
n
le,mz...,m]- = Z ‘rz‘,n’ml ‘ri—l,n’m2-'--‘7ﬂi—j,n‘mj7
=2

where mq ma ...,m; are positive, such that Zjl m; = q. In general, given a daily test statistic,
Zy n(ev), where n is the number of observations per day and « is the test significance level, we reject
the null hypothesis if Z; ,,(«) is in excess of the critical value ®,, leading to a conclusion that there

are jumps during the day. The converse holds if Z; (o) < ®g.

2.2.2 Price Jump Decompositions

In this section, we first revisit the jump-test adjustment approach in the construction of realized
measures introduced in ABD (2007), and then highlight the price jump decomposition technique
using fixed truncation levels in Duong and Swanson (2011) and Aft-Sahalia and Jacod (2012).
Note that Duong and Swanson (2011) do not look at volatility prediction using those measures.
Furthermore, though the empirical prediction findings of this paper is primarily based on jump
power variations as measures of "large" and "small" jumps, as presented in the next section, we
also make a new contribution by examining the predictive content of "large" jump variations using
a wide scheme of v in the prediction of future RV.

In pioneering work, ABD (2007) suggest constructing realized measures of jump and continuous
variations as follows:
Realized measure of variation of jump component: RV J; = max{0, RVt—I/‘\/t} or RV J; = max{0, RV,—
I/X\/t} * Ljymp,t if a jump pre-test is used.
Realized measure of variation of continuous component: RV Cy = RV; — RV J;, where RV; and I/‘\/}
are the daily realized volatility measures (defined above), Ijymp+ is an indicator taking the value 0
if there are no jumps and 1 otherwise, and n is the number of intra-daily observations.’

Building on the above jump-testing adjustment approach, Duong and Swanson (2011) construct
RMs of large and small jump variations using jump decompositions. In particular, for some fixed

truncation level, v, define large and small jump components as follows, respectively:

LJyi =Y Apiap, sy and STy = Apadiap, <y,

s<t s<t

9The mazx operator is introduced to make sure that RV.J; is positive.



where Ijap, >y As D, r’?,nl|ri,n|2"/ converges uniformly in probability to zs<t(Aps)21|Ap5|2w as
n goes to infinity, the variation of jumps with magnitude larger than ~ and smaller than v are
denoted and calculated as follows:!?

Realized measure of truncated large jump variation: RV LJy; = min{RV .J;, > " | rﬁnl lrin|>y ) OF
RVLJ,; =min{RV J;, (31", rin # Ly, 1>4) * Ljump,t } if jump test is applied.

Realized measure of truncated small jump variation: RV.SJ,; = RV J; —RV LJ, 4, where Ljymp ¢ is

defined above and I},, |-, is an indicator taking the value 1 if |r;,| >y and 0 otherwise.!!

3 Jump and Signed Jump Power Variations

In the previous section, we discussed jump variation decompositions using truncation levels. Note
that a key difficulty in the application of this decomposition approach lies in the choice of truncation
levels, which is arbitrary. Although we address this issue to some extent via use of a grid search,
recent theoretical advances suggest that using power variations to measure the contribution of
jumps may prove useful. In particular, recent limit theory developed in the financial econometric
literature allows us to assess jump variations from various spectrum using jump power variations
formulated by power transformation of absolute log-price jumps (|Aps|?).'? In particular, define

the jump power variation as follows:
TP = |Aps|f, (6)
0<s<t
with "upside" jump power variation defined as
JPVq—,; = Z |Aps|!Iap,>0 (7)
0<s<t
and "downside" jump power variation defined as
TPV, = Y |Aps|Tap,<o. (8)
0<s<t
Finally, measure jump asymmetry using so-called signed jump power variation, defined as follows,
JAgr =Y |ApsUaps0— Y, [Aps|' ap,<o- 9)
0<s<t 0<s<t

In the above expressions, we are interested in the case where ¢ > 2. Note that for large values
of q, JP,, JPVqﬁ, JPV3, JA,+ are dominated by large jumps. For ¢ < 2, the jump variations

are not always guaranteed to be finite. One of our main goals in this paper is to construct and

19See Jacod (2008), Ait-Sahalia and Jacod (2012) for further details.

"1 As done in a related context in ABD (2007), the min operator is introduced to make sure that RV LJ, ; < RV J;.

“For further discussion, see above, and refer to Jacod (2008), BKS(2010), Todorov and Tauchen (2010) and
Ait-Sahalia and Jacod (2012).



examine realized measures (RMs) of jump power variations including JP, ¢, J Pqut, JPV, 1, JAqu,
for a wide range of values of ¢, and to use them in prediction experiments.

For the case ¢ = 2, BKS (2010) develop so-called realized semivariances which are estimators of
JPV

.t
volatility. The realized semivariances of BKS (2010) are defined as follows,

JPV,;. PS (2011) build on these results and make use of realized semivariances to forecast

n n

RS™ =Y (rin)’ Iy, <oy and RS =" (rin)? Iy, 0}
i=1 i=1
Here, RS~ (RS™) contain only negative (positive) intra-daily returns and can serve as measures
of downside (upside) risk as pointed out in BKS (2010). They show that RST and RS~ converge

uniformly in probability to semi-variances. Namely,

1t _o1y
RSt — 5/0 olds + Z(Aps)2IAps>0 and RS~ — 5/0 o2ds + Z(Aps)2IAps<0- (10)

Realized measures of "downside" and "upside" jump variation are thus obtained by replacing

fg o2ds with IV. For example, we see that "downside" variation can be constructed by calculating

n
Y rindir <o) — %f‘\/ — > (Aps)*Iap,<o- (11)
i=1

In volatility forecasting experiments, PS (2011) use bipower variation for IV . In addition, they
construct "signed" jump variation, ARJ = RS™ — RS™, which captures jump variation asymmetry,
since ARJ — Z(Aps)QIApS>0 - Z(ApS)QIApS<0. When jumps are not present, ARJ converges to

0 and there is no asymmetry in volatility. When the process has jumps, AR.J can proxy for jump

variation asymmetry.

Turning now to the case of variations with ¢ # 2, GS (2009) undertake to find the "optimal"
realized power variation, n~174/2 Sy |rinl? , for some g, when forecasting future RV. Recall,
however, that they assume that the price process follows a Brownian semi-martingale. Their results
are therefore restricted to the case of higher order variations of the continuous component, fg olds,

involving no jumps. In this case, Ait-Sahalia and Jacod (2012) point out that for all ¢ > 0,

n t
U2 0 / olds, (12)
0

i=1
where py = E(|ul?) and u is a standard normal random variable.
Recent limit results due to Jacod (2008) and BKS (2010) allow us to construct estimators of
downside and upside jump power variations, J PVq'ft, JPV , for ¢ > 2, using intra-daily positive and
negative returns. These estimators are suggested by BKS (2010) as alternatives to the semivariances

implemented in PS (2011). Namely, define jump power variation as RPVg; = > 1" |[rinl?, g > 0.



Realized downside and upside power variations are defined as,
n n
+ - - _ -
RIJj = Z | and RJ,, = Z rinl® @ > 2,
i=1 i=1

where r;fnand r; nare positive and negative intra-daily returns, respectively.Convergence of the
above RMs to jump power variations occurs when g > 2. Therefore, in our prediction experiments,
differentiating our approach from that of previous authors, we are particularly interested a range
of ¢ from 2 to 6.

In their analysis of the limiting behavior of RPV,;, Todorov and Tauchen (2010) summarize
selected results from BNS (2004, 2006) and Jacod (2008). In their set-up, the log-price process
contains continuous martingale, jump and drift components. The value of ¢ directly affects the
limiting behavior of RPV,;. For instance, for ¢ < 2, the limit of RPV,; is determined by the
continuous martingale. For ¢ > 2, the limit is driven by jump component. When ¢ = 2, both

continuous and jump components contribute to the limit of RPV, ;. The results are summarized

as follows,
A}fquPVq,t L g fg oldds ,if 0 < ¢ <2,
RPV,; “2 V if ¢ = 2, (13)

RPV, “% P, if ¢ > 2.

BKS (2010) point out that we can go one step further and decompose jump power variations

into upside movements and downside movements, i.e.,

RJ5 =5 TPV,
{ ’ if ¢ > 2. (14)

4,
R, =5 JPV,,

As mentioned earlier, for ¢ < 2, scaled RPV,; converges to the power variation of the continuous
component, i.e. no jumps. Intuitively, with ¢ > 2, scaled RPV4, RJ; t» R2J,, eliminate all variations
due to the continuous component and keep all "large" jumps. In addition, these realized measures
are evidently dominated by larger jumps the higher the value of ¢. Finally, building on (14), we
construct a new RM of jump power variation asymmetry, so-called "signed" jump power variation.

It is straightforward to verify that,

RJAg = RJ}, — RI, =5 JAqgu.
In our forecasting experiments, we also examine the usefulness of this new jump asymmetry variable,
RJA,; for a wide range of values of ¢ > 2. Of final note is that, as elsewhere in this paper, we use
Vini,ma...,m ;» to estimate fg odds in all calculations of jump variations.
In summary, at a particular day ¢, the (daily) variables that we construct when carrying out
our prediction experiments are as follows:

Realized Measure of qth order power variation : RPVyy = 1" | |rin|? with ¢ > 0,



Realized Measure of qth order upside jump power variation: RJqft =>", (|7°;7rn|q> ,q> 2,

Realized Measure of qth order downside jump power variation: RJ,, = Y71, <]r;n|q>, q>2,
Realized Measure of qth order signed jumps power variation: RJAy; = RJ; r— RJ 0> 2.
Additionally, we consider variants of all of these variables that are multiplied by an indicator

variable, Ljymp¢, where Ljymps = 1 if jumps occur at day ¢ and Ijumps = 0 otherwise. Thus, for
example, we also model RPVy; = Liympt*{> i1 |rin]?}, RJ;,Q = Liumpt*{> i1 <|rl+n q) } RJ,, =

Ljump,t * {Z:'LZI (|r7:n|q>}7 and RJAgt = Ljump,t * {RJ(;,rt - RJ(;t}'

4 Prediction Models and Methodology

In a classic paper, Ding, Granger and Engle (DGE: 1993) found that the auto-correlation of power
transformations of daily S&P500 returns is strongest when ¢ = 1, as opposed to the value ¢ =
2, which was previously widely used in the literature. This led them to formulate the so-called
Asymmetric Power ARCH (APARCH) model. The APARCH specification allows for flexibility via
use of gth power transformations of absolute returns. GS (2009) point out that this class of models
ends up working with volatility that is not measured by squared returns, which is what researchers
and practitioners care about the most. Using five-minute intra-daily returns on the Dow Jones
composite index for the period 1993-2000, GS (2009) carry out a thorough empirical correlation
analysis (using MIDAS) of daily RV and realized power variations, with the forecasting horizon
from one to four weeks. They conclude that realized power variation with ¢ = 1 and future RV
display the strongest cross-correlation over the first 10 lags. Beyond the first 10 lags, the cross-
correlation holds for ¢ = 0.5. This suggests that predicting RV using variables such as realized
power variation might yield better results compared to simply using lags of RV.

As mentioned in the introduction, our approach is to utilize power variation variables (and
truncated jump variables) that capture information generated by jumps in prediction experiments
wherein HAR-RV models are estimated. The HAR-RV model, initially developed in Corsi (2004), is
formulated on the basis of the so-called Heterogeneous ARCH, or HARCH class of models analyzed
by Miiller et al. (1997), in which the conditional variance of discretely sampled returns is parame-
terized as a linear function of the lagged squared returns over the identical return horizon together
with the squared returns over shorter return horizons. Intuitively, different groups of investors have
different investment horizons, and consequently behave differently. The original HAR-RV model
is a constrained AR(22) model and is convenient in applications, as volatility is treated as if it is
observed.

Define the multi-period normalized realized measures for jump and continuous components as
the average of the corresponding one-period measures. Namely for daily time series Y;, construct
Y: ++n such that

Yitrn = h Y1 + Vg + oo + Yiga], (15)

10



where h is an integer. Y; ;. aggregates information between time ¢ 41 and ¢ + h. The daily time
series Y; can be any of RV;, RV J;, RVCy, RPVy4, RJ(Xt, RJy, or RJ Ay, with ¢ = {0.1k}’,§§?o. In
addition, Y; can be RV LJ,;, with v = {y1 + (yo. —11)/L * l}lel, where 1 and ~yr, are the choices
of minimum and the maximum level of v and L is number of grid points. 3

In standard linear and nonlinear HAR-RV models, future RV depends on past RV. Namely,

A(RVi 1) = Bo + Bad(RV:) + Buwd(RVi—s4) + Bind(RVi—22,¢) + €14n, (16)

where ¢ is a linear, square root or log function. The incorporation of RMs of jump variations, such
RV J; can be done as in ABD (2007), using the HAR-RV-CJ model as follows:

O(RVign) = Bo + Bead(RV Cy) + Bewd(RV Ci—s1) + Bem®(RV Ci—92,1) + Bjap(RV Jy),
+ Bjwd(RV Ji—s54) + Bim@(RV Ji—22¢) + €14h-

In the sequel, we estimate various HAR-RV models that incorporate all of the jump variables
discussed above. In addition, we examine forecasts of RV;;j, rather than RV}, and we carry
out both in-sample regression analysis, as well as ex ante prediction analysis using both rolling and
recursive estimation windows. All estimation is carried out using least squares, and heteroskedas-
ticity and autocorrelation consistent standard errors are used in all inference based on the models.
Specification from 1-6 (see below) are re-estimated for each value of ¢, while Specification 7 is
re-estimated for each value of ~.

Specification 1: Standard HAR-RV-C Model (Benchmark Model):

O(RVipn) = Po + Bead(RV Cy) + Bewd(RV Ci—s 1) + Bem@(RV Ci—_22,4) + €14h. (17)

In this benchmark case, future RV depends on lags of the variation of the continuous component
of the process.
Specification 2: HAR-RV-C-PV(q) Model:

A(RViin) = Bo + Beap(RVCy) + Bewd(RV Ci—s1) + Bemd(RV Ci—22.1)
+ Bjad(RPVy4) + Bijwd(RPVyi—5:) + Bim@(RPVyi—221) + €14, (18)

where RPV,; is the gth order variation of the jump component. RPV,; 5; and RPV,; 22, are
calculated using (15), and 0.1 < ¢ < 6.
Specification 3: HAR-RV-C-UJ(q) Model (Upside Jumps):

O(RVipn) = Bo + Bead(RV Cy) + Bewd(RV Ci—51) + Bem@(RV Cy—_22.1)
+ 5;&‘25(3%;) + 5;;;‘25(3%;}—5,1:) + B;Fm¢<RJ;t—22,t) + €tth- (19)

3We set L equal to 50, and ~; and 1 equal to the median and 95 percentile of monthly maximum absolute
increments of returns, respectively.
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RJ;t, RJ;t_it, RJ;“t_ngt measure the gth order power variation of positive jumps today, last week,
and last month, and are calculated using (15), and 2.1 < ¢ < 6.

Specification 4: HAR-RV-C-DJ(q) Model (Downside Jumps):

A(RVisn) = Bo + Bead(RV Cy) + Bewd(RV Ci—54) + Bemd(RV Ci—22)
+ Bia0(RI 1) + By (R4 54) + B (R 004) + €t (20)

The range of ¢ is 2.1 < ¢ < 6.
Specification 5: HAR-RV-C-UDJ(q) Model (Upside and Downside Jumps):

A(RVin) = Bo + Bead(RV Cy) + Bewd(RV Ci—5.4) + Bemd(RV Ci_22)
+ 5;1¢(Rj;t) + 5;;;‘25(3%;}—5,1:) + B;Fm¢<RJ;rt—22,t)
+ Bia0(RI3) + By (R4 54) + B (R 004) + €t (21)

Specification 6: HAR-RV-C-APJ(q) Model (Asymmetric Jumps):

A(RVisn) = Bo + Bead(RV Cy) + Bewd(RV Ci—54) + Bemd(RV Ci_22)
+ Bjap(RJ Agt) + Bjwd(RTAgi—51) + BimP(RJ Agi—221t) + €t (22)

This model uses RMs of signed jump power variations, i.e., measures of jump asymmetry, as
explanatory variables. These variables, RJAy;, RJAy—5; and RJAy; 224, are calculated using
(15).

Specification 7: HAR-RV-C-LJ(y) Model (Truncated Large Jumps):

A(RVign) = Bo + Bead(RV Cy) + Bewd(RV Ci—5¢) + Bemd(RV Ci_22)
+ Bjad(RV LIy 1) + Bjwd(RV Ly 5¢) + Bim@(RV LJy4—22t) + €4 h- (23)

The forecast horizons that we examine are h = 1,5, 22, which correspond to one day, one week,
and one month ahead, respectively. For each specification (except for Specifications 1, 2 and 7),
there are 40 variants, corresponding to 40 different values of g. For specification 2, there are 60 vari-
ants and there are 50 variants for specification 7. In our forecasting experiments, the entire sample
of T observations is divided into two samples, the estimation sample containing R observations,
and the prediction sample containing P = T — R (minus h) observations. Both rolling and recursive
windows of data are used in model estimation, prior to the construction of each new prediction. In
addition to reporting out-of-sample R? statistics, calculated by projecting RV forecasts on historical
RV, we also report traditional in-sample adjusted R? statistics, calculated the using entire sample
of T observations. In our prediction experiments, we also carry out pairwise Diebold and Mariano
(DM: 1995) predictive accuracy tests. Our DM tests assume quadratic loss, have a null of equal
predictive ability, and are asymptotically normally distributed (under a nonnestedness assumption

- see Corradi and Swanson (2006) and the references cited therein for a complete discussion). The
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test statistic is DM = P~} 25:1 (d¢/o) where d; = §%¢+h — §§7t+h,the gs are forecast errors from
the two competing models, and 7 is a heteroskedasticity and autocorrelation consistent estimator

of the standard error of the mean of d;.

5 Empirical Findings
5.1 Data Description

S&P500 futures index and Dow 30 individual stock datasets (collected for the period 1993-2009
and 1993-2008, respectively) were obtained from the TAQ database. When processing the data, we
followed the common practice of eliminating from the sample those days with infrequent trades (less
than 60 transactions at our 5 minute frequency). In the literature, two methods are often applied
for filtering out an evenly-spaced sample - the previous tick method and the interpolation method
(Dacorogna, Gencay, Miiller, Olsen, and Pictet (2001)). As shown in Hansen and Lund (2006), in
applications using quadratic variation, the interpolation method should not be used, as it leads to
realized volatilities with value 0 (see Lemma 3 in their paper). Therefore, we use the previous tick
method (i.e. choosing the last price observed during a given interval). We restrict our dataset to
regular time and ignore ad hoc transactions outside of this time interval. To reduce microstructure
noise effects, the suggested sampling frequency in the literature ranges from 5 minutes to 30 minutes.

We choose the 5 minute frequency, yielding 78 observations per day in most cases.'*

5.2 Contribution of Jumps to Realized Volatility

All daily statistics are calculated using the formulae in Sections 2 with

AL 1
" n  # of 5 minute transactions / day’

For instance, A,, = 1/78 for most of the stocks in the sample. This implies that the time interval
[0, 1] maps into a beginning time of 9 am (set equal to 0) and an end time of 4:30 pm (set equal
to 1), in our setup. In all calculations involving integrated volatility and integrated quarticity, we

use multipower variation, as discussed above. Let T denote the number of days in the sample. We

T
1 1 T RVC: RVJ: VLJiy VSJiy .
construct the time series {Z; ,(a)},_; and { RV, RV TRV TRV [, The average relative

contribution of continuous, jump, and large jump components to the variation of the process is

1 ] RVC:; RV J: VLJt,'y VSJ;:W
reported using the mean of the sample (i.e., we report the means of RV RV TRV and A ).

15 Tn this context, an important step is the choice truncation level, v. If we choose arbitrarily large

truncation levels, then clearly we will find no evidence of large jumps. Also, one might imagine

A main drawback of realized measures constructed using high frequency data is that they are contaminated by
mictrostructure noise, and hence our use of a 5 minute data interval. See Ait-Sahalia, Mykland and Zhang (2005)
for further dicussion.

15In the sequel, we provide numerical results for S&P500 futures, in cases were brevity becomes and issue, and
where qualitative findings remain the same. Complete results are available upon request.
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proceeding by picking truncation levels based on the percentiles of the entire historical sample of
5 minute returns. However, results will then be difficult to interpret, as the usual choice of 90th
percentiles leads to virtually no large jumps while the choice of 10th percentiles leads to a very
large number of large jumps. In addition, large jumps are often thought of as abnormal events that
arise at a frequency of one in several months or even years. Therefore, a reasonable way to proceed
is to pick the truncation level on the basis of the sample of the monthly maximal increments,
i.e., monthly abnormal events. Specifically, we set four levels v = 1,2,3,4 to be the 50th, 75th,
90th and 95th percentiles of the entire sample of maximal increments from 1993-2009 for S&P500
futures and from 1993-2008 for the Dow 30 components. This is done in order to construct the
summary statistics reported in Table 1; while grid search based results are discussed in a subsequent
section. In particular, Table 1 summarizes average percentage of daily variation of the continuous
and jump components, at truncation levels 1,2, 3,4, relative to daily realized variances, for the
sample period from 1993-2009, across jump pre-test significance levels, a = 0.0001, 0.001,0.005
and 0.01. For example, at the a = 0.001 and 0.0001 levels, the average daily jump variations are
25.3% and 14.4% during the 1993-2009 period, respectively. Corresponding average variations of
large daily jumps at truncation level 3 are 1.7% and 0.8% respectively. This evidence is consistent
with previous evidence reported in the literature and discussed above regarding the clear prevalence
of jumps in financial data. For example, using the Dow 30 components examined in this paper,

Duong and Swanson (2011) find clear evidence of jumps.

5.3 RV Prediction using Realized Jump Power Variations and Realized Trun-
cated Large Jump Variations

We begin by calculating all daily RMs, as discussed above, using our S&P500 dataset; yielding
time series with T' = 4123 observations. In our out-of-sample forecasting experiments, we set
P = 410.' The models used in our experiments are discussed above and summarized in Section
3. Finally, as a point of reference, recall that the empirical analyses of exchange rates, equity
index returns, and bond yields reported in ABD (2007) suggest that the volatility jump component
is both highly important and distinctly less persistent tha