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1 Data Mining and Factor Analysis: A Brief Historical

Perspective

Data mining in economics has become an important topic. A key reason for this is that so-

called “big data” dominates the data rich environments in which empirical economists operate.

This holds true in fields ranging from macroeconomics, where hundreds of time series are often

jointly modelled, to finance, where interest lies in analyzing high frequency data. Of course, big

data environments have long been available in various other areas in economics. For example,

there are many data rich surveys available to practitioners, such as the PSID, which is a large

longitudinal panel study begun in 1968. With so much data now available, attention has turned

in recent years to the refinement of old (but relevant) empirical tools and the development of new

ones. One of the oldest empirical tools is factor analysis. As is widely known, in 1904 Charles

Spearman posited that there was a hidden or latent structure underlying human intelligence.

In his model, he assumed that there was one latent common factor, called general intelligence

(say ). He argued that particular mental abilities (features) for person , say  could be

predicted using the model

 =  + 

Assuming that the common factor is zero mean and that () = 0, for any  implies

that the correlation between feature · and  is simply  Thus, features · and · have
correlation equal to the product of their factor loadings (say  = ). This in turn implies

that for any four features,    and 

 = 

Interestingly, Spearman (1904) found that this so-called tetrad equation was a reasonable ap-

proximation when analyzing his school grades dataset; and hence he argued that his single

factor model was correctly specified. Although later work showed that this equation does not

hold, the seeds were sown, and factor analysis has thrived ever since. Moreover, the tetrad
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equation became very important in early work on causality and causal graphs, such as Wold

causal chain (see e.g., Wright (1921), Wold (1954), and Simon (1955)), and some decades later

in early artificial intelligence research (see e.g. Glymour, Scheines, Spirtes and Kelly (1987),

Pearl and Verma (1994), Swanson and Granger (1997), and Pearl (2000)). This work in turn

underpins some of the most recent work on machine learning in numerous disciplines ranging

from neuroscience to engineering. In summary, the interesting developments in factor asnalysis,

machine learning, variable selection and shrinkage discussed in CR have direct roots stretching

back over 100 years.

2 Contributions of Carrasco and Rossi (2016)

This well crafted paper delivers on a number of fronts, both theoretical and methodological. In

this discussion I will attempt to summarize the contributions of three main parts of the paper.

In the first part of the paper, the authors derive asymptotic properties and carry out Monte

Carlo and empirical investigations of four data reduction (i.e., data mining, variable selection

and shrinkage) methods, including principal components analysis (PCA), ridge regresion (RR),

Landweber-Fridman data reduction (LR), and partial least squares (PLS). In this context, they

examine two models - an “ill-posed” model where the eigenvalues of  0 → 0 as  →∞
(see below for defintion of ), and a factor model with the number of latent factors, , fixed.

One key finding is that the convergence rates of the prediction errors associated with the four

methods differ by method and model. For example, in the case of the the ill-posed model,

RR, LF, and PCA are characterized by the same rate in many cases. However, in case of the

factor model, PCA and LF rates are faster than RR. Also, there is a bias and variance trade-off

when calculating the rate for PLS, regardless of model.2 These theoretical findings are largely

supported via extensive Monte Carlo and empirical investigations.

In the second part of their paper, Carrasco and Rossi focus on the tuning or regularization

parameter that characterizes the estimation methods that they examine. For example, they note

that (in forecasting contexts) the key tuning parameter in PCA is the number, , of principal

components. They propose using generalized cross validation ( ) and related statistics

to choose  (see below for further discussion), and argue that their approach is sensible, and

is a good alternative to extant methods including the Bai and Ng (2002) statistics, because

 , minimizes forecast prediction error associated with a particular target variable. We agree

completely with their idea of selecting tuning parameters using forecast loss criteria, when the

objective to prediction of a particular target variable.

In a third part of their paper, the authors address an important characteristic of economic

datasets; namely that of instability. In a series of well formulated arguments that are cor-

roborated with a direct empirical evidence, they show that the dimension reduction methods

that they examine broadly deliver robust predictions, and hence are useful for guarding against

instability. In particular, they carry out the flucuation test due to Giacomini and Rossi (2010)

and the robust rationality test due to Rossi and Sekhposyan (2014). Using these tests, they

establish that the superior predictive performance of their “big data” methods relative to that

of an autoregressive strawman model remains constant, and that associated predictions are

2The authors also compare these methods with a spectral cut-off type PCA, which is called SC in the paper.

When constructing factors, SC uses a thresholding method to select eigenvectors (see Section 2 of their paper

for further details).
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rational. Taken together, these findings constitute evidence of the robustness to instability of

the data reduction methods examined in this paper.

3 Questions and Directions

3.1 Alternative Methods for Uncovering Latent Factors

In CR, principal component analysis (PCA) is implemented in order to estimate latent factors.3

PCA yields uncorrelated latent principal components (i.e., diffusion indexes) via the use of

data projection in the direction of the maximum variance; and principal components (PCs) are

naturally ordered in terms of their variance contribution. The first PC defines the direction

that captures the maximum variance possible, the second PC defines the direction of maximum

variance in the remaining orthogonal subspace, and so forth. As discussed above, one of the

key contributions of CR is their discussion of methods for targeting PCs for use in forecasting

based not on total variance explanatory power, but based on the usefulness in predicting a

particular variable. In the next subsection, we shall discuss this issue in more detail.

Perhaps because the derivation of PCs in PCA is easily done via use of singular value

decompositions, it is one of the most frequently used methods for constructing diffusion indexes

(see e.g. Bai and Ng (2002, 2006) and Stock and Watson (2002) for details). In Kim and

Swanson (2016), two additional methods for estimating latent factors are examined in the

context of forecasting, including independent components analysis (ICA) and sparse principal

components analysis (SPCA). ICA has previously been used in economics for macroeconomic

forecasting by Moneta, Entner, Hoyer, and Coad (2013), Tan and Zhang (2012), and Yau

(2004). However, SPCA appears to have been largely ignored, to date. ICA (see e.g., Comon

(1994) and Lee (1998)) uses differential entropy or “negentropy” as a measure of nongaussianity

to construct statistically independent factors with nongaussian distributions. This method is

closely related to projection pursuit, because it is assumed that the most interesting projections

of multivariate datasets are those that show the least Gaussianity. SPCA is designed to uncover

uncorrelated components and ultimately factors, just like PCA. However, the method also

searches for components whose factor loading coefficient matrices are “sparse” (i.e., factor

loading can be identically zero). This is different from PCA, which imposes nonzero loadings

for the entire set of variables. In this sense, SPCA can deliver more parsimonious latent factors

than PCA or ICA (for further discussion, see Jolliffe, Trendafilov, and Uddin (2003), Vines

(2000), and Zou, Hastie and Tibshirani (2006)).4

An interesting question to ask in empirical contexts is whether ICA and SPCA are useful

alternatives to PCA, when carrying out forecasting experiments. ICA, for example, has been

found to be useful in acoustic and image signal extraction problems (see e.g. Hyvärinen and

Oja (2000)). What about economic applications such as signal extraction in high frequency

finance applications, or economic forecasting?

3The PCA estimator used in CR is based on solving the least squares estimation problem discussed in Stock

anbd Watson (2002). In the sequel, we focus our discussion on this estimator. For a discussion of one important

alternative estimator based on a dynamic factor model, see Forni, Hallin, Lippi, and Reichlin (2000), where

principal components are extracted from the frequency domain.
4SPCA is widely used in other disciplines, such as in gene expression genomics (see e.g. Carvahlo, Chang,

Lucas, Nevins, Wang, and West (2008)).
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One potential advantage of SPCA is the sparseness feature. It is well accepted that parsimo-

nious models perform well for forecasting. Does this stylized fact apply also to the construction

of diffusion indexes? Also, does the imposition of sparseness make the economic interpretation

of diffusion indexes easier by opening up the “black box”?5

Note that ridge regression, as discussed in CR, is a penalized regression method in which

the estimator, say b is obtained via solving the following problem:
b = argmin



°° −Σ
=1

°°2 + Σ
=1

2
 

where  is the 1 target variable,  = [1   ]  = 1   is the  predictor matrix,

with  = (1 )
0, and   0 is the tuning parameter. Alternative estimators that

may be worth considering in the context of CR’s analysis include the lasso and the elastic net,

formulated as:

b = argmin


°° − Σ
=1

°°2 + Σ
=1 || 

and b  = (1 + 2)
n
argmin



°° − Σ
=1

°°2 + 1Σ

=1 ||+ 2Σ


=1

2


o


Interestingly, SPCA is introduced in Zou, Hastie and Tibshirani (2006) by first formulating PCA

as a regression-type optimization problem, and then by subsequently imposing lasso (elastic

net) constraints on the regression coefficients in the optimization problem. In this sense, SPCA

is a natural data reduction method to examine in contexts where penalized regression is being

utilized, and is a natural alternative to the PCA method used by CR.

As an illustration of the forecasting trade-offs associated with using PCA, ICA and SPCA,

please refer to Table 1. The results in this table are based on the set of experiments reported

in Kim and Swanson (KS: 2016), although they are not presented in that paper. In KS,

 = 1 3, and 12 month ahead predictions of 11 macroeconomic variables from the Stock

and Watson (2002, 2012) dataset are constructed, using a predictor matrix including all 144

variables in that dataset. The 11 target variables to be forecasted are: the unemployment rate

(UR), personal income (PI), the 10-year Treasury bond rate (TB), the CPI, the PPI, nonfarm

payroll employment (NPE), housing starts (HS), IP, M2, the S&P500 (SNP), and GDP. Data

are transformed to stationarity before prediction models are estimated, and models include a

wide variety of benchmark linear models as well as penalized regression, machine learning, and

shrinkage methods, including: bagging, boosting, ridge regression, least angle regression, elastic

net, and the non-negative garotte (see KS for further details). Various specification methods

are considered using these methods, as discussed in KS, including:

Specification Type 1: Factors are constructed using PCA, ICA, and SPCA; and then pre-

diction models are formed using the above methods to select functions of and weights for the

factors to be used in prediction models of the variety given by

+ = +  + + (1)

where  is the forecast horizon,  is a 1 ×  vector (possibly including lags of ) and  is

5See Armah and Swanson (2010a,b) for further discussion of observable diffusion index proxies and the

benefits of parsimonious factor augmented forecasting models.
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a 1 ×  vector of factors The parameters,  and  are defined conformably, and + is a

disturbance term. This specification type is estimated with and without lags of factors, denoted

by SP1 and SP1L, respectively.

Specification Type 2: Factors are constructed using subsets of variables from the large-scale

dataset and each of PCA, ICA, and SPCA. In particular, variables used in factor calculations

are pre-selected via application of shrinkage methods. Thereafter, prediction models as above

are estimated. This is different from the above approach of estimating factors using all of the

variables. Note that forecasting models are again estimated with and without lags of factors,

denoted by SP2 and SP2L, respectively.

The dataset used for the prediction experiment contain data from 1960 through 2009, and

the prediction period runs from 1974:3 through 2009 (see KS for complete details). Inspection

of the results in this table indicates that PCA often yields mean square forecast error (MSFE)

“best” predictions, although this is not always the case. More specifically, SPCA (and to a

lesser extent ICA) is “preferred” to PCA when the forecasting horizon is 1-month, while PCA

dominates at all longer horizons. Is it possible that instability is driving these results?

3.2 Using Targeted Diffusion Indexes to Predict Select Variables

When targeting a selected variable for prediction, CR rightly stress that simply choosing the

maximal eigenvalue diffusion indexes (i.e., those that explain the maximum variance possible,

across the entire largescale dataset) may not necessarily be an approach that should be expected

to dominate use of other latent factors. Indeed, latent factors that are less important in

explaining the variability across  variables in the dataset may actually be  important

for predicting  variables.

Mallow’s  and the  criteria discussed above are analyzed by CR in the context of

PCA (in which case the number of factors is chosen using either  or  ). For other

data reduction methods, including Ridge, LF, and PLS, these criteria are also implemented,

although for PLS leave-one-out-cross validation is instead used (see paper for further details).

A key difference between the prediction approach implemented in CR and the approach of

Onatski (2015), for example, is that Onatski analyzes the asymptotic properties of the squared

estimation error,

∙³bΛ b 0
 − Λ

0


´³bΛ b 0
 − Λ

0


´0¸
 while CR analyze the mean square pre-

diction error of the target variable,  (i.e., they analyze
°°°b −

°°°2). This is an important
difference, and underscores the fact that rankings associated with asymptotic approximations

are dependent upon what the objective function is. When undertaking prediction experiments,

CR rightly stress the importance of focusing on the target variable of interest, and do not rank

methods based on the quality of the approximation of the diffusion index. In general, two

obvious ways to specify diffusion indexes are as follows.

(i) First, one can simply implement standard PCA analysis, and utilize the  “highest

variance contribution” diffusion indexes in subsequent forecasting. This approach has been

utilized countless times in the literature, in cases where  is estimated using a variety of different

statistics (see e.g. Bai and Ng (2002), Onatski (2009, 2010), Ahn and Horenstein (2013), Li,

Li, and Shi (2016), and the references cited therein).

(ii) Second, after constructing the entire set of orthogonal diffusion indexes, one can select

amongst them using the quality of out-of-sample predictions as a determining measure.
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Of note is that when utilizing the approach outlined in (ii), there is no reason to pre-select

the maximum number of diffusion indexes, say max via the use of one of the statistics from the

papers cited in (i) above. Instead, one might consider even low eigenvalue diffusion indexes. In

this context, CR show that the use of their criteria (including  and  ) yields substantial

prediction improvements when there are many diffusion indexes or when indexes specified in

the standard way are not related to the target variable.6 Another approach in this context

involves examining a large set of diffusion indexes via use of penalized regression methods.

Namely, one can use penalized regression, coupled with PCA, to select a set of  orthogonal

diffusion indexes that are targeted to a particular variable. Of course, this does not address the

always present issue of rotation invariance. However, it is an obvious way to link minimization

of prediction loss to diffusion index selection. In Kim and Swanson (2014), this idea is partially

implemented, as they select a subset of ∗ indexes from amongst the initial set of  indexes

using various machine learning, variable reduction and shrinkage methods, where the initial set

of  indexes is pre-selected using the standard statistics in (i). Given that SPCA involves using

the lasso (elastic net) to modify diffusion indexes constructed using PCA, it is clearly a method

worth considering in this context. In summary, there are many methods available for data

dimension reduction that deserve further exploration in the context of economic forecasting.

Another approach to targeting diffusion indexes is to pre-select a subset of the  variables

using the approaches discussed in Bai and Ng (2008, 2009), and Kim and Swanson (2014,

2016). There are at least two reasons for considering subsets of variables when constructing

diffusion indexes. First, a natural way to drill down to a single target variable to be predicted

via determination of which subset(s) of variable(s) are most useful for prediction of said vari-

able. Second, consider the problem of constructing diffusion indexes to explain variables in a

financial dataset containing returns on the firms in the S&P500. It is not hard to imagine that

idiosyncratic components common within industry groups are not common across all firms.

Moreover, when estimating diffusion indexes based on the entire set of variables, this feature

might act to “confound” estimates of factor loadings. For this reason, it may be of interest

to attempt to estimate different types of diffusion indexes, including market specific, industry

specific, and firm specific, say. In this context, variable subset analysis may prove crucial. For

a related discussion of this topic, in the context of approximate factor models based on mixed

frequency data, see Andreou, Gagliardini, Ghysels and Rubin (2016).

3.3 Instability

As discussed above, SPCA seems to perform well at a 1-step ahead horizon, while PCA performs

well at longer horizons. Why is this? Is it possible that a subset of the loadings that are shrunk

to zero using SPCA are those that are “best” at signalling structural change? This may certainly

be true, even if the additional variance explained by inclusion of the variables associated with

these loading is very small. Put differently, while parsimony might be useful when minimizing

forecast loss (e.g. MSFE), and in diffusion index interpretation, it may also be the case that

parsimony reduces the ability of a diffusion index to “adapt” to structural change. Along

these lines, and as noted in Stock and Watson (2009), PCA type diffusion indexes (in which

6When implementing  and  , CR estimate the number of factors only once, in their first estima-

tion window. This approach has clear computational advantages, although further research into more flexible

estimation schemes warrants additional research.

6



no loadings are zero) may in some cases play an averaging or pooling role (similar to forecast

combination) that leads to robustness against mild instability. There are clearly many pros

and cons to the use of SPCA that remain to be fully investigated. One clear take-away from

the above discussion is that squared error loss (or variance reduction) may not be a natural

measure for diffusion index selection (or loading estimation) in prediction contexts - say if

interest focuses on turning point predictability. Indeed, hybrid loss functions that include a

square error loss component as well as a turning point component may be more useful when

constructing and selecting diffusion indexes in forecasting contexts in which predictions during

transitions between recession and expansion are particularly important.

CR examine the robustness to instability of their dimension reduction methods, relative to

the stability of a strawman autoregressive benchmark prediction model. They do this via the

use of the Giacomini and Rossi (2010) fluctuation test (i.e., by testing whether predictions based

on data reduction methods perform “better” over time than analogous forecasts constructed

using their strawman model). They also check for robustness using the related rationality test of

Rossi and Sekhposyan (2105) that is robust to instabilities. As discussed above, they find that

(i) various of their proposed data reduction methods that are used to construct forecasts based

on  are “better” than those based on traditional methods, and (ii) rationality across time

is often achieved. Both of these results suggest that their methods are useful for “guarding”

against instability. This remains an important area for research. Advances in this area other

than the two papers just cited include those made by Breitung and Eickmeier (2011) and Corradi

and Swanson (2014), who develop tests for the constancy of factor loadings, and the joint

constancy of factor loadings and forecast regression coefficients, respectively. Early research

into methods for tracking or monitoring structural change is discusses in Chu, Stinchcombe,

and White (1996). The development of tests and methods that “signal” when the magnitude

of structural change exhibited in a model generates instability that is beyond the ability of

standard robust methods such as those discussed in CR to handle remains an interesting topic

for future research, however.
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Table 1: Summary of MSFE “Best” Factor Estimation Methods*

Panel A: Recursive Window Estimation

Specification Horizon UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

SP1

 = 1 PCA SPCA SPCA ICA ICA SPCA SPCA SPCA PCA SPCA ALL

 = 3 PCA PCA ICA SPCA PCA SPCA PCA SPCA SPCA PCA SPCA

 = 12 SPCA SPCA SPCA PCA PCA SPCA PCA PCA SPCA SPCA ICA

SP1L

 = 1 PCA PCA PCA PCA PCA PCA ALL PCA PCA PCA PCA

 = 3 PCA PCA SPCA PCA PCA PCA PCA PCA PCA PCA PCA

 = 12 PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA ICA

SP2

 = 1 PCA PCA PCA PCA ICA PCA ALL PCA SPCA PCA ICA

 = 3 PCA PCA PCA PCA ALL PCA PCA PCA SPCA SPCA PCA

 = 12 SPCA SPCA PCA PCA PCA PCA PCA PCA SPCA PCA PCA

SP2L

 = 1 PCA PCA PCA ICA SPCA PCA ALL PCA PCA PCA ICA

 = 3 PCA PCA PCA PCA ALL ICA PCA SPCA PCA SPCA PCA

 = 12 SPCA PCA PCA PCA PCA PCA PCA PCA PCA SPCA PCA

Panel B: Rolling Window Estimation

Specification Horizon UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

SP1

 = 1 PCA PCA PCA PCA PCA PCA ALL PCA PCA PCA PCA

 = 3 PCA PCA SPCA PCA PCA PCA PCA PCA PCA PCA PCA

 = 12 SPCA PCA PCA SPCA PCA SPCA SPCA PCA PCA ICA SPCA

SP1L

 = 1 PCA PCA PCA PCA PCA PCA ALL PCA PCA PCA ICA

 = 3 PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA

 = 12 PCA PCA SPCA SPCA PCA ICA SPCA PCA PCA PCA SPCA

SP2

 = 1 PCA PCA PCA SPCA PCA PCA PCA PCA SPCA PCA PCA

 = 3 PCA PCA ICA SPCA ICA PCA PCA PCA PCA PCA PCA

 = 12 PCA PCA PCA PCA PCA ICA PCA PCA SPCA SPCA SPCA

SP2L

 = 1 PCA PCA PCA SPCA PCA PCA PCA PCA PCA PCA PCA

 = 3 ICA PCA PCA SPCA SPCA PCA PCA PCA PCA PCA PCA

 = 12 PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA SPCA

Panel C: Summary of MSFE-best by PC Method

Recursive Window Estimation Rolling Window Estimation

 = 1  = 3  = 12  = 1  = 3  = 12

PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA

SP1 2 2 6 5 1 5 4 1 6 10 0 0 10 0 1 5 1 5

SP1L 10 0 0 10 0 1 10 1 0 9 1 0 11 0 0 6 1 4

SP2 7 2 1 8 0 2 8 0 3 9 0 2 8 2 1 7 1 3

SP2L 7 2 1 7 1 2 9 0 2 10 0 1 8 1 2 10 0 1

* Notes: See above discussion for an explanation of specification types used in this table, and well as a discussion of PCA, ICA

and SPCA. Results are based on comparing mean square forecast errors (MSFEs) across a number of benchmark linear models and

data reduction methods including PCA and RR, among others. The prediction period is 1974 through 2009 (see above and Kim

and Swanson (2016) for complete details).
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