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1 Introduction

This paper gives a relatively simple, well behaved solution to the problem of many

instruments in heteroskedastic data. Such settings are common in microeconometric

applications where many instruments are used to improve efficiency and allowance for

heteroskedasticity is generally important. The solution is a Fuller (1977) like estimator

and standard errors that are robust to heteroskedasticity and many instruments. We

show that the estimator has finite moments and high asymptotic efficiency in a range

of cases. The standard errors are easy to compute, being like White’s (1982), with ad-

ditional terms that account for many instruments.They are consistent under standard,

many instrument, and many weak instrument asymptotics. They extend Becker’s (1994)

standard errors to the heteroskedastic case.

The estimator, that we refer to as HFUL, is based on a jackknife version of LIML

(HLIM), that will be described below. Because HFUL has finite moments it does not

have the large dispersion that can occur with HLIM for weak identification, an advantage

analogous to that of the Fuller (1977) estimator over LIML with homoskedasticity. Hahn,

Hausman, and Kuersteiner (2004) pointed out this problem for LIML and we follow them

in referring to it as the ”moments problem.” Because of its jackknife form, HFUL is

robust to heteroskedasticity and many instruments, as are jackknife instrumental variable

(JIV) estimators, see Phillips and Hale (1977), Blomquist and Dahlberg (1999), Angrist,

Imbens, and Krueger (1999), Ackerberg and Deveraux (2003) and Chao and Swanson

(2004). However, HFUL is as efficient as LIML under many weak instruments and

homoskedasticity, and so overcomes the efficiency problems for JIV noted in Davidson

and MacKinnon (2006). Thus, HFUL provides a relatively efficient estimator for many

instruments with heteroskedasticity that does not suffer from the moments problem.

Bekker and van der Ploeg (2005) proposed interesting consistent estimators with many

dummy instrumental variables and group heteroskedasticity, but these results are restric-

tive. For high efficiency it is often important to use instruments that are not dummy

variables. For example, linear instrumental variables can be good first approximations
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to optimal nonlinear instruments.. Also, disturbance variances that are constant within

groups is too restrictive for most econometric applications. HFUL allows for general

instrumental variables and unrestricted heteroskedasticity, as does the asymptotics given

here.

Newey and Windmeijer (2009) showed that the continuously updated GMM (CUE)

and other generalized empirical likelihood estimators are robust to heteroskedasticity and

many weak instruments, and asymptotically efficient under that asymptotics relative to

JIV. However this efficiency depends on using a heteroskedasticity consistent weighting

matrix that can degrade the finite sample performance of CUE with many instruments,

as shown in Monte Carlo experiments here. HFUL continues to have good properties

under many instrument asymptotics, rather than just many weak instruments. The

properties of CUE are likely to be poor under many instruments asymptotics due to the

heteroskedasticity consistent weighting matrix. Also CUE is quite difficult to compute

and tends to have large dispersion under weak identification, which HFUL does not.

Thus, relative to CUE, HFUL provides a computationally simpler solution with better

finite sample properties.

The need for HFUL is motivated by the inconsistency of LIML and the Fuller (1977)

estimator under heteroskedasticity and many instruments. The inconsistency of LIML

was pointed out by Bekker and van der Ploeg (2005) and Chao and Swanson (2004) in

special cases. We give a characterization of the inconsistency here, showing the precise

restriction on the heteroskedasticity that would be needed for LIML to be consistent.

The asymptotic theory we consider allows for many instruments as in Kunitomo

(1980) and Bekker (1994) or many weak instruments as in Chao and Swanson (2004,

2005), Stock and Yogo (2005), Han and Phillips (2006), and Andrews and Stock (2007).

The asymptotic variance estimator will be consistent for any of standard, many instru-

ment, or many weak instrument asymptotics. Asymptotic normality is obtained via a

central limit theorem that imposes weak conditions on instrumental variables, given by

Chao, Swanson, Hausman, Newey, and Woutersen (2009). Although the inference meth-

ods will not be valid under the weak instrument asymptotics of Staiger and Stock (1997),
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we do not consider this to be very important. Hansen, Hausman, and Newey’s (2008)

survey of the applied literature suggests that the weak instrument approximation is not

needed very often in microeconomic data, where we focus our attention.

In Section 2, the model is outlined and a practitioner’s guide to the estimator is given.

We give there simple formulae for HFUL and its variance estimator. Section 3 motivates

HLIM and HFUL as jackknife forms of LIML and Fuller (1977) estimators and discusses

some of their properties. Section 5 shows HFUL has finite moments. Monte Carlo findings

are presented in Section 6. The asymptotic theory proofs are given in the Appendix and

the proof of existence of moments can be found at http://econweb.umd.edu/˜chao/.

2 The Model and HFUL

The model we consider is given by

y
n×1

= X
n×G

δ0
G×1

+ ε
n×1

,

X = Υ+ U,

where n is the number of observations, G is the number of right-hand side variables, Υ

is a matrix of observations on the reduced form, and U is the matrix of reduced form

disturbances. For our asymptotic approximations, the elements of Υ will be implicitly

allowed to depend on n, although we suppress dependence of Υ on n for notational

convenience. Estimation of δ0 will be based on an n × K matrix, Z, of instrumental

variable observations with rank(Z) = K. We will assume that Z is nonrandom and

that observations (εi, Ui) are independent across i and have mean zero. Alternatively, we

could allow Z to be random, but condition on it, as in Chao et al. (2009).

In this model some columns of X may be exogenous, with the corresponding columns

of U being zero. Also, this model allows for Υ to be a linear combination of Z, i.e.

Υ = Zπ for some K × G matrix π. The model also permits Z to approximate the

reduced form. For example, let X 0
i, Υ

0
i, and Z 0i denote the i

th row (observation) of X,

Υ, and Z respectively. We could let Υi = f0(wi) be a vector of unknown functions of a

vector wi of underlying instruments, and Zi = (p1K(wi), ..., pKK(wi))
0 be approximating
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functions pkK(w), such as power series or splines. In this case, linear combinations of Zi

may approximate the unknown reduced form (e.g. as in Newey, 1990).

To describe HFUL, let

P = Z(Z 0Z)−1Z 0,

Pij denote the ij
th element of P, and X̄ = [y,X]. Let

α̃ be the smallest eigenvalue of (X̄ 0X̄)−1(X̄ 0PX̄ −
nX
i=1

PiiX̄iX̄
0
i).

Although this matrix is not symmetric it has real eigenvalues because it is a product of

symmetric, positive semi-definite matrices. For a constant C let

α̂ = [α̃− (1− α̃)C/T ]/[1− (1− α̃)C/T ].

In the Monte Carlo results given below we try different values of C and recommend

C = 1. HFUL is given by

δ̂ =

Ã
X 0PX −

nX
i=1

PiiXiX
0
i − α̂X 0X

!−1Ã
X 0Py −

nX
i=1

PiiXiyi − α̂X 0y

!
.

(2.1)

Thus, HFUL can be computed by finding the smallest eigenvalue of a matrix and then

using this explicit formulae.

To describe the asymptotic variance estimator, let ε̂i = yi −X 0
i δ̂, γ̂ = X 0ε̂/ε̂0ε̂, X̂ =

X − ε̂γ̂0, Ẋ = PX̂, and Z̃ = Z(Z 0Z)−1. Also let

Ĥ = X 0PX −
nX
i=1

PiiXiX
0
i − α̂X 0X,

Σ̂ =
nX
i=1

(ẊiẊ
0
i − X̂iPiiẊ

0
i − ẊiPiiX̂

0
i)ε̂

2
i +

KX
k=1

KX
c=1

Ã
nX
i=1

Z̃ikZ̃icX̂iε̂i

!Ã
nX

j=1

ZjkZjcX̂j ε̂j

!0
,

The formula for Σ̂ is vectorized in such a way that it can easily be computed even when

the sample size is n is very large. The asymptotic variance estimator is

V̂ = Ĥ−1Σ̂Ĥ−1.

This asymptotic variance estimator will be consistent under standard, many instrument,

and many weak instrument asymptotics.

[4]



This asymptotic variance estimator can be used to do large sample inference in the

usual way under the conditions of Section 4. This is done by treating δ̂ as if it were

normally distributed with mean δ0 and variance V̂ . Asymptotic t-ratios δ̂j/
q
V̂jj will be

asymptotically normal. Also, defining qα as the 1−α/2 quantile of a N(0, 1) distribution,

an asymptotic 1−α confidence interval for δ0k is given by δ̂k±qα
p
V̂kk. More generally, a

confidence interval for a linear combination c0δ can be formed as c0δ̂±qα
p
c0V̂ c. We find

in the Monte Carlo results that these asymptotic confidence intervals are very accurate

in a range of finite sample settings.

3 Consistency with Many Instruments and Heteroskedas-

ticity

In this Section we explain the HFUL estimator, why it has moments, is robust to het-

eroskedasticity and many instruments, and why it has high efficiency under homoskedas-

ticity. We also compare it with other estimators and briefly discuss some of their prop-

erties. To do so it is helpful to consider each estimator as a minimizer of an objective

function. As usual, the limit of the minimizer will be the minimizer of the limit under

appropriate regularity conditions, so estimator consistency can be analyzed using the

limit of the objective function. This amounts to modern version of method of moments

interpetations of consistency, that has now become common in econometrics; Amemiya

(1973, 1984), Newey and McFadden (1994).

To motivate HFUL it is helpful to begin with two-stage least squares (2SLS). The

2SLS estimator minimizes

Q̂2SLS(δ) = (y −Xδ)0P (y −Xδ)/n.

The limit of this function will equal the limit of its expectation under general conditions.
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With independent observations

E[Q̂2SLS(δ)] = (δ − δ0)
0An(δ − δ0) +

nX
i=1

PiiE[(yi −X 0
iδ)

2]/n,

An = Υ0PΥ/n−
nX
i=1

PiiΥiΥ
0
i/n.

The matrix An will be positive definite under conditions given below, so that the first

term (δ−δ0)0An(δ−δ0) will be minimized at δ0. The second term
Pn

i=1 PiiE[(yi−X 0
iδ)

2]/n

is an expected squared residual that will not be minimized at δ0 due to endogeneity. With

many (weak) instruments Pii does not shrink to zero, so that the second term does not

vanish asymptotically (relative to the first). Hence, with many (weak) instruments, 2SLS

is not consistent, even under homoskedasticity, as pointed out by Bekker (1994). This

objective function calculation for 2SLS is also given in Han and Phillips (2006), though

the following analysis is not.

A way to modify the objective function so it gives a consistent estimator is to remove

the term whose expectation is not minized at δ0. This leads to an objective function of

the form

Q̂JIV (δ) =
X
i6=j
(y −Xδ)0Pij(y −Xδ)/n.

The expected value of this objective function is

E[Q̂JIV (δ)] = (δ − δ0)
0An(δ − δ0),

which is minimized at δ = δ0. Thus, the estimator minimizing Q̂JIV (δ) should be consis-

tent. Solving the first order conditions gives

δ̂JIV =

ÃX
i6=j

X 0
iPijXj

!−1X
i6=j

X 0
iPijyj.

This is the JIVE2 estimator of Angrist, Imbens, and Krueger (1999). Since the objective

function for δ̂JIV has expectation minimized at δ0 we expect that δ̂JIV is consistent, as has

already been shown by Ackerberg and Deveraux (2003) and Chao and Swanson (2004).

Other JIV estimators have also been shown to be consistent in these papers.
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So far we have only used the objective function framework to describe previously

known consistency results. We now use it to motivate the form of HFUL (and HLIM).

A problem with JIV estimators, pointed out by Davidson and MacKinnon (2006), is

that they can have low efficiency relative to LIML under homoskedasticity. This problem

can be avoided by using a jackknife version of LIML. The LIML objective function is

Q̂LIML(δ) =
(y −X 0δ)0P (y −X 0δ)

(y −Xδ)0(y −Xδ)
.

The numerator of Q̂LIML(δ) is nQ̂2SLS(δ). If we replace this numerator with nQ̂JIV (δ)

we obtain

Q̂HLIM(δ) =

P
i6=j(y −Xδ)0Pij(y −Xδ)

(y −Xδ)0(y −Xδ)
.

The minimizer of this objective function is the HLIM estimator that we denote by δ̃.

This estimator is consistent with many instruments and heteroskedasticity. It is also

as efficient asymptotically and performs as in our Monte Carlo resuts as LIML under

homoskedasticity, thus overcoming the Davidson and MacKinnon (2006) objection to

JIV.

The use of the JIV objective function in the numerator makes this estimator consistent

with heteroskedasticity and many instruments. In large samples the HLIM objective

function will be close to

E[nQ̂JIV (δ)]

E[(y −Xδ)0 (y −Xδ)]
=

(δ − δ0)
0An(δ − δ0)

E[(y −Xδ)0 (y −Xδ)]
.

This function is minimized at δ = δ0 even with heteroskedasticity and many instruments,

leading to consistency of HLIM.

Computation of HLIM is straightforward. For X̄ = [y,X], the minimized objective

function α̃ = Q̂HLIM(δ̃) is the smallest eigenvalue of (X̄
0X̄)−1(X̄ 0PX̄ −

Pn
i=1 PiiX̄iX̄

0
i).

Solving the first order conditions gives

δ̃ =

Ã
X 0PX −

nX
i=1

PiiXiX
0
i − α̃X 0X

!−1Ã
X 0Py −

nX
i=1

PiiXiyi − α̃X 0y

!
.

The formula for HLIM is exactly analogous to that of LIML where the own observation

terms have been removed from the double sums involving P . Also, HLIM is invariant to
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normalization, similarly to LIML, although HFUL is not. The vector d̃ = (1,−δ̃0)0 solves

min
d:d1=1

d0
¡
X̄ 0PX̄ −

Pn
i=1 PiiX̄iX̄

0
i

¢
d

d0X̄ 0X̄d
.

Because of the ratio form of the objective function, another normalization, such as im-

posing that another d is equal to 1, would produce the same estimator, up to the nor-

malization.

Like LIML, the HLIM estimator suffers from the moments problem, having large

dispersion with weak instruments, as shown in the Monte Carlo results below. Hahn,

Hausman, Kuersteiner (2005) suggested the Fuller (1977) estimator as a solution to this

problem for LIML. We suggest the HFUL as a solution to this potential problem with

HLIM. HFUL is obtained exactly analogously to Fuller (1977) by replacing the eigenvalue

α̃ in the HLIM estimator with α̂ = [α̃− (1− α̃)C/T ]/[1− (1− α̃)C/T ], giving the HFUL

estimator of equation (2.1). We show that this estimator does have moments and low

dispersion with weak instruments, thus providing a solution to the moments problem.

HFUL, HLIM, and JIV are members of a class of estimators of the form

δ̄ =

Ã
X 0PX −

nX
i=1

PiiXiX
0
i − ᾱX 0X

!−1Ã
X 0Py −

nX
i=1

PiiXiyi − ᾱX 0y

!
.

This might be thought of a type of k-class estimator that is robust to heteroskedasticity

and manyh instruments. HFUL takes this form as in equation (2.1), HLIM does with

ᾱ = α̃, and JIV with ᾱ = 0.

HLIM can also be interpreted as a jackknife version of the continuously updated GMM

estmator and as an optimal linear combination of forward and reverse JIV estimators,

analogously to Hahn and Hausman’s (2002) interpretation of LIML as an optimal linear

combination of forward and reverse bias corrected estimators. For brevity we do not give

these interpretations here.

HFUL is motivated by the inconsistency of LIML and Fuller (1977) with many instru-

ments and heteroskedasticity. To give precise conditions for LIML inconsistency, note

that in large samples the LIML objective function will be close to

E[Q̂2SLS(δ)]

E[(y −Xδ)0 (y −Xδ)]
=

(δ − δ0)
0An(δ − δ0)

E[(y −Xδ)0 (y −Xδ)]
+

Pn
i=1 PiiE[(yi −X 0

iδ)
2]

E[(y −Xδ)0 (y −Xδ)]
.
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The first term following the equality will be minimized at δ0. The second term may not

have a critical value at δ0, and so the objective function will not be minimized at δ0. To see

this let σ2i = E[ε2i ], γi = E[Xiεi]/σ
2
i , and γ̄ =

Pn
i=1E[Xiεi]/

Pn
i=1 σ

2
i =

P
i γiσ

2
i /
P

i σ
2
i .

Then

∂

∂δ

Pn
i=1 PiiE[(yi −Xiδ)

2]Pn
i=1E[(yi −Xiδ)2]

¯̄̄̄
δ=δ0

=
−2Pn
i=1 σ

2
i

"
nX
i=1

PiiE[Xiεi]−
nX
i=1

Piiσ
2
i γ̄

#

=
−2
Pn

i=1 Pii(γi − γ̄)σ2iPn
i=1 σ

2
i

= −2 \Covσ2(Pii, γi),

where \Covσ2(Pii, γi) is the covariance between Pii and γi, for the distribution with prob-

ability weight σ2i /
Pn

i=1 σ
2
i for the i

th observation. When

lim
n−→∞

\Covσ2(Pii, γi) 6= 0,

the LIML objective function will not have zero derivative at δ0 asymptotically so that it

is not minimized at δ0. Bekker and van der Ploeg (2005) and Chao and Swanson (2004)

pointed out that LIML can be inconsistent with heteroskedasticity; the contribution here

is to give the exact condition \Covσ2(Pii, γi) = 0 for consistency of LIML.

Note that \Covσ2(Pii, γi) = 0 when either γi or Pii does not depend on i. Thus, it

is variation in γi = E[Xiεi]/σ
2
i , the coefficients from the projection of Xi on εi, that

leads to inconsistency of LIML, and not just any heteroskedasticity. Also, the case where

Pii is constant occurs with dummy instruments and equal group sizes. It was pointed

out by Bekker and van der Ploeg (2005) that LIML is consistent in this case, under

heteroskedasticity. Indeed, when Pii is constant,

Q̂LIML(δ) = Q̂HLIM(δ) +

P
i Pii(yi −X 0

iδ)
2

(y −Xδ)0(y −Xδ)
= Q̂HLIM(δ) + P11,

so that the LIML objective function equals the HLIM objective function plus a constant,

and hence HLIM equals LIML.

Bekker and van der Ploeg (2005, BP) proposed estimators that are consistent with

dummy instruments and group heteroskedasticity. To explain why these estimators do

not apply with general instruments and heteroskedasticity we briefly describe their MM
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estimator. BP assume that the instrumental variables are dummy varianbes with exactly

one instrumental variable being equal to one for each observation. The ”groups” then

correspond to instrumental variables with Ij = {i : Zij = 1} indexing the jth ”group”

and nj = #Ij be the number of observations in a group, j = 1, ...,K. Let εi(δ) = yi−X 0
iδ

and ε̄j(δ) =
P

i∈Ij εi(δ)/nj. The objective function for the MM estimator is

(y −Xδ)0P (y −Xδ)PK
j=1

1
nj−1

P
i∈Ij [εi(δ)− ε̄j(δ)]2

.

The denominator of this function is the sum of estimated group variances and so the

MM estimator clearly depends on the instrumental variables being dummies. Also the

denominator corresponds to constant within group variances as is imposed in the BP

asymptotics. It may be interesting to consider the properties of this estimator with

general heteroskedasticity (and dummy instruments), but this is beyond the scope of

this paper, and in any case HFUL has good properties for general instruments.

4 Asymptotic Theory

Theoretical justification for the estimators is provided by asymptotic theory where the

number of instruments grows with the sample size. Some regularity conditions are impor-

tant for this theory. Let Z 0i, εi, U
0
i , and Υ

0
i denote the i

th row of Z, ε, U, and Υ respectively.

Here, we will consider the case where Z is constant, which can be viewed as conditioning

on Z (see e.g. Chao et al. 2009).

Assumption 1: Z includes among its columns a vector of ones, rank(Z) = K, and

there is a constant C such that Pii ≤ C < 1, (i = 1, ..., n), K −→∞.

The restriction that rank(Z) = K is a normalization that requires excluding redun-

dant columns from Z. It can be verified in particular cases. For instance, when wi is a

continuously distributed scalar, Zi = pK(wi), and pkK(w) = wk−1, it can be shown that

Z 0Z is nonsingular with probability one for K < n.1 The condition Pii ≤ C < 1 implies

1The observations w1, ..., wn are distinct with probability one and therefore, by K < n, cannot all
be roots of a Kth degree polynomial. It follows that for any nonzero a there must be some i with
a0Zi = a0pK(wi) 6= 0, implying that a0Z0Za > 0.
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that K/n ≤ C, because K/n =
Pn

i=1 Pii/n ≤ C.

Assumption 2: Υi = Snzi/
√
n where Sn = S̃ diag (μ1n, ..., μGn) and S̃ is non-

singular. Also, for each j either μjn =
√
n or μjn/

√
n −→ 0, μn = min

1≤j≤G
μjn −→

∞, and
√
Kn/μ

2
n −→ 0. Also, there is C > 0 such that k

Pn
i=1 ziz

0
i/nk ≤ C and

λmin (
Pn

i=1 ziz
0
i/n) ≥ C, for n sufficiently large.

The Sn matrix in Assumption 2 determines the convergence rate of the estimators. We

will show that S0n(δ̂−δ0) and S0n(δ̃−δ0) are asymptotically normal under conditions given

here. The Sn matrix has a complicated form that seems necessary to cover important

cases, as discussed below. However, one need not even know the form of Sn to perform

inference. Under the conditions given here the standard errors we have provided can be

used to do large sample inference in the usual way without knowing the form of Sn, as

shown in Theorem 5 below.

Assumption 2 and the Sn matrix are designed to accomodate a linear model where

included instruments (e.g. a constant) have fixed reduced form coefficients and excluded

instruments have coefficients that can shrink as the sample size grows. Such a model has

a linear structural equation of the form

yi = Z10i δ
1
0 +X20

i δ
2
0 + εi

where Z1i is a G1× 1 vector of included instruments (e.g. a constant) and X2
i is a G2× 1

vector of endogenous variables with G1 +G2 = G. Let the reduced form be partitioned

conformably with δ, Υi = (Υ10
i ,Υ

20
i )
0 and Ui = (U10

i , U
20
i )

0. The corresponding reduced

form for the included instruments is Z1i = Υ1
i with U1

i = 0. Suppose that the reduced

form for X2
i is

Xi2 = Υ2
i + U2

i ,Υ
2
i = π1Z1i +

¡
μn/
√
n
¢
z2i ,

where z2i are instruments that are excluded from the structural equation and μn ≤
√
n.

Here any reduced form coefficients in z2i are subsumed in z2i . Let zi = (Z10i , z
20
i )

0 and

impose Assumption 2, so that the second moment matrix of zi is bounded and bounded

away from zero. This is a normalization that makes the strength of identification of δ2

[11]



be determined by μn. Indeed, 1/μn will be the convergence rate for estimators of δ
2.

Assumption 2 also allows for a diagnonal matrix in place of (μn/
√
n) I, which would

correspond to different convergence rates for estimators of different components of δ2. In

this example we maintain the scalar matrix form of the cofficients of z2i for simplicity.

For this model Υi = Snzi with

Sn =

∙
I 0
π1 μn/

√
n

¸√
n =

∙
I 0
π1 I

¸
diag(

√
n, ...,

√
n, μn, ..., μn).

This Sn has the form given in Assumption 2 with

S̃ =

∙
I 0
π1 I

¸
, μjn =

√
n, 1 ≤ j ≤ G1, μjn = μn, G1 + 1 ≤ j ≤ G.

This complicated form of Sn is needed to accomodate fixed reduced form coefficients

for included instruments and coefficients for excluded instruments that depend on n.

We have been unable to simplify Sn while maintaining the generality needed for these

important cases.

In this example μn −→ ∞ must hold for Assumption 2 to be satisfied. This implies

that δ2 is asymptotically identfied. If μn were bounded we would be in a weak instrument

setting similar Staiger and Stock (1997), where δ2 is not asymptotically identified and

limiting distributions of estimators are different than those given here.

The excluded instruments z2i may be an unknown linear combination of the instru-

mental variables Zi = (Z10i , Z
20
i )

0, where z2i implicitly depends on n. For example, we

could have z2i =
PKn−G1

j=1 π2jZ
2
ij/
√
Kn −G1, where Z

2
ij have variances that are bounded

uniformly in Kn and 1/
√
Kn −G1 is included to normalize the variance of z

2
i to be

bounded. The many weak instrument example of Chao and Swanson (2005) is then

included by taking μn =
√
Kn −G1, in which case the reduced form for X2

i is

Υ2
i = π1Z1i +

Kn−G1X
j=1

π2jZ
2
ij/
√
n.

The excluded instrument z2i may also be an unknown function that is being approx-

imated by a linear combination of Zi. For instance, suppose that z
2
i = f0(wi) for an

unknown function f0(wi) of variables wi. In this case we could let the instrumental

[12]



variables include a vector pK(wi)
def
= (p1K(wi), ..., pK−G1,K(wi))

0 of approximating func-

tions, such as polynomials or splines. Here the vector of instrumental variables would be

Zi = (Z
10
i , p

K(wi)
0)0. For μn =

√
n this example is like Newey (1990) where Zi includes

approximating functions for the reduced form but the number of instruments can grow

as fast as the sample size. Alternatively, if μn/
√
n −→ 0, it is a modified version where

δ2 is weakly identified.

In Assumption 2 we can think of μ2n as being proportional to the concentration para-

meter. For μ2n ∼ n, we have asymptotic theory as in Kunitomo (1980), Morimune (1984),

and Bekker (1994), where the number of instruments Kn can grow as fast as the sample

size. For μ2n growing slower than n we have the many weak instrument asymptotics of

Chao and Swanson (2005).

The fundamental rate condition
√
Kn/μ

2
n −→ 0 given in Assumption 2 is needed

to ensure that the stochastic part of the objective function for the estimator does not

dominate the identifying part.

Assumption 3: There is a constant, C > 0 such that (ε1, U1), ..., (εn, Un) are in-

dependent, with E[εi] = 0, E[Ui] = 0, E[ε2i ] < C, E[kUik2] ≤ C, V ar((εi, U
0
i)
0) =

diag(Ω∗i , 0), and
Pn

i=1Ω
∗
i /n is uniformly nonsingular.

This assumption requires second conditional moments of disturbances to be bounded.

It also imposes uniform nonsingularity of the variance of the reduced form disturbances,

that is useful in the consistency proof, to help the denominator of the objective function

say away from zero.

Assumption 4: There is a πKn such that
Pn

i=1 kzi − πKnZik2 /n −→ 0.

This condition and Pii ≤ C < 1 will imply that

An = Υ0PΥ/n−
nX
i=1

ΥiΥ
0
i/n =

nX
i=1

(1− Pii)ΥiΥ
0
i/n+ o(1) ≥ (1− C)

nX
i=1

ΥiΥ
0
i/n+ o(1),

so that An is positive definite in large enough samples. Also, Assumption 4 is not very

restrictive because flexibility is allowed in the specification ofΥi. If we simply makeΥi the

expectation of Yi given the instrumental variables then Assumption 4 holds automatically.

[13]



These conditions imply estimator consistency:

Theorem 1: If Assumptions 1-4 are satisfied and α̂ = op(μ
2
n/n) or δ̂ is HLIM or

HFUL then μ−1n S0n(δ̂ − δ0)
p−→ 0 and δ̂

p−→ δ0.

This result gives convergence rates for linear combinations of δ̂. For instance, in the

above example, it implies that δ̂1 is consistent and that π
0
11δ̂

1 + δ̂2 = op(μn/
√
n).

For asymptotic normality it is helpful to strengthen the conditions on moments.

Assumption 5: There is a constant, C > 0, such that with probability one,Pn
i=1 kzik

4 /n2 −→ 0, E[ε4i ] ≤ C and E[kUik4] ≤ C.

To state a limiting distribution result it is helpful to also assume that certain objects

converge and to allow for two cases of growth rates of K relative to μ2n. Also, the

asymptotic variance of the estimator will depend on the growth rate of K relative to μ2n.

Let σ2i = E[ε2i ], γn =
Pn

i=1E[Uiεi]/
Pn

i=1 σ
2
i , Ũ = U − εγ0n, having ith row Ũ 0

i ; and let

Ω̃i = E[ŨiŨ
0
i ].

Assumption 6: Either I) K/μ2n is bounded and
√
KS−1n −→ S0 or; II) K/μ2n −→

∞ and μnS
−1
n −→ S̄0. Also HP = lim

n−→∞

Pn
i=1(1 − Pii)ziz

0
i/n, ΣP = lim

n−→∞

Pn
i=1(1 −

Pii)
2ziz

0
iσ
2
i /n and Ψ = limn−→∞

P
i6=j P

2
ij

³
σ2iE[ŨjŨ

0
j] +E[Ũiεi]E[εjŨ

0
j]
´
/K exist.

This convergence condition can be replaced by an assumption that certain matrices

are uniformly positive definite without affecting the limiting distribution result for t-ratios

given in Theorem 3 below (see Chao et al. 2009).

We can now state the asymptotic normality results. In Case I we have that

S0n(δ̂ − δ0)
d−→ N(0,ΛI), (4.2)

where

ΛI = H−1
P ΣPH

−1
P +H−1

P S0ΨS
0
0H

−1
P .

In Case II, we have that

(μn/
√
K)S0n(δ̂ − δ0)

d−→ N(0,ΛII), (4.3)

[14]



where

ΛII = H−1
P S̄0ΨS̄

0
0H

−1
P .

The asymptotic variance expressions allow for the many instrument sequence of Kunitomo

(1980) and Bekker (1994) and the many weak instrument sequence of Chao and Swanson

(2004, 2005). In Case I, the first term in the asymptotic variance, ΛI , corresponds to

the usual asymptotic variance, and the second is an adjustment for the presence of many

instruments. In Case II, the asymptotic variance, ΛII , only contains the adjustment for

many instruments. This is becauseK is growing faster than μ2n. Also, ΛII will be singular

when included exogenous variables are present.

We can now state an asymptotic normality result.

Theorem 2: If Assumptions 1-6 are satisfied, α̂ = α̃ + Op(1/T ) or δ̂ is HLIM or

HFUL, then in Case I, equation (4.2) is satisfied, and in Case II, equation (4.3) is

satisfied.

It is interesting to compare the asymptotic variance of the HFUL estimator with that

of LIML when the disturbances are homoskedastic. First, note that the disturbances

are not restricted to be Gaussian and that the asymptotic variance does not depend on

third or fourth moments of the disturbances. In contrast, the asymptotic variance of

LIML does depend on third and fourth moment terms for non Gaussian disturbances;

see Bekker and van der Ploeg (2005) and van Hasselt (2000). This makes estimation

of the asymptotic variance simpler for HFUL than for LIML. It appears that the the

jackknife form of the numerator has this effect on HFUL. Deleting the own observation

terms in effect removes moment conditions that are based on squared residuals. Bekker

and van der Ploeg (2005) also found that the limiting distribution of their MM estimator

for dummy instruments and group heteroskedasticity did not depend on third and fourth

moments.

Under homoskedasticity the variance of V ar((εi, U
0
i)) will not depend on i (e.g. so

[15]



that σ2i = σ2). Then, γn = E[Xiεi]/σ
2 = γ and E[Ũiεi] = E[Uiεi]− γσ2 = 0, so that

ΣP = σ2H̃P , H̃P = lim
n−→∞

nX
i=1

(1− Pii)
2ziz

0
i/n,Ψ = σ2E[ŨjŨ

0
j](1− lim

n−→∞

nX
i=1

P 2
ii/K).

Focusing on Case I, letting Γ = σ2S0E[ŨiŨ
0
i ]S

0
0, the asymptotic variance of HLIM is then

V = σ2H−1
P H̃PH

−1
P + lim

n−→∞
(1−

nX
i=1

P 2
ii/K)H

−1
p ΓH−1

P .

For the variance of LIML, assume that third and fourth moments obey the same restric-

tions that they do under normality. Then from Hansen, Hausman, and Newey (2008),

for H = limn−→∞
Pn

i=1 ziz
0
i/n and τ = limn−→∞K/n, the asymptotic variance of LIML

is

V ∗ = σ2H−1 + (1− τ)−1H−1ΓH−1.

With many weak instruments, where τ = 0 and maxi≤n Pii −→ 0, we will have

HP = H̃P = H and limn−→∞
P

i P
2
ii/K −→ 0, so that the asymptotic variances of HLIM

and LIML are the same and equal to σ2H−1+H−1ΓH−1. This case is most important in

practical applications, where K is usually very small relative to n. In such cases we would

expect from the asymptotic approximation to find that the variance of LIML and HLIM

are very similar. Also, the JIV estimators will be inefficient relative to LIML and HLIM.

As shown in Chao and Swanson (2004), under many weak instruments the asymptotic

variance of JIV is

VJIV = σ2H−1 +H−1S0(σ
2E[UiU

0
i ] +E[Uiεi]E[εiU

0
i ])S

0
0H

−1,

which is larger than the asymptotic variance of HLIM because E[UiU
0
i ] ≥ E[ŨiŨ

0
i ].

In the many instruments case, where K and μ2n grow as fast as n, it turns out that

we cannot rank the asymptotic variances of LIML and HLIM. To show this, consider

an example where p = 1, zi alternates between −z̄ and z̄ for z̄ 6= 0, Sn =
√
n (so

that Υi = zi), and zi is included among the elements of Zi. Then, for Ω̃ = E[Ũ2
i ] and

κ = limn−→∞
Pn

i=1 P
2
ii/K we find that

V − V ∗ =
σ2

z̄2(1− τ)2
(τκ− τ 2)

Ã
1− Ω̃

z̄2

!
.

[16]



Since τκ− τ 2 is the limit of the sample variance of Pii, which we assume to be positive,

V ≥ V ∗ if and only if z̄2 ≥ Ω̃. Here, z̄2 is the limit of the sample variance of zi. Thus,

the asymptotic variance ranking can go either way depending on whether the sample

variance of zi is bigger than the variance of Ũi. In applications where the sample size is

large relative to the number of instruments, these efficiency differences will tend to be

quite small, because Pii is small.

For homoskedastic, non-Gaussian disturbances, it is also interesting to note that the

asymptotic variance of HLIM does not depend on third and fourth moments of the

disturbances, while that of LIML does (see Bekker and van der Ploeg (2005) and van

Hasselt (2000)). This makes estimation of the asymptotic variance simpler for HLIM

than for LIML.

It remains to establish the consistency of the asymptotic variance estimator, and to

show that confidence intervals can be formed for linear combinations of the coefficients

in the usual way. The following theorem accomplishes this, under additional conditions

on zi.

Theorem 3: If Assumptions 1-6 are satisfied, and α̂ = α̃ + Op(1/T ) or δ̂ is HLIM

or HFUL, there exists a C with kzik ≤ C for all i, and there exists a πn, such that

maxi≤n kzi − πnZik −→ 0, then in Case I, S0nV̂ Sn
p−→ ΛI and in Case II, μ

2
nS

0
nV̂ Sn/K

p−→

ΛII.. Also, if c
0S00ΛIS0c 6= 0 in Case I or c0S̄00ΛII S̄0c 6= 0 in Case II, then

c0(δ̂ − δ0)p
c0V̂ c

d−→ N(0, 1).

This result allows us to form confidence intervals and test statistics for a single linear

combination of parameters in the usual way.
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5 Existence of Moments of HFUL

In giving some of the results and proofs below, we find it convenient to write the model

in terms of its restricted reduced form specification, i.e.

y = Υδ0 + v,

X = Υ+ U,

or

X = Υ∆+ V

where X =
£
y X

¤
, ∆ =

£
δ0 IG

¤
, and V =

£
v U

¤
. The following notations

are also used in the proofs below. Let U =
£
ε U

¤
be the matrix of structural form

disturbances, then for the restricted reduced form to be compatible with the structural

form of the model discussed in section 2, we must have

ε = V δ∆,0, U = V F2, (5.4)

with δ∆,0 =
¡
1 −δ00

¢0
and F2 =

£
0 IG

¤0
; or, more succinctly,

U = V D−1, (5.5)

where

D =

µ
1 0
δ0 IG

¶
.

Moreover, let V
0
i be the i

th row of V , and we take

Ξi := E
³
V iV

0
i

´
= D0ΩiD, (5.6)

where Ωi = V ar
¡
(εi, U

0
i)
0¢.

Here let IA denote the indicator function of the set A; let λmax (B) and λmin (B)

denote, respectively, the minimal and maximal eigenvalue of the matrix B; and let k·k

denote the Euclidean norm, or the Frobenius norm when applied to matrices so that

kAk =
p
tr {A0A}. Also, the notation an ∼ bn means that limn→∞ (an/bn) = c for some

[18]



constant c 6= 0. In addition, M, T and CS denote, respectively, Markov’s inequality, the

Triangle inequality and the Cauchy-Schwarz inequality.

Assumption 7 K = O (na) for some real constant a such that 0 ≤ a ≤ 1, if a = 1,

then n − K → ∞ as n → ∞, and for all n sufficiently large, there exists a positive

constant CP such that Pii ≤ CP (K/n) < 1 (i = 1, ..., n). (b) μ2n ∼ nb for some real

constant b such that a/2 < b ≤ 1. (c) If K is fixed then zi = πZi (d) δ0 ∈ D ⊂ RG, where

D is bounded. (e) λmax
³eS0 eS´ is bounded.

Next, define

ϕ (a, b) =
a ∨ (1− 5ψ (a, b)) /2

ψ (a, b)
I
½
a

2
< b ≤ 1

2

¾
+

a ∨ (1− 5 (2b− a)) /2©
(2b− a) ∧ 1

2

ª I
½
1

2
< b ≤ 1

¾
,

(5.7)

where

ψ (a, b) = 2b− a− (b− a)+

with (b− a)+ = (b− a) ∨ 0 and where a and b are as specified in Assumptions 7. Here,

x ∨ y = max (x, y) and x ∧ y = min (x, y).

Assumption 8: Let p be a positive integer and η a positive constant and define

q = (1 + η) [2G+ 1 + ϕ (a, b)] .

λmin
³
1
n

Xn

i=1
V ar(εi, V

0
i )
´
is bounded away from zero for n sufficiently large and there

is eC > 0 such that E[
°°V i

°°2pq] ≤ eC and
Xn

i=1
kzik2pq /n ≤ eC.

Proving the existence of moments of HFUL requires showing the existence of certain

inverse moments of det (X 0
∗MX∗/n), where X∗ =

£
ε X

¤
. That is, we need to show

under more primitive conditions that there exists a constant C such that

E [det (X 0
∗MX∗/n)]

−ρ ≤ C <∞ for some ρ > 0.

To do this, we need to put conditions on the joint data density in some neighborhood of

the set of points where det (X 0
∗MX∗/n) = 0. This is most conveniently done if we change

variables in the following way:

[19]



Define HZ = Z (Z 0Z)−1/2 ∈ VK,n and partition

HZ =

Ã
Z1· (Z

0Z)−1/2

Z2· (Z
0Z)−1/2

!
=

⎛⎝ HZ,1
K×K
HZ,2

(n−K)×K

⎞⎠ , (say).

Now, define

H⊥
Z =

∙
−
¡
H 0

Z,1

¢−1
H 0

Z,2

In−K

¸ h
In−K +HZ,2

¡
H 0

Z,1HZ,1

¢−1
H 0

Z,2

i−1/2
=

∙
− (Z 01·)

−1 Z 02·
In−K

¸ h
In−K + Z2· (Z

0
1·Z1·)

−1
Z 02·

i−1/2
.

Note that the implicit assumption that HZ,1 is non-singular is really without loss of

generality since rank (Z) = K by Assumption 1; and, hence, the invertibility of Z1· (and,

thus, HZ,1) can always be achieved, if necessary, by a repermutation of the rows of Z.

Note also that by construction

P = HZH
0
Z , M = H⊥

ZH
⊥0
Z , and

¡
HZ H⊥

Z

¢
∈ O (n) ,

from which we have

X 0
∗MX∗
n

=
X 0
∗H

⊥
ZH

⊥0
Z X∗

n
=W 0W, (5.8)

where W = n−1/2H⊥0
Z X∗

2. Let fn (W ) denote the joint probability density function of

W . Also, let L = G + 1, and write W = (w1, .., wL) and fn (W ) = fn (w1, .., wL). We

give below a transformation of this joint density factorized into a product of conditional

2For notational simplicity, we shall suppress the dependence of W on n.
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and marginal densities. Consider the joint density factorization

fn (w1, .., wL)
LY
c=1

(dwc)

= gn (h1) (dh1) gn (r1| s1) [r1](n−K−1) dr1

×gn
¡
q⊥2 |s2,1

¢ ¡
dq⊥2

¢
gn
¡et2|s2,2¢ ¡1− et22¢(n−K−3)/2 det2gn (r2|s2,3) [r2](n−K−1) dr2

×
LY
c=3

gn
¡
qc, q

⊥
c | sc,1

¢
(dqc)

¡
dq⊥c

¢
×

LY
c=3

gn (tc|sc,2) tc−2c

¡
1− t2c

¢(n−K−c−1)/2
dtc

×
LY
c=3

gn (rc|sc,3) [rc](n−K−1) drc a.e. (5.9)

where

s1 = h1,

s2,1 = (r1, s
0
1)
0
, s2,2 =

¡
q⊥02 , s02,1

¢0
, s2,3 =

¡et2, s02,2¢0
sc,1 =

¡
rc−1, s

0
c−1,3

¢0
, sc,2 =

¡
q0c, q

⊥0
c , s0c,1

¢0
, sc,3 =

¡
tc, s

0
c,2

¢0
for c = 3, ...., L.(5.10)

Expression (5.9) has been constructed via a series of recursive polar decompositions

performed on the columns of W and defined by the equations:

wc = hcrc , rc = (w
0
cwc)

1/2
> 0 a.s. for c = 1, ..., L;

h1 =
w1

(w01w1)
1/2
∈ V1,n−K , h2 = h1et2 + F (h1) q

⊥
2

¡
1− et22¢1/2 ,

hc = H[1,c−1]qctc + F[1,c−1]q
⊥
c

¡
1− t2c

¢1/2
for c = 3, ..., L,

where

et2 = h01h2, q⊥2 =
F (h1)

0 h2¡
h02F (h1)F (h1)

0 h2
¢1/2 ∈ V1,n−K−1,

tc =
¡
h0cH[1,c−1]H

0
[1,c−1]hc

¢1/2
, qc =

H 0
[1,c−1]hc³

h0cH[1,c−1]H 0
[1,c−1]hc

´1/2 ∈ V1,c−1,

q⊥c =
F 0
[1,c−1]hc³

h0cF[1,c−1]F
0
[1,c−1]hc

´1/2 ∈ V1,n−K−c+1 for c = 3, ..., L;
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where F (h1) is an (n−K)×(n−K − 1) matrix chosen so that
£
h1 F (h1)

¤
∈ O (n−K);

and where H[1,c−1] = H [1,c−1]
¡
H 0
[1,c−1]H [1,c−1]

¢1/2
with H [1,c−1] =

£
h1 h2 · · · hc−1

¤
and F[1,c−1] is an (n−K)× (n−K − c+ 1) matrix chosen so that

£
H[1,c−1] F[1,c−1]

¤
∈

O (n−K) for c = 3, ..., L. Here, Vk,m denotes the Stiefel manifold, so that Vk,m =

{X (m× k) : X 0X = Ik}, i.e., Vk,m is the set (or space) of m × k matrices such that

X 0X = Ik; and O (n−K) denotes the orthogonal group of (n−K) × (n−K) or-

thogonal matrices. In addition, note that under the definition above −1 < et2 < 1 and

0 < tc < 1 for c = 3, ..., L.

A detailed derivation of expression (5.9) is long, and so we have not included it in

this paper. It can be found on John Chao’s webpage at

http://econweb.umd.edu/˜chao/Research/research.html.

We note that a main reason for transforming the joint density in this way is that, under

the new representation, points where det (X 0
∗MX∗/n) = 0 have now revealed themselves

as poles in uni-dimensional integrals, so that it becomes easier to see what additional

conditions are needed for the existence of moments and how to specify them. These

conditions are stated below.

Assumption 9: For each finite n, let W = (w1, .., wL) have density fn (w1, .., wL) with

respect to the Lebesgue measure, and let this density be transformed and factorized into

the form given by expression (5.9). Suppose that there exist a positive integer N , some

real number � with 0 < � ≤ 1, and a positive constant C� such that for all n sufficiently

large such that n−K ≥ N + L+ 4p (1 + η) /η, the following conditions hold

(i)

gn (r1| s1) (r1)(n−K−4p[1+η]/η−1) ≤ C� <∞ a.s. Ps1

for all r1 ∈ [0, �);
(ii)

gn (rc| sc,3) (rc)(n−K−4p[1+η]/η−1) ≤ C� <∞ a.s. Psc,3

for all rc ∈ [0, �) and c = 2, ..., L;
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(iii)

gn
¡et2| s2,2¢ ¡1− et22¢(n−K−4p[1+η]/η−3)/2 ≤ C� <∞ a.s. Ps2,2

for all et2 ∈ [−1,−1 + �) ∪ (1− �, 1].

(iv)

gn (tc| sc,2) tc−2c

¡
1− t2c

¢(n−K−c−4p[1+η]/η−1)/2 ≤ C� <∞ a.s. Psc,2

for all tc ∈ (1− �, 1] and c = 3, ..., L.

Assumption 8 specifies the moment condition on the error process
©
V i

ª
as dependent

on the number of endogenous regressors G, instrument weakness as parameterized by b,

and an upper bound on the rate at which the number of instrument grows, as parameter-

ized by a. Although the function ϕ (a, b) which enters into the moment condition seems

complicated, it actually depends on a and b in an intuitive way, so that everything else

being equal, more stringent moment conditions are needed in cases with weaker instru-

ments and/or faster growing K. More stringent moment conditions are also needed in

situations with a larger number of endogenous regressors.

To get more intuition about Assumption 8, consider the following two special cases.

First, consider the conventional case where the instruments are strong and the number

of instruments is fixed, so that a = 0 and b = 1. In this case, it is easy to see that

ϕ (a, b) = ϕ (0, 1) = 0, and Assumption 8 requires finite moments up to the order

2pq = 2p [2G+ 1] (1 + η) .

If we further consider the case with one endogenous regressor (G = 1) and where η can be

taken to be small; then, Assumption 8 requires a bit more than a sixth moment condition

(on the errors) for the existence of the first moment of HFUL and a bit more than a

twelfth moment condition for the existence of the second moment. Next, consider the

many weak instrument case where a = 1/2 and a/2 = 1/4 < b ≤ 1/2. In this case, note

that since b ≤ a, we have

ψ (a, b) = ψ (1/2, b) = 2b− 1/2,
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and

ϕ (a, b) = ϕ (1/2, b) =
1

4b− 1 for b ∈ (1/4, 1/2] ,

so that 1 ≤ ϕ (1/2, b) <∞ and ϕ (1/2, b) is a decreasing function of b. In particular, note

that the strength of the moment condition required grows without bound as b approaches

1/4.

The specification of η involves a trade-off in the stringency of the conditions. If η is

taken to be small, then weaker moment conditions are assumed on the error process, but

a large sample size n may be needed in order for Assumption 9 to hold and vice versa if

η is taken to be large.

Theorem 4: If Assumptions 1-4, 7, 8, and 9 are satisfied for some positive p. then

there exists a positive constant C such that

E
h°°°bδHFUL

°°°pi ≤ C <∞

for n sufficiently large.

A proof of this theorem can be found on John Chao’s webpage at

http://econweb.umd.edu/˜chao/Research/research.html.

6 Monte Carlo Results

In this Monte Carlo simulation, we provide evidence concerning the finite sample behavior

of HLIM and HFUL. The model that we consider is

yi = δ10 + δ20x2i + εi, x2i = πz1i + U2i

where zi1 ∼ N(0, 1) and U2i ∼ N(0, 1). The ith instrument observation is

Z 0i = (1, z1i, z
2
1i, z

3
1i, z

4
1i, z1iDi1, ..., z1iDi,K−5),

where Dik ∈ {0, 1}, Pr(Dik = 1) = 1/2, and zi1 ∼ N(0, 1). Thus, the instruments consist

of powers of a standard normal up to the fourth power plus interactions with dummy
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variables. Only z1 affects the reduced form, so that adding the other instruments does not

improve asymptotic efficiency of HFUL, though the powers of zi1 do help with asymptotic

efficiency of the CUE.

The structural disturbance, ε, is allowed to be heteroskedastic, being given by

ε = ρU2 +

s
1− ρ2

φ2 + (0.86)4
(φv1 + 0.86v2), v1 ∼ N(0, z21), v2 ∼ N(0, (0.86)2),

where v1 and v2 are independent of U2. This is a design that will lead to LIML being

inconsistent with many instruments. Here, E[Xiεi] is constant and σ
2
i is quadratic in zi1,

so that γi = (C1 + C2zi1 + C3z
2
i1)
−1A, for a constant vector A and constants C1, C2, C3.

In this case, Pii will be correlated with γi = E[Xiεi]/σ
2
i so that LIML is not consistent.

We report properties of estimators and t-ratios for δ2. We set n = 800 and ρ = 0.3

throughout and let the number of instrumental variables be K = 2, 30. For K = 2 the

instruments are (1, zi). We choose π so that the concentration parameter is nπ
2 = μ2 =

8, 32. We also ran experiments with K = 10 and μ2 = 16. We also choose φ so that the

R-squared for the regression of ε2 on the instruments is 0, 0.1, or 0.2.

Below, we report results on median bias, the range between the .05 and .95 quantiles,

and nominal .05 rejection frequencies for a Wald test on δ2, for LIML, HLIM, Fuller

(1977), HFUL (C = 1), JIVE, and the CUE. Interquartile range results were similar. We

find that under homoskedasticity, HFUL is much less dispersed than LIML but slightly

more biased. Under heteroskedasticity, HFUL is much less biased and also much less

dispersed than LIML. Thus, we find that heteroskedasticity can bias LIML. We also find

that the dispersion of LIML is substantially larger than HFUL. Thus we find a lower bias

for HFUL under heteroskedasticity and many instruments, as predicted by the theory,

as well as substantially lower dispersion, which though not predicted by the theory may

be important in practice.

In addition in Tables 3 and 6 we find that the rejection frequencies for HFUL are

quite close to their nominal values, being closer than all the rest throughout much of the

tables. Thus, the standard errors we have given work very well in accounting for many

instruments and heteroskedasticity.
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Table One: Median Bias; R2
ε2|z21

= 0

μ2 K LIML HLIM FULL1 HFUL JIV E CUE

8 2 0.005 0.005 0.042 0.043 −0.034 0.005
8 10 0.024 0.023 0.057 0.057 0.053 0.025
8 30 0.065 0.065 0.086 0.091 0.164 0.071

32 2 0.002 0.002 0.011 0.011 −0.018 0.002
32 10 0.002 0.001 0.011 0.011 −0.019 0.002
32 30 0.003 0.002 0.013 0.013 −0.014 0.006

***Results based on 20,000 simulations.

Table 2: Nine Dec. Range: .05 to .95 R2
ε2|z21

= 0

μ2 K LIML HLIM FULL1 HFUL JIV E CUE

8 2 1.470 1.466 1.072 1.073 3.114 1.470
8 10 2.852 2.934 1.657 1.644 5.098 3.101
8 30 5.036 5.179 2.421 2.364 6.787 6.336

32 2 0.616 0.616 0.590 0.589 0.679 0.616
32 10 0.715 0.716 0.679 0.680 0.816 0.770
32 30 0.961 0.985 0.901 0.913 1.200 1.156

***Results based on 20,000 simulations.

Table 3: .05 Rejection Frequencies; R2
ε2|z21

= 0

μ2 K LIML HLIM FULL1 HFUL JIV E CUE

8 2 .025 .026 .021 .034 .051 .012
8 10 .035 .037 .029 .044 .063 .027
8 30 .045 .049 .040 .054 .068 .051

32 2 .041 .042 .037 .044 .038 .030
32 10 .041 .042 .038 .044 .046 .041
32 30 .042 .047 .039 .050 .057 .062

***Results based on 20,000 simulations.

Table 4: Median Bias R2
ε2|z21

= .2

μ2 K LIML HLIM FULL1 HFUL JIV E CUE

8 2 −0.001 0.050 0.041 0.078 −0.031 −0.001
8 10 −0.623 0.094 −0.349 0.113 0.039 0.003
8 30 −1.871 0.134 −0.937 0.146 0.148 −0.034
32 2 −0.001 0.011 0.008 0.020 −0.021 −0.001
32 10 −0.220 0.015 −0.192 0.024 −0.021 0.000
32 30 −1.038 0.016 −0.846 0.027 −0.016 −0.017
***Results based on 20,000 simulations.
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Table 5: Nine Dec. Range: .05 to .95 R2
ε2|z21

= .2

μ2 K LIML HLIM FULL1 HFUL JIV E CUE

8 2 2.219 1.868 1.675 1.494 4.381 2.219
8 10 26.169 5.611 4.776 2.664 7.781 16.218
8 30 60.512 8.191 7.145 3.332 9.975 1.5E+012

32 2 0.941 0.901 0.903 0.868 1.029 0.941
32 10 3.365 1.226 2.429 1.134 1.206 1.011
32 30 18.357 1.815 5.424 1.571 1.678 3.563

***Results based on 20,000 simulations.

Table 6: .05 Rejection Frequecies; R2
ε2|z21

= .2

μ2 K LIML HLIM FULL1 HFUL JIV E CUE

8 2 .097 .019 .075 .023 .026 .008
8 10 .065 .037 .080 .041 .036 .043
8 30 .059 .051 .118 .055 .046 .094

32 2 .177 .040 .162 .040 .039 .024
32 10 .146 .042 .120 .044 .033 .030
32 30 .128 .049 .107 .051 .039 .073

***Results based on 20,000 simulations.

7 Conclusion

We have considered the situation of many instruments with heteroskedastic data. In this

situation both 2SLS and LIML are inconsistent. We have proposed two new estimators,

HLIML and HFUL, which are consistent in this situation. We derive the asymptotic

normal distributions for both estimators with many instruments and many weak instru-

ment sequences. We find the variances of the asymptotic distributions take a convenient

form, which are straightforward to estimate consistently. A problem with the HLIML

(and LIML) estimator is the wide dispersion caused by the “moments problem.” We

demonstrate that HFUL has finite sample moments so that the moments problem does

not exist.

In Monte Carlo experiments we find these properties hold. With heteroscedasticity

and many instruments we find that both LIML and Fuller have significant median bias

(Table 4). We find that HLIM, HFUL, JIVE and CUE do not have this median bias.

However, HLIM, JIVE and CUE all suffer from very large dispersion arising from the
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moments problem (Table 5). Indeed, the nine decile range for CUE exceeds 1012! The

dispersion of the HFUL estimate is much less than these alternative consistent estima-

tors. Thus, we recommend that HFUL be used in the many instruments situation when

heteroscedasticity is present, which is the common situation in microeconometrics.

8 Appendix: Proofs of Consistency and Asymptotic

Normality

Throughout, let C denote a generic positive constant that may be different in different

uses and let M, CS, and T denote the conditional Markov inequality, the Cauchy-Schwartz

inequality, and the Triangle inequality respectively. The first Lemma is Lemma A0 from

Hansen, Hausman, and Newey (2008).

Lemma A0: If Assumption 2 is satisfied and
°°°S0n(δ̂ − δ0)/μn

°°°2 /µ1 + °°°δ̂°°°2¶ p−→

0 then
°°°S0n(δ̂ − δ0)/μn

°°° p−→ 0.

We next give a result from Chao et al. (2007) that is used in the proof of consistency.

Lemma A1 (Lemma A1 of Chao et al., 2009): If (Wi, Yi), (i = 1, ..., n) are in-

dependent, Wi and Yi are scalars, and P is symmetric, idempotent of rank K then for w̄ =

E[(W1, ...,Wn)
0], ȳ = E[(Y1, ..., Yn)

0], σ̄Wn = maxi≤n V ar(Wi)
1/2, σ̄Y n = maxi≤n V ar(Yi)

1/2,X
i6=j

PijWiYj =
X
i6=j

Pijw̄iȳj +Op(K
1/2σ̄Wnσ̄Y n + σ̄Wn

p
ȳ0ȳ + σ̄Y n

√
w̄0w̄).

For the next result let S̄n = diag(μn, Sn), X̃ = [ε,X]S̄−10n , and Hn =
Pn

i=1(1 −

Pii)ziz
0
i/n.

Lemma A2: If Assumptions 1-4 are satisfied and
√
K/μ2n −→ 0 thenX

i6=j
X̃iPijX̃

0
j = diag(0,Hn) + op(1).

Proof: Note that

X̃i =

µ
μ−1n εi
S−1n Xi

¶
=

µ
0

zi/
√
n

¶
+

µ
μ−1n εi
S−1n Ui

¶
.
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Since kS−1n k ≤ Cμ−1n we have V ar(X̃ik) ≤ Cμ−2n for any element X̃ik of X̃i. Then applying

Lemma A1 to each element of
P

i6=j X̃iPijX̃
0
j givesX

i6=j
X̃iPijX̃

0
j = diag(0,

X
i6=j

ziPijz
0
j/n) +Op(K

1/2/μ2n + μ−1n (
X
i

kzik2 /n)1/2)

= diag(0,
X
i6=j

ziPijz
0
j/n) + op(1).

Also, note that

Hn −
X
i6=j

ziPijz
0
j/n =

X
i

ziz
0
i/n−

X
i

Piiziz
0
i/n−

X
i6=j

ziPijz
0
j/n = z0(I − P )z/n

= (z − Zπ0Kn)
0
(I − P ) (z − Zπ0Kn) /n ≤ (z − Zπ0Kn)

0
(z − Zπ0Kn) /n

≤ IG
X
i

kzi − πKnZik2 /n −→ 0,

where the third equality follows by PZ = Z, the first inequality by I − P idempotent,

and the last inequality by A ≤ tr(A)I for any positive semi-definite (p.s.d.) matrix A.

Since this equation shows that Hn −
P

i6=j ziPijz
0
j/n is p.s.d. and is less than or equal to

another p.s.d. matrix that converges to zero it follows that
P

i6=j ziPijz
0
j/n = Hn+ op(1).

The conclusion follows by T . Q.E.D.

In what follows it is useful to prove directly that the HLIM estimator δ̃ satisfies

S0n(δ̃ − δ0)/μn
p−→ 0.

Lemma A3: If Assumptions 1-4 are satisfied then S0n(δ̃ − δ0)/μn
p−→ 0.

Proof: Let Ῡ = [0,Υ], Ū = [ε, U ], X̄ = [y,X], so that X̄ = (Ῡ+ Ū)D for

D =

∙
1 0
δ0 I

¸
.

Let B̂ = X̄ 0X̄/n. Note that kSn/
√
nk ≤ C and by standard calculations z0U/n

p−→ 0.

Then °°Ῡ0Ū/n
°° = °°¡Sn/√n¢ z0U/n°° ≤ C kz0U/nk p−→ 0.

Let Ω̄n =
Pn

i=1E[ŪiŪ
0
i ]/n = diag(

Pn
i=1Ω

∗
i /n, 0) ≥ Cdiag(IG2+1, 0) by Assumption 3,

where G2 + 1 is the dimension of number of included endogenous variables. By M we
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have Ū 0Ū/n− Ω̄n
p−→ 0, so it follows that w.p.a.1.

B̂ = (Ū 0Ū + Ῡ0Ū + Ū 0Ῡ+ Ῡ0Ῡ)/n = Ω̄n + Ῡ0Ῡ/n+ op(1) ≥ Cdiag(IG−G2+1, 0).

Since Ω̄n + Ῡ0Ῡ/n is bounded, it follows that w.p.a.1,

C ≤ (1,−δ0)B̂(1,−δ0)0 = (y −Xδ)0(y −Xδ)/n ≤ C k(1,−δ0)k2 = C(1 + kδk2).

Next, as defined preceding Lemma A2 let S̄n = diag(μn, Sn) and X̃ = [ε,X]S̄−10n .

Note that by Pii ≤ C < 1 and uniform nonsingularity of
Pn

i=1 ziz
0
i/n we have Hn ≥

(1− C)
Pn

i=1 ziz
0
i/n ≥ CIG. Then by Lemma A2, w.p.a.1.

Â
def
=
X
i6=j

PijX̃iX̃
0
j ≥ Cdiag(0, IG),

Note that S̄0nD(1,−δ0)0 = (μn, (δ0 − δ)0Sn)
0 and X̄i = D0S̄nX̃i. Then w.p.a.1 for all δ

μ−2n
X
i6=j

Pij(yi −X 0
iδ)(yj −X 0

jδ) = μ−2n (1,−δ0)
ÃX

i6=j
PijX̄iX̄

0
j

!
(1,−δ0)0

= μ−2n (1,−δ0)D0S̄nÂS̄
0
nD(1,−δ0)0 ≥ C kS0n(δ − δ0)/μnk2 .

Let Q̂(δ) = (n/μ2n)
P

i6=j(yi−X 0
iδ)Pij(yj−X 0

jδ)/(y−Xδ)0(y−Xδ). Then by the upper

left element of the conclusion of Lemma A2, μ−2n
P

i6=j εiPijεj
p−→ 0. Then w.p.a.1¯̄̄

Q̂(δ0)
¯̄̄
=

¯̄̄̄
¯μ−2n X

i6=j
εiPijεj/

nX
i=1

ε2i /n

¯̄̄̄
¯ p−→ 0.

Since δ̂ = argminδ Q̂(δ), we have Q̂(δ̂) ≤ Q̂(δ0).Therefore w.p.a.1, by (y − Xδ)0(y −

Xδ)/n ≤ C(1 + kδk2), it follows that

0 ≤

°°°S0n(δ̂ − δ0)/μn

°°°2
1 +

°°°δ̂°°°2 ≤ CQ̂(δ̂) ≤ CQ̂(δ0)
p−→ 0,

implying
°°°S0n(δ̂ − δ0)/μn

°°°2 /µ1 + °°°δ̂°°°2¶ p−→ 0. Lemma A0 gives the conclusion. Q.E.D.

Lemma A4: If Assumptions 1-4 are satisfied, α̂ = op(μ
2
n/n), and S

0
n(δ̂−δ0)/μn

p−→ 0

then for Hn =
Pn

i=1(1− Pii)ziz
0
i/n,

S−1n

ÃX
i6=j

XiPijX
0
j − α̂X 0X

!
S−10n = Hn + op(1), S

−1
n (
X
i6=j

XiPij ε̂j − α̂X 0ε̂)/μn
p−→ 0.
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Proof: By M and standard arguments X 0X = Op(n) and X 0ε̂ = Op(n). Therefore, by

kS−1n k = O(μ−1n ),

α̂S−1n X 0XS−10n = op(μ
2
n/n)Op(n/μ

2
n)

p−→ 0, α̂S−1n X 0ε̂/μn = op(μ
2
n/n)Op(n/μ

2
n)

p−→ 0.

Lemma A2 (lower right hand block) and T then give the first conclusion. By Lemma A2

(off diagonal) we have S−1n
P

i6=j XiPijεj/μn
p−→ 0, so that

S−1n
X
i6=j

XiPij ε̂j/μn = op(1)−
Ã
S−1n

X
i6=j

XiPijX
0
jS
−10
n

!
S0n(δ̂ − δ0)/μn

p−→ 0.Q.E.D.

Lemma A5: If Assumptions 1 - 4 are satisfied and S0n(δ̂−δ0)/μn
p−→ 0 then

P
i6=j ε̂iPij ε̂j/ε̂

0ε̂ =

op(μ
2
n/n).

Proof: Let β̂ = S0n(δ̂ − δ0)/μn and ᾰ =
P

i6=j εiPijεj/ε
0ε = op(μ

2
n/n). Note that

σ̂2ε = ε̂0ε̂/n satisfies 1/σ̂2ε = Op(1) by M. By Lemma A4 with α̂ = ᾰ we have H̃n =

S−1n (
P

i6=j XiPijX
0
j−ᾰX 0X)S−10n = Op(1) andWn = S−1n (

P
i 6=j XiPijεj−ᾰX 0ε)/μn

p−→ 0,

so P
i6=j ε̂iPij ε̂j

ε̂0ε̂
− ᾰ =

1

ε̂0ε̂

ÃX
i6=j

ε̂iPij ε̂j −
X
i6=j

εiPijεj − ᾰ (ε̂0ε̂− ε0ε)

!

=
μ2n
n

1

σ̂2ε

³
β̂0H̃nβ̂ − 2β̂0Wn

´
= op(μ

2
n/n),

so the conclusion follows by T. Q.E.D.

Proof of Theorem 1: First, note that if S0n(δ̂−δ0)/μn
p−→ 0 then by λmin (SnS

0
n/μ

2
n) ≥

λmin
³
S̃S̃0

´
> 0 we have°°°S0n(δ̂ − δ0)/μn

°°° ≥ λmin(SnS
0
n/μ

2
n)
1/2
°°°δ̂ − δ0

°°° ≥ C
°°°δ̂ − δ0

°°° ,
implying δ̂

p−→ δ0. Therefore, it suffices to show that S
0
n(δ̂−δ0)/μn

p−→ 0. For HLIM this

follows from Lemma A3. For HFUL, note that α̃ = Q̂(δ̃) =
P

i6=j ε̃iPij ε̃j/ε̃
0ε̃ = op(μ

2
n/n)

by Lemma A5, so by the formula for HFUL, α̂ = α̃ + Op(1/n) = op(μ
2
n/n). Thus, the

result for HFUL will follow from the most general result for any α̂ with α̂ = op(μ
2
n/n).
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For any such α̂, by Lemma A4 we have

S0n(δ̂ − δ0)/μn = S0n(
X
i6=j

XiPijX
0
j − α̂X 0X)−1

X
i6=j
(XiPijεj − α̂X 0ε) /μn

= [S−1n (
X
i6=j

XiPijX
0
j − α̂X 0X)S−10n ]−1S−1n

X
i6=j
(XiPijεj − α̂X 0ε) /μn

= (Hn + op(1))
−1op(1)

p−→ 0.Q.E.D.

Now we move on to asymptotic normality results. The next result is a central limit

theorem that is proven in Chao et al. (2007).

Lemma A6 (Lemma A2 of Chao et al., 2009): If i) P is a symmetric, idempotent

matrix with rank(P ) = K, Pii ≤ C < 1; ii) (W1n, U1, ε1), ..., (Wnn, Un, εn) are indepen-

dent and Dn =
Pn

i=1E[WinW
0
in] is bounded; iii) E [W

0
in] = 0, E[Ui] = 0, E[εi] = 0 and

there exists a constant C such that E[kUik4] ≤ C, E[ε4i ] ≤ C; iv)
Pn

i=1E[kWink4] −→ 0;

v) K −→ ∞; then for Σ̄n
def
=
P

i6=j P
2
ij

¡
E[UiU

0
i ]E[ε

2
j ] +E[Uiεi]E[εjU

0
j]
¢
/K and for any

sequence of bounded nonzero vectors c1n and c2n such that Ξn = c01nDnc1n+c
0
2nΣ̄nc2n > C,

it follows that

Yn = Ξ−1/2n (
nX
i=1

c01nWin + c02n
X
i6=j

UiPijεj/
√
K)

d−→ N (0, 1) .

Let α̃(δ) =
P

i6=j εi(δ)Pijεj(δ)/ε(δ)
0ε(δ) and

D̂(δ) = −[ε(δ)0ε(δ)/2]∂[
X
i6=j

εi(δ)Pijεj(δ)/]/∂δ =
X
i6=j

XiPijεj(δ)− α̃(δ)X 0ε(δ).

A couple of other intermediate results are also useful.

Lemma A7: If Assumptions 1 - 4 are satisfied and S0n(δ̄ − δ0)/μn
p−→ 0 then

−S−1n [∂D̂(δ̄)/∂δ]S
−10
n = Hn + op(1).

Proof: Let ε̄ = ε(δ̄) = y −Xδ̄, γ̄ = X 0ε̄/ε̄0ε̄, and ᾱ = α̃(δ̄). Then differentiating gives

−∂D̂
∂δ
(δ̄) =

X
i6=j

XiPijX
0
j − ᾱX 0X − γ̄

X
i6=j

ε̄iPijX
0
j −

X
i6=j

XiPij ε̄j γ̄
0 + 2(ε̄0ε̄)ᾱγ̄γ̄0

=
X
i6=j

XiPijX
0
j − ᾱX 0X + γ̄D̂(δ̄)0 + D̂(δ̄)γ̄0,
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where the second equality follows by D̂(δ̄) =
P

i6=j XiPij ε̄j − (ε̄0ε̄)ᾱγ̄. By Lemma A5 we

have ᾱ = op(μ
2
n/n). By standard arguments, γ̄ = Op(1) so that S

−1
n γ̄ = Op(1/μn). Then

by Lemma A4 and D̂(δ̄) =
P

i6=j XiPij ε̄j − ᾱX 0ε̄

S−1n

ÃX
i6=j

XiPijX
0
j − ᾱX 0X

!
S−10n = Hn + op(1), S

−1
n D̂(δ̄)γ̄0S−10n

p−→ 0,

The conclusion then follows by T. Q.E.D.

Lemma A8: If Assumptions 1-4 are satisfied then for γn =
P

iE[Uiεi]/
P

iE[ε
2
i ] and

Ũi = Ui − γnεi

S−1n D̂(δ0) =
nX
i=1

(1− Pii)ziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj + op(1).

Proof: Note that for W = z0(P − I)ε/
√
n by I − P idempotent and E[εε0] ≤ CIn we

have

E[WW 0] ≤ Cz0(I − P )z/n = C(z − Zπ0Kn)
0(I − P )(z − Zπ0Kn)/n

≤ CIG

nX
i=1

kzi − πKnZik2 /n −→ 0,

so z0(P − I)ε/
√
n = op(1). Also, by M

X 0ε/n =
nX
i=1

E[Xiεi]/n+Op(1/
√
n), ε0ε/n =

nX
i=1

σ2i /n+Op(1/
√
n).

Also, by Assumption 3
Pn

i=1 σ
2
i /n ≥ C > 0. The delta method then gives γ̃ = X 0ε/ε0ε =

γn+Op(1/
√
n). Therefore, it follows by Lemma A1 and D̂(δ0) =

P
i6=j XiPijεj−ε0εα̃(δ0)γ̃

that

S−1n D̂(δ0) =
X
i6=j

ziPijεj/
√
n+ S−1n

X
i6=j

ŨiPijεi − S−1n (γ̃ − γn)ε
0εα̃(δ0)

= z0Pε/
√
n−

X
i

Piiziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj +Op(1/
√
nμn)op(μ

2
n/n)

=
nX
i=1

(1− Pii)ziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj + op(1).Q.E.D.
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Proof of Theorem 2: Consider first the case where δ̂ is HLIM. Then by Theorem

1, δ̂
p−→ δ0. First-order conditions for LIML are D̂(δ̂) = 0. Expanding gives

0 = D̂(δ0) +
∂D̂

∂δ

¡
δ̄
¢
(δ̂ − δ0),

where δ̄ lies on the line joining δ̂ and δ0 and hence β̄ = μ−1n S0n(δ̄ − δ0)
p−→ 0. Then by

Lemma A7, H̄n = S−1n [∂D̂(δ̄)/∂δ]S
−10
n = HP + op(1). Then ∂D̂(δ̄)/∂δ is nonsingular

w.p.a.1 and solving gives

S0n(δ̂ − δ) = −S0n[∂D̂(δ̄)/∂δ]−1D̂(δ0) = −H̄−1
n S−1n D̂(δ0).

Next, apply Lemma A6 with Ui = Ũi and

Win = (1− Pii)ziεi/
√
n,

By εi having bounded fourth moment, and Pii ≤ 1,
nX
i=1

E
£
kWink4

¤
≤ C

nX
i=1

kzik4 /n2 −→ 0.

By Assumption 6, we have
Pn

i=1E[WinW
0
in] −→ ΣP . Let Γ = diag (ΣP ,Ψ) and

An =

µ Pn
i=1WinP
i6=j ŨiPijεj/

√
K

¶
.

Consider c such that c0Γc > 0. Then by the conclusion of Lemma A6 we have c0An
d−→

N(0, c0Γc). Also, if c0Γc = 0 then it is straightforward to show that c0An
p−→ 0. Then it

follows by the Cramer-Wold device that

An =

µ Pn
i=1WinP
i6=j ŨiPijεj/

√
K

¶
d−→ N(0,Γ),Γ = diag (ΣP ,Ψ) .

Next, we consider the two cases. Case I) hasK/μ2n bounded. In this case
√
KS−1n −→ S0,

so that

Fn
def
= [I,

√
KS−1n ] −→ F0 = [I, S0], F0ΓF

0
0 = ΣP + S0ΨS

0
0.
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Then by Lemma A8,

S−1n D̂(δ0) = FnAn + op(1)
d−→ N(0,ΣP + S0ΨS

0
0),

S0n(δ̂ − δ0) = −H̄−1
n S−1n D̂(δ0)

d−→ N(0,ΛI).

In case II we have K/μ2n −→∞. Here

(μn/
√
K)Fn −→ F̄0 = [0, S̄0], F̄0ΓF̄

0
0 = S̄0ΨS̄

0
0

and (μn/
√
K)op(1) = op(1). Then by Lemma A8,

(μn/
√
K)S−1n D̂(δ0) = (μn/

√
K)FnAn + op(1)

d−→ N(0, S̄0ΨS̄
0
0),

(μn/
√
K)S0n(δ̂ − δ0) = −H̄−1

n (μn/
√
K)S−1n D̂(δ0)

d−→ N(0,ΛII).Q.E.D.

The next two results are useful for the proof of consistency of the variance estimator

are taken from Chao et al. (2007). Let μ̄Wn = maxi≤n |E[Wi]| and μ̄Y n = maxi≤n |E[Yi]|.

Lemma A9 (Lemma A3 of Chao et al., 2009): If (Wi, Yi), (i = 1, ..., n) are

independent, Wi and Yi are scalars thenX
i6=j

P 2
ijWiYj = E[

X
i6=j

P 2
ijWiYj] +Op(

√
K(σ̄Wnσ̄Y n + σ̄Wnμ̄Y n + μ̄Wnσ̄Y n)).

Lemma A10 (Lemma A4 of Chao et al., 2009): If Wi, Yi, ηi, are indepen-

dent across i with E[Wi] = ai/
√
n, E[Yi] = bi/

√
n, |ai| ≤ C, |bi| ≤ C, E[η2i ] ≤ C,

V ar(Wi) ≤ Cμ−2n , V ar(Yi) ≤ Cμ−2n , there exists πn such that maxi≤n |ai − Z 0iπn| −→ 0,

and
√
K/μ2n −→ 0 then

An = E[
X
i6=j 6=k

WiPikηkPkjYj] = O(1),
X
i6=j 6=k

WiPikηkPkjYj −An
p−→ 0.

Next, recall that ε̂i = Yi −X 0
i δ̂, γ̂ = X 0ε̂/ε̂0ε̂, γn =

P
iE[Xiεi]/

P
i σ

2
i and let

X̆i = S−1n (Xi − γ̂ε̂i) = S−1n X̂i, Ẋi = S−1n (Xi − γnεi),

Σ̆1 =
X
i6=j 6=k

X̆iPikε̂
2
kPkjX̆

0
j, Σ̆2 =

X
i6=j

P 2
ij

³
X̆iX̆

0
iε̂
2
j + X̆iε̂iε̂jX̆

0
j

´
,

Σ̇1 =
X
i6=j 6=k

ẊiPikε
2
kPkjẊ

0
j, Σ̇2 =

X
i6=j

P 2
ij

³
ẊiẊ

0
iε
2
j + ẊiεiεjẊ

0
j

´
.
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Note that for ∆̂ = S0n(δ̂ − δ0) we have

ε̂i − εi = −X 0
i(δ̂ − δ0) = −X 0

iS
−10
n ∆̂,

ε̂2i − ε2i = −2εiX 0
i(δ̂ − δ0) +

h
X 0

i(δ̂ − δ0)
i2
,

X̆i − Ẋi = −S−1n γ̂(ε̂i − εi)− S−1n (γ̂ − γn)εi,

= S−1n γ̂X 0
iS
−10
n ∆̂− S−1n μn(γ̂ − γn)(εi/μn),

X̆iε̂i − Ẋiεi = Xiε̂i − γ̂ε̂2i −Xiεi + γnε
2
i ,

= −XiX
0
i(δ̂ − δ0)− γ̂

n
−2εiX 0

i(δ̂ − δ0) +
h
X 0

i(δ̂ − δ0)
2
io

−(γ̂ − γn)ε
2
i .°°°X̆iX̆

0
i − ẊiẊ

0
i

°°° ≤ °°°X̆i − Ẋi

°°°2 + 2°°°Ẋi

°°°°°°X̆i − Ẋi

°°°
Lemma A11: If the hypotheses of Theorem 3 are satisfied then Σ̆2− Σ̇2 = op(K/μ2n).

Proof: Note first that Sn/
√
n is bounded so by the Cauchy-Schwartz inequality,

kΥik = kSnzi/
√
nk ≤ C. Let di = C+ |εi|+kUik . Note that γ̂−γn

p−→ 0 by standard ar-

guments. Then for Â = (1+kγ̂k)(1+
°°°δ̂°°°) = Op(1), and B̂ = kγ̂ − γnk+

°°°δ̂ − δ0

°°° p−→ 0,

we have

kXik ≤ C + kUik ≤ di, |ε̂i| ≤ |X 0
i(δ0 − δ̂) + εi| ≤ CdiÂ,°°°Ẋi

°°° =
°°S−1n (Xi − γnεi)

°° ≤ Cμ−1n di,
°°°X̆i

°°° = °°S−1n (Xi − γ̂ε̂i)
°° ≤ Cμ−1n diÂ,°°°X̆iX̆

0
i − ẊiẊ

0
i

°°° ≤ ³°°°X̆i

°°°+ °°°Ẋi

°°°´°°°X̆i − Ẋi

°°° ≤ Cμ−2n diÂ kγ̂k kε̂i − εik+ kγ̂ − γnk |εi|

≤ Cμ−2n d2i Â
2B̂,¯̄

ε̂2i − ε2i
¯̄
≤ (|εi|+ |ε̂i|) |ε̂i − εi| ≤ Cd2i ÂB̂,°°°X̆iε̂i − Ẋiεi

°°° =
°°S−1n ¡

Xiε̂i − γ̂ε̂2i −Xiεi + γnε
2
i

¢°°
≤ Cμ−1n

¡
kXik |ε̂i − εi|+ kγ̂k |ε̂2i − ε2i |+

¯̄
ε2i
¯̄
kγ̂ − γnk

¢
≤ Cμ−1n d2i (B̂ + Â2B̂ + B̂) ≤ Cd2i Â

2B̂,°°°X̆iε̂i

°°° ≤ Cμ−1n d2i Â
2,
°°°Ẋiεi

°°° ≤ Cμ−1n d2i .

Also note that

E

"X
i6=j

P 2
ijd

2
id
2
jμ
−2
n

#
≤ Cμ−2n

X
i,j

P 2
ij = Cμ−2n

X
i

Pii = Cμ−2n K.
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so that
P

i6=j P
2
ijd

2
id
2
jμ
−2
n = Op(K/μ2n) by the Markov inequality. Then it follows that°°°°°X

i6=j
P 2
ij

³
X̆iX̆

0
iε̂
2
j − ẊiẊ

0
iε
2
j

´°°°°° ≤ X
i6=j

P 2
ij

µ¯̄
ε̂2j
¯̄ °°°X̆iX̆

0
i − ẊiẊ

0
i

°°°+ °°°Ẋi

°°°2 ¯̄ε̂2j − ε2j
¯̄¶

≤ Cμ−2n
X
i6=j

P 2
ijd

2
id
2
j(Â

4B̂ + ÂB̂) = op
¡
K/μ2n

¢
.

We also have°°°°°X
i6=j

P 2
ij

³
X̆iε̂iε̂jX̆

0
j − ẊiεiεjẊj

´°°°°° ≤ X
i6=j

P 2ij

³°°°X̆iε̂i

°°°°°°X̆j ε̂j − Ẋjεj

°°°+ °°°Ẋjεj

°°°°°°X̆iε̂i − Ẋiεi

°°°´
≤ Cμ−2n

X
i6=j

P 2ijd
2
id
2
j(1 + Â2)Â2B̂ = op

µ
K

μ2n

¶
.

The conclusion then follows by the triangle inequality. Q.E.D.

Lemma A12: If the hypotheses of Theorem 3 are satisfied then Σ̆1− Σ̇1 = op(K/μ2n).

Proof: Note first that

ε̂i − εi = −X 0
i(δ̂ − δ0) = −X 0

iS
−10
n S0n(δ̂ − δ0) = −

¡
zi/
√
n+ S−1n Ui

¢0
∆̂ = −D0

i∆̂,

where Di = zi/
√
n+ S−1n Ui and ∆̂ = S0n(δ̂ − δ0). Also

ε̂2i − ε2i = −2εiX 0
i(δ̂ − δ0) +

h
X 0

i(δ̂ − δ0)
i2
,

X̆i − Ẋi = −γ̂ε̂i + γnεi = S−1n γ̂D0
i∆̂− S−1n μn (γ̂ − γn) εi/μn.

We now have Σ̆1 − Σ̇1 =
P7

r=1 Tr where

T1 =
X
i6=j 6=k

³
X̆i − Ẋi

´
Pik

¡
ε̂2k − ε2k

¢
Pkj

³
X̆j − Ẋj

´0
, T2 =

X
i6=j 6=k

ẊiPik

¡
ε̂2k − ε2k

¢
Pkj

³
X̆j − Ẋj

´0
T3 =

X
i6=j 6=k

³
X̆i − Ẋi

´
Pikε

2
kPkj

³
X̆j − Ẋj

´0
, T4 = T 02, T5 =

X
i6=j 6=k

³
X̆i − Ẋi

´
Pikε

2
kPkjẊ

0
j,

T6 =
X
i6=j 6=k

ẊiPik

¡
ε̂2k − ε2k

¢
PkjẊ

0
j, T7 = T 05.

From the above expression for ε̂2i − ε2i we see that T6 is a sum of terms of the form

B̂
P

i6=j 6=k ẊiPikηiPkjẊ
0
j where B̂

p−→ 0 and ηi is either a component of−2εiXi or ofXiX
0
i.
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By Lemma A10 we have
P

i6=j 6=k ẊiPikηiPkjẊ
0
j = Op(1), so by the triangle inequality

T6
p−→ 0. Also, note that

T5 = S−1n γ̂∆̂0
X
i6=j 6=k

DiPikε
2
kPkjẊ

0
j + S−1n μn (γ̂ − γn)

X
i6=j 6=k

(εi/μn)Pikε
2
kPkjẊ

0
j.

Note that S−1n γ̂∆̂0 p−→ 0, E [Di] = zi/
√
n, V ar(Di) = O(μ−2n ), E[Ẋi] = zi/

√
n, and

V ar(Ẋ) = O(μ−2n ). Then by Lemma A10 it follows that
P

i6=j 6=kDiPikε
2
kPkjẊ

0
j = Op(1)

so that the S−1n γ̂∆̂0P
i6=j 6=kDiPikε

2
kPkjẊ

0
j

p−→ 0. A similar argument applied to the second

term and the triangle inequality then give T5
p−→ 0. Also T7 = T 05

p−→ 0.

Next, analogous arguments apply to T2 and T3, except that there are four terms in

each of them rather than two, and also to T1 except there are eight terms in T1. For

brevity we omit details. Q.E.D.

Lemma A13: If the hypotheses of Theorem 3 are satisfied then

Σ̇2 =
X
i6=j

P 2
ijziz

0
iσ
2
j/n+ S−1n

X
i6=j

P 2
ij

³
E[ŨiŨ

0
i ]σ

2
j +E[Ũiεi]E[εjŨ

0
j]
´
S−10n + op(K/μ2n).

Proof: Note that V ar(ε2i ) ≤ C and μ2n ≤ Cn, so that for uki = e0kS
−1
n Ui,

E[(ẊikẊic)
2] ≤ CE[Ẋ4

ik + Ẋ4
ic] ≤ C

©
z4ik/n

2 +E[u4k] + z4ic/n
2 +E[u4c ]

ª
≤ Cμ−4n ,

E[(Ẋikεi)
2] ≤ CE[(z2ikε

2
i /n+ u2kiε

2
i )] ≤ Cn−1 + Cμ−2n ≤ Cμ−2n .

Also, we have, for Ω̃i = E[ŨiŨ
0
i ],

E[ẊiẊ
0
i] = ziz

0
i/n+ S−1n Ω̃iS

−10
n , E[Ẋiεi] = S−1n E[Ũiεi].

Next let Wi be e
0
jẊiẊ

0
iek for some j and k, so that

E[Wi] = e0jS
−1
n E[ŨiŨ

0
i ]S

−10
n ek + zijzik/n, |E[Wi]| ≤ Cμ−2n .

V ar(Wi) = V ar
©¡
e0jS

−1
n Ui + zij/

√
n
¢ ¡

e0kS
−1
n Ui + zik/

√
n
¢ª

≤ C/μ4n + C/nμ2n ≤ C/μ4n.
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Also let Yi = ε2i . Then
√
K(σ̄Wnσ̄Y n + σ̄Wnμ̄Y n + μ̄Wnσ̄Y n) ≤ CK1/2/μ2n, so applying

Lemma A9 for this Wi and Yi givesX
i 6=j

P 2
ijẊiẊ

0
iε
2
j =

X
i6=j

P 2
ij

³
ziz

0
i/n+ S−1n Ω̃iS

−10
n

´
σ2j +Op(

√
K/μ2n).

It follows similarly from Lemma A9 with Wi and Yi equal to elements of Ẋiεi thatX
i6=j

P 2
ijẊiεiεjẊ

0
j = S−1n

X
i6=j

P 2
ijE[Ũiεi]E[εjŨ

0
j]S

−10
n +Op(

√
K/μ2n).

Also, by K −→∞ we have Op(
√
K/μ2n) = op(K/μ2n). The conclusion then follows by T.

Q.E.D.

Lemma A14: If the hypotheses of Theorem 3 are satisfied then

Σ̇1 =
X
i6=j 6=k

ziPikσ
2
kPkjz

0
j/n+ op(1).

Proof: Apply Lemma A10 with Wi equal to an element of Ẋi, Yj equal to an element of

Ẋj, and ηk = ε2k. Q.E.D.

Proof of Theorem 3: Note that X̄i =
Pn

j=1 PijX̂j,

nX
i=1

(X̄iX̄
0
i − X̂iPiiX̄

0
i − X̄iPiiX̂

0
i)ε̂

2
i

=
nX

i,j,k=1

X̂iPikε̂
2
kPkjX̂

0
j −

nX
i,j=1

X̂iPiiε̂
2
iPijX̂

0
j −

nX
i,j=1

X̂iPij ε̂
2
jPjjX̂

0
j

=
nX

i,j,k=1

X̂iPikε̂
2
kPkjX̂

0
j −

X
i6=j

X̂iPiiε̂
2
iPijX̂

0
j −

X
i6=j

X̂iPij ε̂
2
jPjjX̂

0
j − 2

nX
i=1

X̂iP
2
iiε̂
2
i X̂

0
i

=
nX

i,j,k/∈{i,j}

X̂iPikε̂
2
kPkjX̂

0
j −

nX
i=1

X̂iP
2
iiε̂
2
i X̂

0
i

=
nX

i6=j 6=k
X̂iPikε̂

2
kPkjX̂

0
j +

nX
i6=j

P 2
ijX̂iX̂iε̂

2
j −

nX
i=1

X̂iP
2
iiε̂
2
i X̂

0
i.
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Also, for Z 0i and Z̃ 0i equal to the ith row of Z and Z̃ = Z(Z 0Z)−1 we have

KX
k=1

KX
c=1

Ã
nX
i=1

Z̃ikZ̃icX̂iε̂i

!Ã
nX

j=1

ZjkZjcX̂j ε̂j

!0

=
nX

i,j=1

Ã
KX
k=1

KX
c=1

Z̃ikZjkZ̃icZjc

!
X̂iε̂iε̂jX̂

0
j =

nX
i,j=1

(
KX
k=1

Z̃ikZjk)
2X̂iε̂iε̂jX̂

0
j

=
nX

i,j=1

(Z̃ 0iZj)
2X̂iε̂iε̂jX̂

0
j =

nX
i,j=1

P 2
ijX̂iε̂iε̂jX̂

0
j

Adding this equation to the previous one then gives

Σ̂ =
X
i6=j 6=k

X̂iPikε̂
2
kPkjX̂

0
j +

X
i6=j

P 2ijX̂iX̂
0
iε̂
2
j −

nX
i=1

X̂iP
2
iiε̂
2
i X̂

0
i +

nX
i,j=1

P 2
ijX̂iε̂iε̂jX̂

0
j

=
X
i6=j 6=k

X̂iPikε̂
2
kPkjX̂

0
j +

X
i6=j

P 2ij(X̂iX̂
0
iε̂
2
j + X̂iε̂iε̂jX̂

0
j).

It then follows that S−1n Σ̂S−10n = Σ̆1 + Σ̆2, so that

S0nV̂ Sn = (S
−1
n ĤS−10n )−1S−1n Σ̂S−10n (S−1n ĤS−10n )−1 = (S−1n ĤS−10n )−1(Σ̆1+Σ̆2)(S

−1
n ĤS−10n )−1.

By Lemma A4 we have S−1n ĤS−10n

p−→ HP . Also, note that for z̄i =
P

j Pijzi = e0iPz,

X
i6=j 6=k

ziPikσ
2
kPkjz

0
j/n =

X
i

X
j 6=i

X
k/∈{i,j}

ziPikσ
2
kPkjz

0
j/n

=
X
i

X
j 6=i

ÃX
k

ziPikσ
2
kPkjz

0
j − ziPiiσ

2
iPijz

0
j − ziPijσ

2
jPjjz

0
j

!
/n

= (
X
k

z̄kσ
2
kz̄
0
k −

X
i,k

P 2
ikziz

0
iσ
2
k −

X
i

ziPiiσ
2
i z̄
0
i +
X
i

ziPiiσ
2
iPiiz

0
i

−
X
j

z̄jσ
2
jPjjz

0
j +

X
i

zjPjjσ
2
jPjjz

0
j)/n

=
X
i

σ2i
¡
z̄iz̄

0
i − Piiziz̄

0
i − Piiz̄iz

0
i + P 2

iiziz
0
i

¢
/n−

X
i6=j

P 2
ijziz

0
iσ
2
j/n.

Also, it follows similarly to the proof of Lemma A8 that
P

i kzi − z̄ik2 /n ≤ z0(I −
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P )z/n −→ 0. Then by σ2i and Pii bounded we have°°°°°X
i

σ2i (z̄iz̄
0
i − ziz

0
i)/n

°°°°° ≤ X
i

σ2i (2 kzik kzi − z̄ik+ kzi − z̄ik2)/n

≤ C(
X
i

kzik2 /n)1/2(
X
i

kzi − z̄ik2 /n)1/2 + C
X
i

kzi − z̄ik2 /n −→ 0,°°°°°X
i

σ2iPii(ziz̄
0
i − ziz

0
i)/n

°°°°° ≤ (
X
i

σ4iP
2
ii kzik

2 /n)1/2(
X
i

kzi − z̄ik2 /n)1/2 −→ 0.

It follows thatX
i6=j 6=k

ziPikσ
2
kPkjz

0
j/n =

X
i

σ2i (1− Pii)
2ziz

0
i/n+ o(1)−

X
i6=j

P 2
ijziz

0
iσ
2
j/n

= ΣP −
X
i6=j

P 2ijziz
0
iσ
2
j/n+ o(1).

It then follows by Lemmas A10-A14 and the triangle inequality that

Σ̆1 + Σ̆2 =
X
i6=j 6=k

ziPikσ
2
kPkjz

0
j/n+

X
i6=j

P 2
ijziz

0
iσ
2
j/n

+S−1n
X
i6=j

P 2
ij

³
E[ŨiŨ

0
i ]σ

2
j +E[Ũiεi]E[εjŨ

0
j]
´
S−10n + op(1) + op(K/μ2n)

= ΣP +KS−1n (Ψ+ o(1))S−10n + op(1) + op(K/μ2n)

= ΣP +KS−1n ΨS−10n + op(1) + op(K/μ2n).

Then in case I) we have op(K/μ2n) = op(1) so that

S0nV̂ Sn = H−1 ¡ΣP +KS−1n ΨS−10n

¢
H−1 + op(1) = ΛI + op(1).

In case II) we have (μ2n/K) op(1)
p−→ 0, so that¡

μ2n/K
¢
S0nV̂ Sn = H−1 ¡¡μ2n/K¢ΣP + μ2nS

−1
n ΨS−10n

¢
H−1 + op(1) = ΛII + op(1).

Next, consider case I) and note that S0n(δ̂ − δ0)
d−→ Y ∼ N(0,ΛI), S

0
nV̂ Sn

p−→ ΛI ,

c0
√
KS−10n → c0S00, and c0S00ΛIS0c 6= 0. Then by the continuous mapping and Slutzky

theorems,

c0(δ̂ − δ0)p
c0V̂ c

=
c0S−10n S0n(δ̂ − δ0)q
c0S−10n S0nV̂ SnS

−1
n c

=
c0
√
KS−10n S0n(δ̂ − δ0)q

c0
√
KS−10n S0nV̂ SnS

−1
n

√
Kc

d−→ c0S00Yp
c0S00ΛIS0c

∼ N(0, 1).

[41]



For case II),
³
μn/
√
K
´
S0n(δ̂−δ0)

d−→ Ȳ ∼ N(0,ΛII), (μ
2
n/K)S

0
nV̂ Sn

p−→ ΛII , c
0μnS

−10
n −→

c0S̄00, and c0S̄00ΛII S̄0c 6= 0. Then

c0(δ̂ − δ0)p
c0V̂ c

=
c0S−10n

³
μn/
√
K
´
S0n(δ̂ − δ0)q

c0S−10n (μ2n/K)S
0
nV̂ SnS

−1
n c

=
c0μnS

−10
n

³
μn/
√
K
´
S0n(δ̂ − δ0)q

c0μnS−10n (μ2n/K)S
0
nV̂ SnS

−1
n μnc

d−→ c0S̄00Ȳp
c0S̄00ΛII S̄0c

∼ N(0, 1).Q.E.D.
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