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Abstract

This paper addresses the notion that many fractional I(d) processes may fall into the “empty box” category, as

discussed in Granger (1999). We begin by showing that so-called spurious long memory may arise not only in the

presence of (stochastic) structural breaks and regime switches, but also when the true data generating processes

(DGPs) are linear with no structural breaks, and/or regime switching properties. However, we also present ex ante

forecasting evidence based on an updated version of the absolute returns series examined by Ding, Granger and

Engle (1993) that suggests that ARFIMA models estimated using a variety of standard estimation procedures yield

“approximations” to the true unknown underlying DGP that provide significantly better out-of-sample predictions

than AR, MA, and random walk models, with no models being “better” than ARFIMA models, based on analysis

of point mean square forecast errors (MSFEs) as well as using Diebold and Mariano (DM: 1995) predictive accuracy

tests. We also provide ex ante prediction evidence that 130 of the 215 macroeconomic variables used in Stock and

Watson (SW: 2002) have lower (or equal) point MSFEs for ARFIMA-best models than for a large class of non-

ARFIMA models. This result is obtained even though our ex-ante forecasting experiments using these variables

involve prediction periods of only 200-250 months, and even though there is clear and substantial evidence of severe

bias in various in-sample estimates of the differencing parameter. Furthermore, when a new prediction based estimator

of d that we introduce is used to construct ARFIMA models for a subset of the SW dataset, many point MSFE error

improvements associated with the use of ARFIMA models also become significant. These findings, taken together

with the results of an empirical analysis of stock returns for 5 different countries and an extensive Monte Carlo

analysis of a variety of different estimation and testing methods lead us to conclude that ARFIMA models might not

fall into the “empty box” category after all, although much further research is needed before conclusive evidence in

either direction can be given.
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1 Introduction

The last 2 decades of macroeconomic and financial economic research have resulted in a vast

array of important contributions in the area of long memory modelling, both from a theoretical

and empirical perspective. From a theoretical perspective, much effort has focussed on issues of

testing and estimation, and a very few important contributions include Granger (1980), Granger

and Joyeux (1980), Hosking (1981), Geweke and Porter-Hudak (1983), Lo (1991), Sowell (1992a,b),

Ding, Granger and Engle (1993), Cheung and Diebold (1994), Robinson (1995), Engle and Smith

(1999), Diebold and Inoue (2001), Breitung and Hassler (2002), and Dittman and Granger (2002).

The empirical analysis of long memory models has seen equally impressive treatment, including

studies by Diebold and Rudebusch (1989, 1991a,b), Hassler and Wolters (1995), Hyung and Franses

(2001), Bos, Franses and Ooms (2002), Chio and Zivot (2002), and van Dijk, Franses and Paap

(2002), to name but a few.1 The impressive array of papers on the subject is perhaps not surprising,

given that long memory models in economics is one of the many important areas of research that

has stemmed from seminal contributions made by Clive W.J. Granger (see e.g. Granger (1980) and

Granger and Joyeux (1980)). Indeed, in the write-up disseminated by the Royal Swedish Academy

of Sciences upon announcement that Clive W.J. Granger and Robert F. Engle had won the 2003

Nobel Prize in Economics, it was stated that:2

Granger has left his mark in a number of areas. [other than in the development of the concept
of cointegration] His development of a testable definition of causality (Granger (1969)) has spawned
a vast literature. He has also contributed to the theory of so-called long-memory models that have
become popular in the econometric literature (Granger and Joyeux (1980)). Furthermore, Granger
was among the first to consider the use of spectral analysis (Granger and Hatanaka (1964)) as well
as nonlinear models (Granger and Andersen (1978)) in research on economic time series.

This paper attempts to add to the wealth of literature on the topic by asking a number of new

questions, and presenting some perhaps surprising new empirical evidence on the subject.

First, as pointed out by many authors, including Diebold and Inoue (2001), Engle and Smith

(1999), and Granger and Hyung (1999), so-called spurious long memory may arise in many con-

texts, such as the presence of (stochastic) structural breaks in linear and nonlinear models, the

prevalence of regime switching models, and simple nonlinear transformation of “short memory”

variables. This point has been illustrated convincingly using theoretical, empirical, and experimen-

1Many other empirical and theoretical studies are referenced in the entensive survery paper by Baillie (1996).

2see list of references under “Bank of Sweden (2003)” for a reference to the document.
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tal arguments. We add to the discussion by showing via Monte Carlo studies that spurious long

memory may arise if reliance is placed on any of 5 standard tests of short memory, even if the true

data generating processes (DGPs) are linear with no data transformation, structural breaks, and/or

regime switching properties. Our experimental findings are supported using an empirical analysis

of three large financial and macroeconomic datasets from Engle, Granger and Ding (1993), Stock

and Watson (2002) and Leybourne, Harris and McCabe (2003), where it is shown, for example, that

standard short memory tests find ample evidence of long memory, even when ex ante prediction

analysis indicates that relatively simple ARFIMA models constructed using 4 different estimators

of the differencing parameter, d, are “bested” by simple linear AR, ARIMA, and related models,

based on mean square out-of-sample forecast error (MSFE) measures and based on application of

the Diebold and Mariano (DM: 1995) predictive accuracy test.

Second, there has been little evidence in the literature as to the usefulness of long memory

models. For example, Granger (1999) discusses outliers, breaks, and distributional properties in

the context of long memory models, concluding that there is a good case to be made for I(d)

processes falling into the “empty box” category. We attempt to stem the tide of negative evidence

by presenting ex ante forecasting evidence based on an updated version of the absolute returns

series examined by Ding, Granger and Engle (1993) and Granger and Ding (1996) that suggests

that ARFIMA models estimated using a variety of standard estimation procedures yield “approx-

imations” to the true unknown underlying DGP that provide significantly better out-of-sample

predictions than AR, MA, and random walk models, with no models being “better” than ARFIMA

models, based on analysis of point mean square forecast errors (MSFEs) as well as using Diebold

and Mariano (DM: 1995) predictive accuracy tests.3 Furthermore, the samples used in our ex ante

analysis appear to be sufficient to remedy finite sample bias properties of 4 d-estimators (including,

for example, the oft used Geweke, Porter-Hudak (GPH: 1983) and Whittle estimators) that have

been so widely discussed in the literature. However, the well known bias properties are starkly

prevalent for samples even as great as 2500 observations, as evidenced by our analysis of stock

index returns for 5 different countries. Nevertheless, even in these cases, ARFIMA models MSFE-

dominate a variety of linear models based on various returns transformations and using various

sub-samples of the data. Further, based on smaller samples of 5000 daily stock index observations
3One implication of our findings is that even if there are structural breaks, etc., then ARFIMA models may be

more robust to them than various parsimonious linear non-ARFIMA models.
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for 5 different countries, ARFIMA-best models have MSFEs that are lower (or equal) to values for

non-ARFIMA-best models in 39 of 45 cases studied. Finally, our most surprising evidence may be

that 130 of the 215 macroeconomic variables used in Stock and Watson (2002) have lower (or equal)

point MSFEs for ARFIMA-best models. This, even though our ex-ante forecasting experiments

using these variables involve prediction periods of only 200-250 months. In summary, these results

suggest that if we believe all forecasting models should be viewed as “approximations” (and are

hence misspecified), then ARFIMA models seem to be an “approximation” worth including in our

empirical toolbox, even though some of the theoretical memory characteristics of these models are

suspect, and large samples are needed for estimation, as discussed in Granger (1999).

Third, even though we have evidence based on examination of point MSFEs that ARFIMA

models can dominate well known linear (and short memory) alternatives, there is little confidence

interval evidence (based on the use of DM tests) that there is anything to choose between them.

One reason for this is clearly that d is poorly estimated using small samples, as shown in our

empirical and Monte Carlo analyses. Indeed, our empirical evidence suggests that samples as

large as 10,000 observations are required in order to acheive reasonably unbiased estimators of

d. In order to address this problem, we propose a simple prediction based estimator, which is

essentially constructed by carrying our ex-ante prediction experiments for various values of d in a

given “feasible set”. We show via a small empirical analysis of a subset of the data used by Stock and

Watson (2002) that the estimator can dramatically increase the incidence of ARFIMA significantly

outperforming competitor non-ARFIMA models. Theoretical analysis of the estimator, however,

is left to future research.

Finally, we address, using an extensive empirical and Monte Carlo analysis, a number of other

issues, such as the prevalence of parameter estimation error when estimating ARFIMA models

using small samples, the usefulness of prediction based analysis for testing the null hypothesis of

short memory, and what impact GARCH errors have on standard in-sample as well as out-of-sample

tests of short memory.

The rest of the paper is organized as follows. In Section 2 we briefly review the ARFIMA

process, and outline the empirical estimation and testing methodology that we employ in the rest

of the paper. In Section 3 we present the results of our empirical investigation of more than 200

macroeconomic and financial variables. Section 4 contains the results of a series of Monte Carlo

experiments that were designed to yield further evidence on a number of issues and findings based
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on our empirical analysis. Section 5 contains some concluding remarks.

2 Empirical Methods

The prototypical ARFIMA model examined in the literature is

Φ (L) (1− L)d yt = Θ (L) εt (1)

where d is the fractional differencing parameter, εt is white noise, and the process is covariance

stationary for −0/5 < d < 0.5 and mean reverts when d < 1. This model is a generalization of

the fractional white noise process described in Granger (1980), Granger and Joyeux (1980), and

Hosking (1981), where, for the purpose of analyzing the properties of the process, Θ (L) is set

equal to unity (Baillie (1996) surveys numerous papers that have analyzed the properties of the

ARFIMA process). Given that many time series exhibit very slowly decaying autocorrelations, the

potential advantage of using ARFIMA models with hyperbolic autocorrelation decay patterns when

modelling economic and financial times series seems clear (as opposed to models such as ARMA

processes that have exponential or geometric decay). The potential importance of the hyperbolic

decay property can be easily seen by noting that

(1− L)d =
∞∑

j=0

(−1)j

(
d

j

)
(L)j = 1− dL+

d(d− 1)
2!

L2−d (d− 1) (d− 2)
3!

L3+ · ·· =
∞∑

j=0

bj (d) ,
(2)

for any d > −1.4 As a simple illustration, Table 1 reports the values of the coefficients associated

with different lags in the expansion of (1 − L)d given in equation (2). The last column of the

table gives the lag after which coefficients of the polynomial become smaller than 1.0e-004. It is

interesting to note that by this crude yardstick the coefficients are significant even after 400 lags, in

the case when d = 0.25. Even when d = 0.05, properly capturing the dependence structure requires

300 lags.

4For d > 0, the differencing filter can also be expanded using hypergeometric functions, as follows: (1 − L)d =

Γ(−d)
∑∞

j=0
LkΓ(j−d)/Γ(j+1) = F (−d, 1, 1, L), where F (a, b, c, z) = Γ(c)/[Γ(a)Γ(b)]

∑∞
j=0

zjΓ(a+j)Γ(b+j)/[Γ(c+

j)Γ(j + 1)]
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The Long-Memory Filter (1− L)d (∗)

d lag = 5 lag = 10 lag = 20 lag = 25 lag = 50 lag = 75 lag = 100 Significant Lag
0.05 -0.00899 -0.00433 -0.00209 -0.00165 -0.0008 -0.00052 -0.00039 361
0.25 -0.0282 -0.01166 -0.00486 -0.00367 -0.00154 -0.00093 -0.00065 444
0.45 -0.02894 -0.01022 -0.00368 -0.00265 -0.00096 -0.00053 -0.00035 237
0.55 -0.02528 -0.00823 -0.00275 -0.00194 -0.00066 -0.00035 -0.00022 167
0.75 -0.01428 -0.00394 -0.00113 -0.00076 -0.00022 -0.00011 -0.00007 78

(∗) Notes: Values taken by the filter (1− L)d are reported in columns 2 to 8. The last column gives the lag after
which the absolute value of coefficients of the polynomial become smaller than 1.0e− 004.

There are currently dozens of estimation methods for and tests of long memory models. Perhaps

one of the reasons for the wide array of tools for estimation and testing is that the current consensus

on estimation is somewhat negative, and many of the tests used for long memory have been shown

via finite sample experiments to perform quite poorly. Much of this evidence has been reported

in the context of comparing one or two classes of estimators/tests, such as rescaled range (RR)

type estimators (as introduced by Hurst (1951) and modified by Lo (1991), for example) and log

periodogram regression estimators due to Geweke and Porter-Hudak (1983: GPH). In the face

of all of the negative publicity, it a bit surprising to us that few papers seem to compare more

that one or two different (classes of) estimators and/or tests. Our approach, while still far from

exhaustive, is to use a variety of the most widely used estimators and tests in our subsequent

empirical investigation and experimental analysis. In particular, we consider 4 of the most widely

used estimation methods and 5 different long memory tests.5

2.1 Long Memory Model Estimation

The GPH estimation procedure is a two-step procedure, which begins with the estimation of d, and

is based on the following log-periodogram regression6:

ln [I (ωj)] = β0 + β1 ln
[
4 sin2()ωj2

]
+ νj , (3)

where

ωj =
2πj

T
, j = 1, 2, ...,m.

5Perhaps the most glaring ommission from our list of estimators is the full information maximum likelihood
estimator of Sowell (1992a). While his estimator is theoretically appealing, it is computationally demanding as it
requires inversion of TxT matrices of nonlinear functions of hypergeometric functions. For evidence on the finite
sample performance of this estimator, the reader is referred to Cheung and Diebold (1994).

6The regression model is usually estimated using least squares.
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The estimate of d, say d̂GPH , is −β̂1, ωj represents the m =
√

T Fourier frequencies, and I (ωj)

denotes the sample periodogram defined as

I (ωj) =
1

2πT

∣∣∣∣∣
T∑

t=1

yte
−ωjt

∣∣∣∣∣

2

(4)

The critical assumption for this estimator is that the spectrum of the ARFIMA(p,d,q) process

is the same as that of an ARFIMA(0,d,0) process (the spectrum of the ARFIMA(p,d,q) process

in (1), under some regularity conditions, is given by I (ωj) = z (ωj) (2 sin()ωj2)−2d, where z (ωj)

is the spectrum of an ARMA process). We use m =
√

T , as is done in Diebold and Rudebusch

(1989), although the choice of m when εt is autocorrelated can heavily impact empirical results (see

Sowell (1992b) for discussion). Robinson (1995a) shows that ( π2

24m)−1/2
(
d̂GPH − d

)
→ N (0, 1),

for −1/2 < d < 1/2, for j = l, ...,m in the equation for ω above, where l is analogous to the

usual lag truncation parameter. As is also the case with the next two estimators, the second step

of the GPH estimation procedure involves fitting an ARMA model to data, given the estimate of

d. Agiakloglou, Newbold and Wohar (1992) show that the GPH estimator has substantial finite

sample bias, and is inefficient when εt is a persistent AR or MA process. Many authors assume

normality of the filtered data in order to use standard estimation and inference procedures in the

analysis of the final ARFIMA model (see e.g. Diebold and Rudebusch (1989,1991a). Numerous

variants of this estimator continue to be widely used in the empirical literature.

Another seminparametric estimator, the Whittle estimator, is also often used to estimate d.

Perhaps one of the more promising of these is the local Whittle estimator proposed by Künsch

(1987) and modified by Robinson (1995b). This is another periodogram based estimator, and

the crucial assumption is that for fractionally integrated series, the autocorrelation (ρ) at lag l is

proportional to l2d−1. This implies that the spectral density which is the Fourier transform of the

autocovariance γ is proportional to (ωj)
−2d. The local Whittle estimator of d, say d̂WHI is obtained

by maximizing the local Whittle log likelihood at Fourier frequencies close to zero, given by

Γ (d) = − 1
2πm

m∑

j=1

I (ωj)
f (ωj ; d)

− 1
2πm

m∑

j=1

f (ωj ; d) , (5)

where f (ωj ; d) is the spectral density (which is proportional to (ωj)
−2d). As frequencies close to

zero are used, we require that m →∞ and 1
m + m

T → 0, as T →∞. Taqqu and Teverovsky (1997)
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show that d̂WHI can be obtained by maximizing the following function:

Γ̂ (d) = ln


 1

m

m∑

j=1

I (ωj)
ω−2d

j


− 2d

1
m

m∑

j=1

ln (ωj) (6)

Robinson (1995b) shows that for estimates of d obtained in this way, (4m)1/2
(
d̂WHI − d

)
→

N (0, 1) , for −1/2 < d < 1/2. Taqqu and Teverovsky (1997) study the robustness of standard,

local, and aggregated Whittle estimators to non-normal innovations, and find that the local Whittle

estimator performs well in finite samples. Shimotsu and Phillips (2002) develop an exact local

Whittle estimator that applies throughout the stationary and nonstationary regions of d, while

Andrews and Sun (2002) develop an adaptive local polynomial Whittle estimator in order to address

the slow rate of convergence and associated large finite sample bias associated with the local Whittle

estimator.

The rescaled range estimator was originally proposed as a test for long-term dependence in the

time series. The statistics is calculated by dividing range with standard deviation:

Q̂T =
R̂T

σ̂T
, (7)

where σ̂2
T is the usual maximum likelihood variance estimator of yt, and R̂T = max

0<i≤T

∑i
t=1 (yt − y)−

min
0<i≤T

∑i
t=1 (yt − y). The estimate of d, say d̂RR, is obtained using the result that plimT→∞(T−d− 1

2
R̂T

σ̂T
)

= constant (see Hurst (1951), Lo (1991), and the references cited therein), and is:

d̂RR =
ln

(
Q̂T

)

ln (T )
− 1

2
. (8)

Lo (1991) shows that T−1/2Q̂T is asymptotically distributed as the range of a standard Brownian

bridge. Given the extensively documented deficiencies of long memory tests based on T−1/2Q̂T ,

particularly in the presence of data generated by a short memory processes combined with a long

memory component, Lo (1991) suggests the modified RR test, whereby σ̂2
T is replaced by a het-

eroskedasticity and autocorrelation consistent variance estimator, namely:

σ̂2
T =

1
T

T∑

t=1

(yt − y)2 +
2
T

q∑

j=1

wj (q)





T∑

t=j+1

(yt − y) (yt−j − y)



 , (9)

where

wj (q) = 1− j

q + 1
, q < T,
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It is known from Phillips (1987) that σ̂2
T is consistent when q = O(T 1/4), at least in the context of

unit root tests, although choosing q in the current context is a major difficulty. This statistic still

weakly converges to the range of a Brownian bridge. The finite sample properties of tests based

on Q̂T have been examined extensively (see e.g. Cheung (1993)), and the overall consensus is that

they have poor finite sample properties.

The fourth estimator that we use is the approximate maximum likelihood estimator of Beran

(1995). For any ARFIMA model given by equation (1), d = m + δ, where δ ∈
(
−1

2 , 1
2

)
, and m is

an integer (assumed known) denoting the number of times the series must be differenced in order

to attain stationarity, say:

xt = (1− L)m yt (10)

Next, a value of δ is fixed, and an ARMA model is fitted to the filtered xt data, yielding a sequence of

residuals. This is repeated over a fine grid of d = m+δ, and d̂AML is the value which minimizes the

sum squared residuals. The choice of m is critical, given that the method only yields asymptotically

normal estimates of the parameters of the ARFIMA model if δ ∈
(
−1

2 , 1
2

)
, for example.

2.2 Short Memory Tests

Four of the five tests that we use when evaluating our time series are based on the above discussion,

including the GPH, RR, MRR, and WHI tests, where the MRR is the modified RR test due to Lo

(1991). Notice that of these, only the GPH and WHI tests are based directly upon examination of

the d estimator, while the RR and MRR tests do not involve first estimating d. The fifth test that

we use is the nonparametric short memory test of Leybourne, Harris and McCabe (2003: LHM).

Their test that is based on the rate of decay of the autocovariance function. In particular, the null

hypothesis of the test is that the data shows short memory (i.e. that
∑∞

j=0 |γj | < ∞, where γj

is the autocovariance of yt at lag j), and the test is based on the notion that one can distinguish

between short and long memory via knowledge of the rate at which γj → 0, as j → ∞. The test

statistics is

Sk,T =
T 1/2γ̂kT

σ̂∞
, (11)

where σ̂2∞ = γ̂2
0 + 2

∑lT
j=1 γ̂2

j , γ̂j = T−1 ∑T
t=j+1 ytyt−j , yt in this case is the demeaned series, and

kT , lT are chosen such that kT ,lT −→∞, as T−→∞ and kT
lT
−→ 0, kT < lT . The values which we
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use, as suggested by LHM are kT = 5.5T 1/2

ln(T ) and lT = 4
(

T
100

)1/4
. In this context, SkT

−→ N (0, 1),

under the null hypothesis. There are many other important tests available in the literature which

are not examined here, including but not limited to the KPSS test (see Lee and Schmidt (1996))

and the augmented Dickey-Fuller test (see Diebold and Rudebusch (1991b)).

2.3 Predictive Accuracy Testing

If, as is often the case, the ultimate goal of an empirical investigation is the specification of predictive

models, then a natural tool for testing for the presence of long memory is the predictive accuracy

test. In this case, if an ARFIMA model can be shown to yield predictions that are superior to those

from a variety of alternative linear (and nonlinear) models, then one has direct evidence of long

memory, at least in the sense that the long memory model is the best available “approximation”

to the true underlying DGP. Conversely, even if one finds evidence of long memory via application

of the tests discussed above, then there is little use specifying long memory models if they do not

outpredict simpler alternatives. There is a rich recent literature on predictive accuracy testing,

most of which draws in one way or another on Granger and Newbold (1986), where simple tests

comparing mean square forecast errors (MSFEs) of pairs of alternative models under assumptions

of normality are outlined. Perhaps the most important of the predictive accuracy tests that have

been developed over the last 20 years is the Diebold and Mariano (1995: DM) test. It is this test

statistic that we consider in the remainder of this paper. The relevant statistic is:

d̂P = P−1/2

∑T−1
t=R−h+1(f(v̂0,t+h)− f(v̂k,t+h))

σ̂P
, (12)

where R denotes the estimation period, P is the prediction period, f is some generic loss function,

h ≥ 1 is the forecast horizon, v̂0,t+h and v̂k,t+h are h-step ahead prediction errors constructed using

consistent estimators, and σ̂2
P is defined as

σ̂2
P =

1
P

T−1∑

t=R−h+1

(f(v̂0,t+h)− f(v̂k,t+h))2+
2
P

lP∑

j=1

wj

T−1∑

t=R−h+1+j

(f(v̂0,t+h)− f(v̂k,t+h))(f(v̂0,t+h−j)− f(v̂k,t+h−j))
(13)

where wj = 1− j
lP +1 , lP = o(P 1/4). The hypotheses of interest are

H0 : E(f(v0,t+h)− f(vk,t+h)) = 0,

and

HA : E(f(v0,t+h)− f(vk,t+h)) 6= 0.

9



The DM test, when constructed as outlined above, has a standard normal limiting distribution

under the null hypothesis. West (1996) shows that when the out-of-sample period grows at a rate

not slower than the rate at which the estimation period grows (i.e. P
R → π, with 0 < π ≤ ∞),

parameter estimation error generally affects the limiting distribution of the DM test in stationary

contexts. On the other hand, if π = 0, then parameter estimation error has no effect. Additionally,

Clark and McCracken (2001) point out the importance of addressing the issue of nestedness when

applying DM and related tests.7 Other recent papers in this area include Christoffersen (1998),

Christoffersen and Diebold, (1997), Clements and Smith, (2000,2002), Corradi and Swanson, (2002),

Diebold, Gunther and Tay (1998), Diebold, Hahn and Tay, (1999), Harvey, Leybourne and Newbold

(1998), and the references contained therein, to name but a few. Although the DM test does

not have a normal limiting distribution under the null of non causality when nested models are

compared, the statistic can still be used as an important diagnostic in predictive accuracy analyses.

Furthermore, the nonstandard limit distribution is reasonably approximated by a standard normal

in many contexts (see McCracken (1999) for tabulated critical values). For this reason, we use

standard normal critical values when assessing our DM statistics, even though some of our models

are nested.

2.4 Prediction Based Estimator of d

As discussed in Granger (1999), the distinguishing feature of long memory processes is at very low

spectral frequencies, and information accumulates very slowly there. Indeed, the empirical and

experimental evidence presented below suggests that the different estimators of d that we employ

in our analysis can be vastly different, only appearing to converge to one another when huge time

series of around 10,000 observations are used for our in-sample estimation. This small sample bias

is problematic from an empirical perspective, and may account in part for the fairly widespread

dissatisfaction with ARFIMA processes in the context of modelling macroeconomic variables.

If the objective of an empirical investigation is the construction of the “best” prediction models,

then a natural and simple estimator of d would be to split the sample into in- and out-of-sample
7Chao, Corradi, and Swanson (2001) address not only nestedness, by using a consistent specification testing ap-

proach to predictive accuracy testing, but also allow for misspecification amongst competing models; an important
feature if one is to presume that all models are approximations, and hence all models may be (dynamically) mis-
specified. White (2000) further extends the Diebold and Mariano framework by allowing for the joint comparison
of multiple models, while Corradi and Swanson (2003) extend White (2000) to predictive density evaluation with
parameter estimation error.
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period. Then, for a given value of d, estimate the model and construct a sequence of ex-ante h-

step ahead predictions. Repeat this across a fine grid of different d values, and use the value of d

that minimizes MSFE as the prediction-best estimator of d. While the asymptotic equivalence of

this estimator with the other estimators above may be difficult to show for values of d close to or

greater than 0.5, say, the estimator should nevertheless be useful as it may reduce finite sample

bias. Additionally, the estimator is robust to the lag truncation procedure used in constructing

(1− L)d. For a given lag truncation procedure, the estimator simply yields the MSFE best value

of d. Analysis of the asymptotic properties of this estimator are the subject of ongoing research.

Evidently, however, the most substantial gains to using the prediction based estimator may be

when time series are relatively short, such as is the case with most macroeconomic time series. For

this reason, our experimentation using this estimator involves analysis of a subset of the Stock and

Watson (2002) dataset (see Section 3.3).

In the sequel, all predictions are ex-ante 1-step ahead forecasts, models are estimated once

using R in-sample observations, R = 0.5T , so that 1/2 of the sample observations are held back

for ex ante predictive analysis, and reported DM tests are based on MSFE loss. Results for mean

absolute deviation and mean absolute percentage error loss functions have also been tabulated, and

are available upon request from the authors.

3 Empirical Evidence

In our empirical (and subsequent Monte Carlo) investigation, the following models are used:

1) ARFIMA(p,d,q): Φ(L) (1− L)d yt = α + Θ(L) εt, where d can take fractional values;

2) Random Walk: yt = yt−1 + εt;

3) Random Walk with Drift: yt = α + yt−1 + εt;

4) AR(p): Φ(L) yt = α + εt;

5) MA(q): yt = α + Θ(L) εt;

6) ARMA(p,q): Φ(L) yt = α + Θ (L) εt;

7) ARIMA(p,d,q): Φ(L) (1− L)d yt = α + Θ(L) εt, where d can take integer values;

8) ARX(p): Φ (L) yt = α + βXt + εt;

9) GARCH: Φ(L) yt = α + εt, where εt = h
1/2
t νt with E(ε2t |=t−1) = ht = $ + α1ε

2
t−1 + · · · +

αqε
2
t−q + β1ht−1 + · · ·+ βpht−p, and where =t−1 is the usual filtration of the data; and
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10) Regime Switching: yt = µst + εt,

where {st}T
t=1 is the state vector with transition matrix P =

(
p00 1− p00

p11 1− p11

)
. In these models,

εt is the disturbance term, Φ (L) = 1 − φ1L− φ2L
2 − · · · − φpL

p, and Θ (L) = 1 − θ1L− θ2L
2 −

· · · − θqL
q, where L is the lag operator. All models (except ARFIMA models) are estimated using

(quasi) maximum likelihood, with values of p and q chosen via use of the Schwarz Information

Criterion (SIC), and integer values of d in ARIMA models selected via application of the augmented

Dickey Fuller test (using a 5% nominal test level). Errors in the GARCH models are assumed to

be normally distributed. ARFIMA models are estimated using the four estimation techniques

discussed above (GPH, RR, WHI, and AML). In this section, we omit the regime switching (as

the model is too simplistic) models, although these models are considered in selected Monte Carlo

experiments. Additionally, note that the ARX models are meant as a strawman model, as Xt is

an iidN(0, 1) random variable. When fitting ARFIMA models, we used an arbitrary cut-off of

1.0e− 004. Terms in the polynomial expansion with coefficients smaller in absolute value than this

cut-off were truncated.8

In the proceeding sub-sections, we carry out our empirical investigation by examining the long

memory and ARFIMA predictive properties of the S&P500 series used by Ding, Granger and Engle

(DGE: 1993) and Granger and Ding (1996), the 5 stock index returns used by Leybourne et al.

(2003), and the 215 Stock and Watson (2002) macroeconomic variables. Before discussing the

results, however, some comments concerning the data are in order. Our first dataset is an updated

version of the long historical S&P500 returns dataset of DGE. The period covered is January 4,

1928 - September 30, 2003 (20,105 observations), so that our dataset is somewhat longer than the

17,054 observations (ending on August 30, 1990) examined by DGE. Our second dataset consists

of the returns data used in Leybourne et al. (2003), where strong evidence of long memory is found

via application of their short memory test. In particular, we model 4950 (or more, depending

on the particular index) daily returns for the following stock indexes: S&P500, FTSE100, DAX,

Nikkei225, and the Hang Seng. We consider absolute returns, squared returns, and log squared

returns, thus nesting a variety of different data transformations that have been shown in earlier

papers (see e.g. Granger and Ding (1996)) to have long memory properties. All series span the

period 01/04/1981-01/18/2002. Finally, we examine the Stock-Watson dataset, which consists of
8The exception to the rule is the case of the SW data, for which sufficient observations were not available, and for

which, after some experimentation, the arbitrary cut-off was set at 120 lags.
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the 215 variables used in their well known diffusion index paper. In the paper, they examine multi-

step ahead predictions of 8 key U.S. macroeconomic variables, in a simulated real-time forecasting

environment, using all 215 U.S. series to construct diffusion indexes. Their data were collected

in 1999, and so represent a snapshot of the vintages and releases of data available at that point

in time. The data series vary in length, span the period 1959-1998, and are generally 400-500

observations in length. All series are monthly. Appendix 2 of Stock and Watson (2002) contains

definitions of all of the series (which are omitted here for the sake of brevity), and discusses the

data transformations applied to each series. Note that all series were “differenced to stationarity”

in Stock and Watson (2002), prior to model fitting. We use the same data transformations as they

did, so that many of the series are expressed in growth rates, and some series are even differenced

twice. In summary, our approach is to use exactly the same dataset as used in Stock and Watson

(2002). However, rather than focusing on predictions of 8 series, we consider predictions of all 215

variables, using estimated versions of the models outlined above.

3.1 S&P500 Returns: January 4, 1928 - September 30, 2003

The table given below contains d estimates, as well as MSFEs for all of the models given above,

with the exception of the RW with drift and ARIMA models. These two models are not considered

because the first model is nonsensical and the second model is not appropriate given the ample

evidence in the literature that d¡0.5 for absolute S&P500 returns. Interestingly, and as might be

expected, the 4 different estimates of d given in the table are all quite close to one another, perhaps

with the exception of the RR estimator, which is 0.31. In the next subsection, we show that these 4

estimators yield radically different values with even when the in-sample period used is moderately

large, with approximately 2500 observations, so that the convergence of the estimators is indeed

extremely slow, although they do eventually converge. This yields credence to Granger’s (1999)

observation that estimates of d can vary greatly across different sample periods and sample sizes,

and are generally not robust at all (see next section for further evidence of this).9

Turning next to the MSFEs reported in the table, a number of clear-cut conclusions emerge.

First, notice in the third column of entries that the MSFEs associated with predictions from the 4

different ARFIMA models are all very close to one another, so that based on point MSFEs, there
9Notice that the estimates of d in the table that are based on the GPH estimator are very close to those obtained

by Ding, Granger and Engle (1993) and by Granger and Ding (1996) using their fractionally integrated ARCH model.
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appears little to choose between GPH, AML, RR, and WHI. However, the DM test statistic does

prefer the RR estimator over the other 3, at a 20% level (this is not surprising, given the tiny

standard errors associated with construction of the DM statistic using such a large out-of-sample

period - recall that approximately 10,000 forecasts were made for each model). Second, there is

no instance for which one of our linear models out-predicts any of our ARFIMA models, both

based on point MSFE values and based on DM predictive accuracy tests (except for ARMA, which

leaves nothing to choose between the two models). Furthermore, the ARFIMA model estimated

using RR significantly out-predicts every linear model, with the exception of the ARMA model,

for which there is nothing to choose between the two. Finally, the ARMA model significantly

outpredicts all of the other linear alternatives. These results constitute evidence that long memory

models may actually be useful, particularly when constructing forecasting models. Furthermore, as

long as the in-sample period is very large, then all of our differencing operator estimators perform

adequately, and any one of them can be successfully used to estimate “winning” prediction models.

Put differently, no model from amongst those considered performs better than our simple ARFIMA

models. It should, however, be stressed that structural breaks, regime switching, etc. have not been

accounted for in any of our models, and it remains to see whether the types of results obtained

here will also hold when structural breaks and regime switching are allowed for in both our short

memory and long memory models. Some results in this regard are given in the next subsection,

where different return series are examined both pre- and post-1987.

S&P500 Daily Absolute Returns - Prediction Using Different ARFIMA Estimators(∗)

Model Variety d Values and Lags Chosen MSFE Comparison to RR Comparison to ARMA
Using DM Test Using DM Test

GPH ARFIMA(1,0.49,1) 0.539 -1.62, RR -0.44, NONE
AML ARFIMA(1,0.41,1) 0.538 -1.29, RR -0.78, NONE
RR ARFIMA(1,0.31,3) 0.537 ——– 0.37, NONE
WHI ARFIMA(1,0.43,1) 0.538 -1.31, RR -0.13, NONE
RW ——– 1.000 -13.3, RR -11.1, ARMA
AR AR(11) 0.549 -4.15, RR -3.75, ARMA
MA MA(35) 0.555 -5.49, RR -5.93, ARMA
ARX ARX(12 0.550 -4.40, RR -4.36, ARMA
ARMA ARMA(4,4) 0.538 -0.37, NONE ——–
AR-GARCH AR(6)-GARCH(1,1) 0.629 -6.22, RR -5.86, ARMA

(∗) Notes: Models are estimated as discussed above, and model acronyms used are as outlined in Table 1. MFSEs
are normalized by the RW MSFE. All predictions are 1-step ahead, the out-of-sample period is equal to 50% of the
sample, and Diebold and Mariano (DM) tests are based on MSFE loss, and application of the test assumes that
parameter estimation error vanishes and that the standard normal limiting distribution is asymptotically valid, as
discussed in Section 2.3. Tests are based on nominal 20% level critical values. “Winning” models are given beside
DM statistic values, when there is a “winner”.
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3.2 International Stock Index Returns: January 4, 1981 - January 18, 2002

Table 2 contains our results based on empirical analysis of 5 different stock market indices. Abso-

lute, squared, and log squared returns are tested using the 5 short memory tests discussed above,

ARFIMA and non-ARFIMA models are estimated, and ex-ante predictions are made and com-

pared. As discussed above, the out-of-sample period consists of 1/2 of the sample. A number of

conclusions can be made based on the analysis reported in the table. First, notice in column 4 that

the short memory null hypothesis is rejected most of the time, for most of the indexes, regardless

of how returns are transformed prior to test statistic construction. At face value, this might be

taken as strong evidence of the potential usefulness of ARFIMA models for these data. However,

we shall later see (in the Monte Carlo experiments reported below), that the 5 tests used in our

study have poor size properties when faced with simple linear models, such as AR processes, with

reasonably large roots (such as that associated with a slope parameter of 0.75 in an AR(1) process).

Thus, the tests are probably unreliable for the types of data usually examined by macroeconomic

and financial economists. This is one of the reasons why we additionally include the results of

our out-of-sample forecast evaluation. The entries in the 5th and 6th columns of the table include

the MSFE associated with the “best” non-ARFIMA and ARFIMA models. Starred entries in the

6th column correspond to best ARFIMA point MSFE values that are lower than or equal to the

non-ARFIMA counterparts reported in the 5th column. Thus, ARFIMA-best models have MS-

FEs that are lower (or equal) to values for non-ARFIMA-best models in 39 of 45 cases. Although

this result is surprisingly positive with respect to the usefulness of ARFIMA models, notice from

the last column in the table that there is actually nothing to choose between ARFIMA and non-

ARFIMA models in 33 of 45 cases, based on application of the DM test at a 20% level. Thus, while

the ARFIMA model are not usually “bested” by non-ARFIMA counterparts in the sense of point

MSFE, they don’t usually perform significantly differently. In this sense, our predictive accuracy

type test finds little evidence in favor of ARFIMA models, contrary to the results of the 5 short

memory tests. Nevertheless, our findings from the longer S&P500 sample suggest that many of the

ARFIMA point MSFE “wins” would become significant, were we to increase sample lengths. One

reason the ARFIMA forecasting models are no longer significantly better is that there are simply

too few data to get reasonable estimates of d (note that huge variation in the different estimates of

d reported in the 3rd column of the table). It thus appears, as expected, that many observations are
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needed if the objective is to estimate ARFIMA models that are useful for forecasting. Alternatively,

one could consider using the prediction based estimator of d. This is done below. First, however,

it is worth noting that our estimated values for d seem to be much more robust to changing the

data sample (compare the entire sample results with pre- and post-1987 results) than to changing

the estimator used. The robustness problem often discussed in the context of long memory models

may thus be as much due to the slow and differing convergence rates of the different estimators as

to the presence of structural breaks and regime switching, for example. However, the importance

of structural breaks and regime switching behavior cannot be overlooked, as discussed in Granger

and Hyung (1999) and Diebold and Inoue (1999).

3.3 Stock-Watson Macroeconomic Dataset: 1959-1998

Table 3 contains results of our ARFIMA modelling analysis for the 215 time series examined by

Stock and Watson (SW: 2002). The table is organized in the same way as Table 2. As mentioned

above, the series have variously been differenced, log differenced, etc., according to the definitions

given in Appendix 2 of SW. Perhaps the most important feature of the dataset is that it con-

tains macroeconomic variables, with sample periods ranging from 1959-1998, so that only 400-500

monthly observations are available. Thus, we are subjecting the ARFIMA models to a very strin-

gent test when using them to construct prediction models. Given that we know the estimates of

d will be suspect, it would be very surprising if any ARFIMA models were shown to out-predict

more parsimonious and precisely estimated AR, ARMA, and related models.

Turning to the results reported in the table, notice first that the incidence of rejection of the

null hypothesis of short memory is less than was the case using our financial datasets. However, the

variability of d across estimators for a given variable does not appear to increase relative to the cases

where we examined much larger financial datasets. Furthermore, 130 of 215 variables have lower

(or equal) point MSFEs for the ARFIMA-best models, versus 85 “wins” for the non-ARFIMA best

models. This result is rather surprising, as it suggests that even though the ARFIMA models are

estimated imprecisely, selecting across our 4 different d estimators is enough to result in ARFIMA

models beating linear AR, ARX, ARMA, ARIMA, RW and RW with drift models, where in the

linear models the parsimonious SIC is always used to select lags. Thus, even based on the very

short series that we have examined, there is surprising evidence in favor of at least adding ARFIMA

models to the “toolbox” of models to be tried when fitting macroeconomic variables. This said, it
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should be noted that based on application of the DM test, non-ARFIMA models are significantly

better (or worse) than ARFIMA models in only 63 of 215 cases (see column 6 of the table), with

approximately 1/2 of the “wins” going to ARFIMA models. Thus, the caveats discussed in the

previous subsection with regard to findings of significant differences between models also apply for

our macroeconomic variables.

The table reported below attempts to address the very apparent severe bias of our d estimates

by constructing the prediction based estimator discussed above. In particular, we again use 1/2 the

sample to construct ex ante predictions, but do so for each value of d between 0 and 1, by increments

of 0.01. This experiment was done only for the IP series from Table 3, all of which appear to be

characterized by values of d between 0 and 1. MSFE-best d values are reported in the second

column of the table, and ARFIMA models thus estimated are compared to the non-ARFIMA-best

models via application of the DM test, as in our prior analyses.10 Now, 9 of 22 variables have

significantly superior ARFIMA models, while only 3 variables yield forecasts that are significantly

better when non-ARFIMA models are used. This compares to only 2 significant wins for ARFIMA

versus 4 for non-ARFIMA models based on our previous analysis using in-sample estimators of d

(see Table 3). This result suggests that ARFIMA models can be estimated that in fact outperform

simpler linear models, even when samples are very short. As discussed above, one reason for this

may be that the prediction based estimator automatically adapts itself to the particular “rule” that

is being used to carry out lag truncation when expanding the lag polynomial associated with the

ARFIMA model. It is also interesting to note that the prediction based estimator results in values

of d that are very close to zero for 7 of the variables, including IPE, IPI, IPM, IPX, IPXDCA,

IPXMCA, and IPXNCA, yielding clear evidence that no fractional differencing is necessary. In

contrast, estimates reported in Table 3 for these variables, while all greater than 0, range almost

uniformly between 0 and 1, with very few values being particularly near to zero. We take this as

more evidence of the potential usefulness of the prediction based estimator.
10It should be noted that the DM tests are thus not entirely ex ante in this case, as the ARFIMA models actually

use MSFE-best d values which are estimated via the same forecasting excercise used to compare the models. To
carry out a truly fair comparison, the samples in our analysis would need to be further split into two more in- and
out-of-sample periods to be used in estimation, prior to ex ante forecast construction.
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Prediction Based Estimation of d(∗)
Macroeconomic Variable d Estimates MSFE, best non-ARFIMA MSFE,ARFIMA DM Test
IP 0.211 0.66,AR(1) 0.65* -0.83, NONE
IPC 0.961 0.46,AR(1) 0.44* -2.19, ARFIMA
IPCD 0.971 0.49,AR(1) 0.49* 0.06, NONE
IPCN 0.921 0.44,MA(1) 0.40* -2.16, ARFIMA
IPD 0.481 0.64,AR(1) 0.62* -1.63, ARFIMA
IPE 0.001 0.49,ARIMA(1,1,1) 0.49* 0.63, NONE
IPF 0.301 0.53,MA(1) 0.51* -1.36, ARFIMA
IPI 0.051 0.51,MA(3) 0.51* 0.01, NONE
IPM 0.021 0.67,AR(1) 0.67* -0.13, NONE
IPMD 0.191 0.69,AR(1) 0.76 2.60, AR(1)
IPMFG 0.231 0.65,AR(1) 0.64* -0.67, NONE
IPMIN 0.991 0.49,AR(1) 0.48* -1.44, ARFIMA
IPMND 0.471 0.56,ARX 0.57 0.48, NONE
IPN 0.341 0.54,AR(2) 0.52* -1.55, ARFIMA
IPP 0.931 0.57,MA(1) 0.54* -1.62, ARFIMA
IPUT 0.521 0.41,MA(1) 0.38* -2.15, ARFIMA
IPX 0.001 0.97,AR(1)GARCH 1.05 0.79, NONE
IPXDCA 0.001 0.97,AR(1)GARCH 1.12 1.63, AR(1)GARCH
IPXMCA 0.001 0.97,AR(2) 0.97* -1.12, NONE
IPXMIN 0.871 1.00,RW-D 1.03 0.93, NONE
IPXNCA 0.001 0.98,AR(1) 1.06 1.59, AR(1)
IPXUT 0.991 0.96,AR(1) 0.91* -1.52, ARFIMA

(∗) Notes: Data used in this table correspond to those used in Stock and Watson (2002), and the variables are
monthly, spanning the period 1959-1998. The second column gives d, based on minimum MSFE and a grid of 100
possible values from [0.001,0.991]. Starred entries correspond to cases for which the point MSFE of the ARFIMA
model was lower (or the same) as for the non-ARFIMA-best model. MSFE, best non-ARFIMA reports the lowest
non-ARFIMA MSFE and associated model. All MSFEs are normalized by that of the Random Walk forecasting
model. The fourth column lists the normalized MSFE of the ARFIMA model using the predcition based estimate of
d. The last column reports DM statistics for comparing the ARFIMA model with lowest MSFE non-ARFIMA model.
“NONE” is reported when neither of the two models is preferred, based on application of the test at a nominal 20%
level.

4 Experimental Evidence

Table 1 summarizes the DGPs and parameterizations considered in our experiments. The DGPs

are the same as those used in our empirical analysis. For the ARFIMA models, data are gener-

ated using fractional values of d over the interval (0, 1), including d = {0.05, 0.25, 0.45, 0.55, 0.75}.
Additionally, MA(1) and AR(1) coefficients were specified, including {−0.5, 0.0, 0.5} (MA) and

{0.60, 0.75, 0.95} (AR). Thus, we examine forty-five different ARFIMA specifications. When gener-

ating ARFIMA data, we used an arbitrary cut-off of 1.0e−004. Terms in the polynomial expansion

with coefficients smaller in absolute value than this cut-off were truncated. All DGPs include at

most one lag, so that AR models have one autoregressive lag, MA models have one moving av-

erage lag, and ARX models have one autoregressive lag and one lag of the “exogenous” variable,

etc. All variables are generated using standard normal errors, and exogenous variables are also

i.i.d. N (0, 1) . Autoregressive slope parameters considered include {0.25, 0.50, 0.75, 0.95}, the co-

efficient on exogenous variables in ARX models is 0.5, the MA models have coefficients equal
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to {−0.75,−0.20, 0.25, 0.75}, and values of d equal to 0 and 1 are considered. For the GARCH

DGP, three different specifications were considered, corresponding to three different AR coefficients,

{0.0,0.5,0.9}. In the three regime switching DGPs examined, two states {-1,1} and transition prob-

abilities of {0.950,0.990,0.995} were specified. In all DGPs, intercept parameters are set equal to

zero. Samples of T = {200, 500, 2000} were generated, although we report results only for the

latter two sample sizes, for the sake of brevity. Complete results are available upon request from

the authors. All experiments are based on 500 Monte Carlo replications.

4.1 Long Memory

Tables 4 and 5 contain finite sample power and level results for the 5 short memory tests discussed

above. With regard to power, it is interesting to note that even for samples of 500 observations,

all tests have reasonable power against a preponderance of the ARFIMA models. The exceptions

appear to be the: (i) the LHM test, for which power is extremely low (below 0.10 in many cases)

when T = 500, d = 0.05 or d = 0.25 and when T = 2000, d = 0.05 (except when the autoregressive

coefficient is 0.95); and (ii) the WHI test, for which power is very low (below 0.30 in most cases)

when T = 500 or T = 2000 and d = 0.05. As is well known, the problem is not with power,

but with size. Notice that in Table 4 rejection frequencies are often far above the nominal 5%

levels used in the tests, even though none of the DGPs contain structural breaks. For example,

even when T = 2000, the RR, MRR, GPH, and WHI tests all have rejection frequencies of around

15% or higher, when the model is an AR(1) with slope coefficient equal to 0.75. When the slope

coefficient increases to 0.95, the rejection frequencies for these tests all jump to at least 0.85.

Thus, it appears that spurious long memory can even arise in simple contexts where there are

no structural breaks, for example. The same sorts of findings hold for our MA, GARCH, ARX,

and ARIMA models. Whenever the series is even modestly persistent, various short memory tests

we use are somewhat poorly sized. Of course, and as expected given the recent literature on the

subject, all short memory tests have great power against regime switching models! These results

serve to reaffirm earlier findings concerning the apparent non-robustness of short memory tests,

although with the caveat that problems occur even when there are no structural breaks and/or

regime switching features in the DGPs.

As discussed above, it is well known that long time series are necessary in order to accurately

estimate d. Table 6 reports averages and standard deviations of estimated d values for our ARFIMA
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DGPs across the 500 different Monte Carlo iterations, and it is clear that even samples of 2000

observations may not be sufficient to yield reasonable estimates. Interestingly, of the 4 estimators

considered, the AML estimator is clearly superior, at least in terms of bias. The RR estimator has

severe negative bias for values of d¿0.25, while the GPH and WHI estimators perform similarly,

consistently overestimating the true value of d. However, it is also worth noting that the least bias

estimator also has substantially higher standard errors, as might be expected. Finally, the presence

of moderate MA components (see Table 1 for details of the MA components in the models) does not

appear to impact estimation, while an AR coefficients above 0.75 impact a substantial positive bias

on estimates, regardless of the estimator used. Thus, if one argues that virtually all economic and

financial time series of interest are characterized by a high level of persistence, even when they are

short memory, then the results of Table 6 serve as a warning that none of the estimators examined

in this paper yield reasonable estimates of d. In summary, even if we have relatively long samples

(of 2000 observations), standard estimators be have substantial bias.

Table 7 considers a different issue. Given the prevalence of spurious long memory, even if the

true DGP is a simple AR or ARIMA model without breaks, say, what sorts of values for d might one

expect to find in the data. The relevant DGPs to examine here are those for which the empirical

level of the short memory tests discussed above is substantially above the nominal level. This

includes models with AR slope coefficients of 0.75 and 0.95, for example. In such cases, as might

be expected, positive values of d that are more than 2 standard deviations away from 0 are not

uncommon. Indeed, mean values from around 0.2 to 0.7 are quite the norm in such cases. This

supports the notion that the range of values for d often found for economic and financial time series

are not only consistent with ARFIMA models with such difference parameter values, but also with

simple AR and ARX models with relatively high levels of persistence, against which short memory

tests appear to reject much too frequently. Interestingly, the presence of MA components of the

types we consider seems to dampen estimates of d, often even yielding negative values, and usually

yielding simple two standard deviation confidence intervals that cover the origin.

Given the prevalence of spurious long memory, it is of interest to ascertain when predictive

ability tests may serve as a further yardstick for measuring the usefulness of long memory processes.

Put another way, are estimated long memory models useful for prediction when the true DGP is

long memory, and if so, will predictive accuracy tests yield a more useful measure of long memory in

the cases where in-sample long memory tests perform poorly? This is a question that was answered
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to some degree in the above empirical section, and is further adressed in the following subsection.

4.2 Prediction

Tables 8 and 9 report the proportion of times that various models “win” a forecasting competition,

based on direct comparison of point MSFE (using sequences of 1-step ahead predictions - see above

for further details). Bracketed values contain analogous entries, except that DM test rejection is

required for a model to “win”, rather than the simpler requirement that the point MSFE of the

“winning” model is lower (test inference is carried out at a nominal 20% level).

Table 8 contains results for the case where the true DGPs are ARFIMA processes. Notice

that for T =500, MSFE-best non-ARFIMA models (from amongst the models outlined at the

top of this section) outpredict the MSFE-best ARFIMA models 30-70% of the time, based on

point MSFE comparison, with the best ARFIMA performance in the range where d = 0.25− 0.55.

However, ARFIMA models perform somewhat better in terms of point MSFE when T = 2000.

This occurs for DGPs with AR coefficients of 0.60 and 0.75, with d = 0.25 − 0.55. Incidentally,

these are also the DGPs for which d is estimated much more precisely when T = 2000 (see Table 6).

Nevertheless, for other d values and/or an AR coefficient of 0.95, even a sample size of 2000 does

not yield substantial improvement in terms of point MSFE. These findings support our conclusions

based on our empirical analysis. Namely, samples of even T = 2000 are not generally sufficient to

yield reasonably unbiased estimates of d. Not surprisingly, there is often no significant difference

between the MSFE-best ARFIMA and non-ARFIMA models. This is apparent when one inspects

the bracketed entries in the table. The only time that the “best” ARFIMA model appears to

appreciably outperform the “best” non-ARFIMA model is when d = 0.05 (so that virtually no

differencing is necessary). In all other instances, there is little to choose between the models. This

is true even when T = 2000. Hence, point MSFE improvements associated with T = 2000 are not

sufficient to yield statistically significant performance improvement; more observations are needed.

Naturally, the main reason for this finding is undoubtedly that parameter estimation error (PEE)

plays a crucial role in long memory models. Any potential gain from correctly specifying the model

is offset by PEE, and more parsimonious non-ARFIMA models serve as better approximations to

the true ARFIMA process than do poorly estimated ARFIMA models. The importance of PEE is

illustrated in the following table.
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The Impact of Estimating d(∗)

Sample Size 500 Sample Size 2000
Model d GPH WHI RR AML GPH WHI RR AML
ARFIMA1 0.05 82.8 83.6 83.4 86.6 86.2 86.0 93.0 83.4
ARFIMA9 100.0 98.6 98.4 97.4 100.0 100.0 100.0 89.4
ARFIMA10 0.25 89.0 88.8 65.4 90.0 86.2 86.4 70.8 86.6
ARFIMA18 100.0 99.2 73.4 99.4 100.0 100.0 82.2 99.6
ARFIMA19 0.45 90.6 91.0 93.2 89.0 89.0 89.2 99.6 91.0
ARFIMA27 99.8 100.0 84.0 90.4 100.0 100.0 97.8 95.6
ARFIMA28 0.55 92.4 90.2 99.0 82.0 91.6 91.2 100.0 85.6
ARFIMA36 100.0 99.8 98.6 80.2 100.0 100.0 100.0 84.6
ARFIMA37 0.75 94.0 94.8 100.0 91.0 91.0 90.4 100.0 84.0
ARFIMA45 99.8 99.4 100.0 77.0 100.0 100.0 100.0 79.0

(∗) Notes: MSFE based comparison between ARFIMA models with all parameters known and models where all
parameters except d are known. Entries denote the percentage of times for which the MSFE (based on a sequence of
1-step ahead predictions) is lower when all parameters are known. Results are based on 500 Monte Carlo iterations.

Entries in this table for many of our ARFIMA DGPs are omitted as they are qualitatively the

same. The extremely high percentages recorded in the above table are as expected, as they measure

the percentage of times that models with all parameters known outperform MSFE-best models with

d estimated. What is perhaps surprising is that with respect to MSFE, the impact of estimating d

remains essentially unchanged, even when the sample size is increased to 2000 observations, again

affirming that very long samples are needed before the impact of PEE begins to diminish.

Table 9 contains results for the case where the true DGPs are non-ARFIMA processes. In almost

all cases, the point MSFE-best non-ARFIMA models dominate the point MSFE-best ARFIMA

models more than 50% (and sometimes up to 90%) of the time. It is interesting to note that

in the rare cases where ARFIMA models are point MSFE-best around 40% to 50% of time, the

average estimated d values are in the neighborhood of zero (see Table 7), and the true DGPs

are AR, ARX and ARMA DGPs with small AR coefficients. Furthermore, ARFIMA models are

almost never significantly better than the “best” non-ARFIMA models (see bracketed values in

the table), while non-ARFIMA models are significantly better up to around 75% of the time, and

are almost always MSFE-best.11 Interestingly, the best cases for non-ARFIMA DGPs correspond

to instances where the true DGP is GARCH. In particular, when the true DGP is GARCH, then

the non-ARFIMA model is significantly better up to 71% of the time when T = 500, and 78% of

the time when T = 2000. This suggests that when the true model is GARCH, the DM test serves

as a good tool for comparing GARCH against ARFIMA models, particularly when the AR slope

parameter is non-zero, as is the case in the GARCH2 and GARCH3 models. This is an interesting
11Results for regime switching models are not reported in Table 9 due to estimation difficulties in a number of

instances where the true DGP was not regime switching.
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finding, given the overwhelming importance of GARCH models in empirical macroeconomics and

finance. On the flip side, our results suggest that even if the true model is ARFIMA, then current

estimation techniques are not adequate to warrant the use of ARFIMA models for prediction, even

for T = 2000. Statistically significant improvements are not easily obtained using poorly estimated

ARFIMA models, and one may be better off in many cases using a simpler “approximation” to

the true DGP, such as an ARIMA model, for the varieties of sample sizes available when using

macroeconomic time series. Nevertheless, we have also seen, via our empirical analysis, that large

samples or use of the prediction based estimator are sufficient to yield surprisingly strong support

for ARFIMA models. In fact, even with very small samples, such as in our macroeconomic analysis,

there is often a lack of evidence against ARFIMA models (as 130 of 215 variables had lower (or

equal) point MSFEs for ARFIMA-best models, versus 85 “wins” for non-ARFIMA best models),

and use of the prediction based estimator of d yields even more compelling evidence in favor of

ARFIMA models. Given our Monte Carlo findings, such a high incidence of MSFE “wins” for the

ARFIMA models in the SW dataset suggests that the sorts of models that may be prevalent are

ones with d values less than 0.75. Inspection of Table 3 suggests that this may indeed be the case.

5 Concluding Remarks

We present the results of an empirical and Monte Carlo investigation of the usefulness of ARFIMA

models in practical prediction based applications, and find strong evidence that such models may

yield “better” approximations to unknown underlying DGPs than a fairly wide class of the bench-

mark type linear models, including AR, ARMA, ARIMA, and random walk models, among others.

Furthermore, there appears little to choose between various estimators of d when samples are as

large as often encountered in financial economics. For shorter samples such as those encountered

in macroeconomics, we suggest the use of a prediction based estimator of d which is robust to

finite sample bias and lag polynomial truncation effects that appear to plague standard in-sample

estimators. We conclude that long memory processes, and in particular ARFIMA processes, might

not fall into the “empty box” category after all, although much further research is needed before

overwhelmingly conclusive evidence in either direction can be given.
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Table 1: Data Generating Processes for Monte Carlo Experiment(∗)

Name DGP, ARFIMA(p,d,q) Name DGP, NON-ARFIMA

ARFIMA1 p=1, d=0.05, q=0, AR coef=0.60 RW Random Walk without drift

ARFIMA2 p=1, d=0.05, q=1, AR coef=0.60, MA coef =-0.50 AR1 AR(p), p=1, AR coef=0.25

ARFIMA3 p=1, d=0.05, q=1, AR coef=0.60, MA coef =0.50 AR2 AR(p), p=1, AR coef=0.50

ARFIMA4 p=1, d=0.05, q=0, AR coef=0.75 AR3 AR(p), p=1, AR coef=0.75

ARFIMA5 p=1, d=0.05, q=1, AR coef=0.75, MA coef =-0.50 AR4 AR(p), p=1, AR coef=0.95

ARFIMA6 p=1, d=0.05, q=1, AR coef=0.75, MA coef =0.50 REG1 Regime Switching, Two States -1 and 1; Transition Probability 0.950

ARFIMA7 p=1, d=0.05, q=0, AR coef=0.95 REG2 Regime Switching, Two States -1 and 1; Transition Probability 0.990

ARFIMA8 p=1, d=0.05, q=1, AR coef=0.95, MA coef =-0.50 REG3 Regime Switching, Two States -1 and 1; Transition Probability 0.995

ARFIMA9 p=1, d=0.05, q=1, AR coef=0.95, MA coef =0.50 MA1 MA(q), q=1, MA coef= 0.75

ARFIMA10 p=1, d=0.25, q=0, AR coef=0.60 MA2 MA(q), q=1, AR MA coef= 0.25

ARFIMA11 p=1, d=0.25, q=1, AR coef=0.60, MA coef =-0.50 MA3 MA(q), q=1, MA coef= -0.25

ARFIMA12 p=1, d=0.25, q=1, AR coef=0.60, MA coef =0.50 MA4 MA(q), q=1, MA coef= -0.75

ARFIMA13 p=1, d=0.25, q=0, AR coef=0.75 GARCH1 AR-GARCH AR coef= 0.0 ARCH coef=0.2, GARCH Coef=0.2

ARFIMA14 p=1, d=0.25, q=1, AR coef=0.75, MA coef =-0.50 GARCH2 AR-GARCH AR coef= 0.5 ARCH coef=0.2, GARCH Coef=0.2

ARFIMA15 p=1, d=0.25, q=1, AR coef=0.75, MA coef =0.50 GARCH3 AR-GARCH AR coef= 0.9 ARCH coef=0.2, GARCH Coef=0.2

ARFIMA16 p=1, d=0.25, q=0, AR coef=0.95 ARX1 ARX, AR coef = 0.25, X coef = 0.50

ARFIMA17 p=1, d=0.25, q=1, AR coef=0.95, MA coef =-0.50 ARX2 ARX, AR coef = 0.50, X coef = 0.50

ARFIMA18 p=1, d=0.25, q=1, AR coef=0.95, MA coef =0.50 ARX3 ARX, AR coef = 0.75, X coef = 0.50

ARFIMA19 p=1, d=0.45, q=0, AR coef=0.60 ARX4 ARX, AR coef = 0.95, X coef = 0.50

ARFIMA20 p=1, d=0.45, q=1, AR coef=0.60, MA coef =-0.50 ARIMA1 ARIMA(p,d,q), p=1, d=0, q=1, AR coef= 0.25, MA coef= -0.5

ARFIMA21 p=1, d=0.45, q=1, AR coef=0.60, MA coef =0.50 ARIMA2 ARIMA(p,d,q), p=1, d=0, q=1, AR coef= 0.25, MA coef= 0.5

ARFIMA22 p=1, d=0.45, q=0, AR coef=0.75 ARIMA3 ARIMA(p,d,q), p=1, d=0, q=1, AR coef= 0.75, MA coef= -0.5

ARFIMA23 p=1, d=0.45, q=1, AR coef=0.75, MA coef =-0.50 ARIMA4 ARIMA(p,d,q), p=1, d=0, q=1, AR coef= 0.75, MA coef= 0.5

ARFIMA24 p=1, d=0.45, q=1, AR coef=0.75, MA coef =0.50 ARIMA5 ARIMA(p,d,q), p=1, d=1, q=1, AR coef= 0.25, MA coef= -0.5

ARFIMA25 p=1, d=0.45, q=0, AR coef=0.95 ARIMA6 ARIMA(p,d,q), p=1, d=1, q=1, AR coef= 0.25, MA coef= 0.5

ARFIMA26 p=1, d=0.45, q=1, AR coef=0.95, MA coef =-0.50 ARIMA7 ARIMA(p,d,q), p=1, d=1, q=1, AR coef= 0.75, MA coef= -0.5

ARFIMA27 p=1, d=0.45, q=1, AR coef=0.95, MA coef =0.50 ARIMA8 ARIMA(p,d,q), p=1, d=1, q=1, AR coef= 0.75, MA coef= 0.5

ARFIMA28 p=1, d=0.55, q=0, AR coef=0.60

ARFIMA29 p=1, d=0.55, q=1, AR coef=0.60, MA coef =-0.50

ARFIMA30 p=1, d=0.55, q=1, AR coef=0.60, MA coef =0.50

ARFIMA31 p=1, d=0.55, q=0, AR coef=0.75

ARFIMA32 p=1, d=0.55, q=1, AR coef=0.75, MA coef =-0.50

ARFIMA33 p=1, d=0.55, q=1, AR coef=0.75, MA coef =0.50

ARFIMA34 p=1, d=0.55, q=0, AR coef=0.95

ARFIMA35 p=1, d=0.55, q=1, AR coef=0.95, MA coef =-0.50

ARFIMA36 p=1, d=0.55, q=1, AR coef=0.95, MA coef =0.50

ARFIMA37 p=1, d=0.75, q=0, AR coef=0.60

ARFIMA38 p=1, d=0.75, q=1, AR coef=0.60, MA coef =-0.50

ARFIMA39 p=1, d=0.75, q=1, AR coef=0.60, MA coef =-0.50

ARFIMA40 p=1, d=0.75, q=0, AR coef=0.75

ARFIMA41 p=1, d=0.75, q=1, AR coef=0.75, MA coef =-0.50

ARFIMA42 p=1, d=0.75, q=1, AR coef=0.75, MA coef =0.50

ARFIMA43 p=1, d=0.75, q=0, AR coef=0.95

ARFIMA44 p=1, d=0.75, q=1, AR coef=0.95, MA coef =-0.50

ARFIMA45 p=1, d=0.75, q=1, AR coef=0.95, MA coef =0.50

(∗) Notes: This table summarizes all DGPs used the the Monte Carlo experiments reported in Section 4 of the paper.
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Table 2: Analysis of Stock Market Data(∗)

Index Return Series d Estimates SM Rejec MSFE MSFE DM Test
best non-ARFIMA best ARFIMA

S&P500 |rt| (0.47, 0.33, 0.14, 0.47) 5 0.53,ARIMA(3,1,3) 0.52,RR* -1.19,NONE
r2
t (0.17, 0.14, 0.07, -0.18) 4 0.57,ARIMA(3,1,3) 0.57,GPH* -0.94,NONE

log
(
r2
t

)
(0.40, -0.06, 0.12, 0.96) 5 0.50,ARIMA(0,1,1) 0.50,RR* -0.12,NONE

|rt| , Pre 1987 (0.68, 0.56, 0.12, 0.55) 5 0.50,ARIMA(0,1,1) 0.50,GPH* -0.11,NONE
r2
t , Pre 1987 (0.65, 0.51, 0.13, -0.30) 5 0.53,ARMA(1,1) 0.54,GPH 1.22,NONE

log
(
r2
t

)
, Pre 1987 (0.85, 0.92, 0.09, 1.09) 5 0.49,ARIMA(0,1,1) 0.49,WHI* -0.50,NONE

|rt| , Post 1987 (0.75, 1.11, 0.21, 0.48) 5 0.53,ARMA(1,1) 0.53,WHI* 0.10,NONE
r2
t , Post 1987 (0.58, 1.09, 0.16, -0.30) 4 0.59,ARMA(1,1) 0.59,RR* 0.00,NONE

log
(
r2
t

)
, Post 1987 (0.70, 1.00, 0.20, 1.23) 4 0.50,ARMA(1,1) 0.50,WHI* -0.35,NONE

FTSE |rt| (0.38, 0.37, 0.14, 0.47) 4 0.53,ARMA(1,1) 0.54,GPH 3.56,ARMA
r2
t (0.30, 0.21, 0.08, -0.16) 4 0.59,AR(5) 0.65,WHI 0.78,NONE

log
(
r2
t

)
(0.58, 1.15, 0.10, 1.03) 3 0.51,ARIMA(0,1,1) 0.51,RR* -0.62,NONE

|rt| , Pre 1987 (0.74, 0.96, 0.19, 0.59) 4 0.56,ARMA(1,1) 0.58,GPH 3.30,ARMA
r2
t , Pre 1987 (0.30, 0.33, 0.12, -0.15) 3 1.00,RW 0.58,AML* -4.94,AML

log
(
r2
t

)
, Pre 1987 (0.83, 0.77, 0.15, 1.44) 4 0.55,MA(1) 0.56,GPH 0.91,NONE

|rt| , Post 1987 (0.49, -0.06, 0.10, 0.49) 4 0.53,ARMA(1,1) 0.53,RR* -1.87, RR
r2
t , Post 1987 (0.36, 0.50, 0.07, -0.30) 3 0.54,ARMA(1,1) 0.54,RR* 0.02,NONE

log
(
r2
t

)
, Post 1987 (0.51, 1.13, 0.12, 1.13) 4 0.51,ARIMA(0,1,1) 0.51,RR* -0.23,NONE

DAX |rt| (0.56, 0.51, 0.23, 0.50) 5 0.52,ARMA(1,1) 0.52,RR* -2.36, RR
r2
t (0.36, 0.30, 0.16, -0.15) 5 0.54,AR(9) 0.54,WHI* 0.43,NONE

log
(
r2
t

)
(0.64, 0.98, 0.22, 1.00) 5 0.50,ARMA(1,1) 0.50,GPH* -0.26,NONE

|rt| , Pre 1987 (0.53, 1.12, 0.15, 0.54) 5 0.55,ARIMA(0,1,1) 0.54,WHI* -1.23,NONE
r2
t , Pre 1987 (0.35, 0.20, 0.14, -0.37) 5 0.54,ARIMA(1,1,1) 0.54,GPH* -0.53,NONE

log
(
r2
t

)
, Pre 1987 (0.71, 1.14, 0.13, 1.43) 4 0.53,ARIMA(0,1,1) 0.53,RR* -0.85,NONE

|rt| , Post 1987 (0.44, -0.49, 0.18, 0.52) 5 0.52,ARMA(1,1) 0.52,GPH* 1.43,ARMA
r2
t , Post 1987 (0.22, 0.44, 0.11, -0.17) 5 0.56,ARIMA(1,1,1) 0.56,WHI* -1.81,WHI

log
(
r2
t

)
, Post 1987 (0.59, 1.07, 0.18, 1.04) 5 0.51,ARMA(1,1) 0.51,RR* -0.50,NONE

Nikkei 225 |rt| (0.52, 0.51, 0.22, 0.45) 5 0.55,ARIMA(1,1,2) 0.55,WHI* 1.69,ARIMA
r2
t (0.20, 0.17, 0.12, -0.23) 5 0.57,ARIMA(2,1,3) 0.57,GPH* 0.53,NONE

log
(
r2
t

)
(0.73, 1.08, 0.21, 0.98) 5 0.50,ARIMA(1,1,1) 0.50,GPH* -3.37,GPH

|rt| , Pre 1987 (0.54, 1.23, 0.19, 0.45) 5 0.58,ARIMA(1,1,2) 0.58,WHI* 0.36,NONE
r2
t , Pre 1987 (0.37, 0.13, 0.14, -0.48) 4 0.62,AR(1) 0.63,RR 1.11,NONE

log
(
r2
t

)
, Pre 1987 (0.38, 0.08, 0.13, 1.14) 4 0.57,ARIMA(0,1,1) 0.56,WHI* -0.75,NONE

|rt| , Post 1987 (0.60, 0.51, 0.26, 0.55) 5 0.53,ARMA(1,1) 0.53,RR* 0.71,NONE
r2
t , Post 1987 (0.46, 0.34, 0.20, -0.12) 4 0.53,ARMA(1,1) 0.53,WHI* 0.34,NONE

log
(
r2
t

)
, Post 1987 (0.79, 0.55, 0.25, 1.06) 5 0.49,ARMA(1,1) 0.49,WHI* 1.19,NONE

Hang Sang |rt| (0.47, 0.12, 0.19, 0.52) 5 0.58,ARMA(2,1) 0.58,GPH* -0.69,NONE
r2
t (0.01, 0.05, 0.02, 0.00) 0 0.73,ARX 0.73,RR* -2.45, RR

log
(
r2
t

)
(0.66, 0.84, 0.21, 0.99) 4 0.52,ARMA(1,1) 0.52,WHI* 0.12,NONE

|rt| , Pre 1987 (0.46, 0.34, 0.11, 0.65) 4 0.54,ARIMA(2,1,2) 0.53,GPH* -2.69,GPH
r2
t , Pre 1987 (0.35, 0.34, 0.10, 0.01) 3 0.59,ARMA(2,1) 0.54,AML* -4.98,AML

log
(
r2
t

)
, Pre 1987 (0.58, 1.16, 0.05, 1.10) 2 0.51,ARIMA(0,1,1) 0.51,RR* 0.46,NONE

|rt| , Post 1987 (0.47, 0.31, 0.17, 0.54) 5 0.57,ARIMA(2,1,3) 0.57,GPH* -0.25,NONE
r2
t , Post 1987 (0.21, 0.19, 0.05, -0.08) 21 0.73,ARMA(1,1) 0.72,GPH* -0.42,NONE

log
(
r2
t

)
, Post 1987 (0.87, 1.16, 0.17, 1.11) 5 0.51,ARIMA(0,1,1) 0.51,WHI* 0.93,NONE

(∗) Notes: Models are estimated as discussed above, and model acronyms used are outlined in Table 1. d estimates
are based on GPH, AML, RR, and WHI estimators, respectively. SM Rejec reports the number of short memory test
rejections based on application of all 5 SM tests discussed above, at a 5% nominal level. MFSEs are normalized by
the RW MSFE. Starred entries correspond to cases for which the point MSFE of the ARFIMA-best model was lower
(or the same) as for the non-ARFIMA-best model. All predictions are 1-step ahead, the out-of-sample period is equal
to 50% of the sample, and Diebold and Mariano (DM) test is based on MSFE loss, assumes that PEE vanishes, and
assmues the N(0, 1) distribution is asymptotically valid, as discussed in Section 2.3. Tests are based on nominal 20%
level critical values. MSFE “best” non-ARFIMA (column 5) and ARFIMA (column 6) models are the ones compared
with the DM test (column 7). DM test statistic values are reported, along with the “winning” model for those cases
were the null of the DM test is rejected, and “NONE” when there is no significant difference between the models.
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Table 3: Analysis of Macroeconomic Data(∗)

Macroeconomic d Estimates SM Rejec MSFE MSFE DM Test
Variable best non-ARFIMA best ARFIMA
CCI30M (1.16, 1.01, 0.32, 1.88) 5 0.92,ARIMA(1,1,1) 0.94,GPH 0.89,NONE
CCINRV (1.11, 0.68, 0.27, 1.36) 4 0.67,ARIMA(1,1,1) 0.66,GPH* -0.49,NONE
CCINT (1.26, 0.99, 0.23, 0.92) 4 0.80,ARX 0.83,WHI 0.63,NONE
CCINV (1.09, 0.98, 0.23, 0.97) 4 0.75,AR(3) 0.71,RR* -1.26,NONE
CONDO9 (1.25, 1.13, 0.31, 2.27) 5 0.70,AR(3) 0.72,GPH 1.19,NONE
CONPC (0.78, 0.51, 0.29, 2.11) 5 0.99,RW-D 1.01,WHI 0.61,NONE
CONQC (0.78, 0.72, 0.30, 2.12) 5 1.00,RW 0.94,GPH* -2.37,GPH
CONTC (0.78, 0.51, 0.26, 2.12) 5 0.99,RW-D 1.03,WHI 1.53,RW-D
EXRCAN (0.40, 0.29, 0.16, 0.09) 3 0.58,AR(1) 0.59,WHI 0.40,NONE
EXRGER (0.27, 0.50, 0.08, 0.39) 1 0.66,MA(1) 0.66,RR* -0.17,NONE
EXRJAN (0.26, 0.20, 0.13, 0.16) 1 0.67,MA(1) 0.96,WHI 4.09,MA(1)
EXRSW (0.46, 0.50, 0.16, 0.40) 2 0.64,MA(1) 0.66,RR 1.00,NONE
EXRUK (0.19, 0.09, 0.11, -0.11) 0 0.52,AR(1)-GARCH 0.67,WHI 0.93,NONE
EXRUS (0.09, 0.06, 0.07, 0.00) 0 0.65,MA(1) 0.65,AML* -0.16,NONE
FCLBMC (0.47, 0.50, 0.14, 0.33) 2 0.62,ARIMA(1,1,1) 0.62,WHI* -0.87,NONE
FCLIN (1.04, 1.05, 0.25, 0.66) 3 0.93,AR(1) 0.90,WHI* -1.44,WHI
FCLNBF (0.43, 0.17, 0.16, -0.47) 2 0.68,AR(1) 0.70,RR 0.46,NONE
FCLNQ (0.67, 1.32, 0.17, 0.29) 3 0.61,ARIMA(1,1,1) 0.61,WHI* -0.14,NONE
FCLRE (0.93, 0.98, 0.21, 0.77) 3 0.90,ARIMA(1,1,1) 0.88,WHI* -1.70,WHI
FCLS (0.62, 1.39, 0.14, 0.73) 3 0.77,AR(1) 0.73,GPH* -1.39,GPH
FCSGV (0.68, 1.50, 0.15, 0.43) 2 0.74,ARX 0.68,WHI* -3.35,WHI
FM1 (-1.35, -0.22, -0.18, -1.63) 2 0.31,ARX 0.79,RR 1.12,NONE
FM2 (-0.86, —, -0.07, -2.11) 2 0.41,MA(2) 0.43,GPH 1.44,MA(2)
FM2DQ (0.92, 0.63, 0.19, 0.38) 3 0.86,AR(1) 0.85,AML* -0.35,NONE
FM3 (-0.67, -0.44, -0.10, -1.21) 2 0.34,MA(1) 0.33,AML* -1.99,AML
FMFBA (-0.49, 0.08, -0.20, -1.13) 2 0.31,AR(5) 0.30,GPH* -0.86,NONE
FML (-0.38, 0.42, -0.16, -0.81) 2 0.29,ARIMA(0,1,1) 0.29,GPH* 0.20,NONE
FMRNBC (-0.89, -0.49, -0.22, -0.90) 2 0.24,MA(1) 0.22,AML* -1.17,NONE
FMRRA (-1.17, -0.14, -0.25, -1.29) 2 0.28,AR(9) 0.47,RR 2.59,AR(9)
FSDXP (1.23, 1.01, 0.31, 1.62) 4 0.97,ARIMA(1,1,1) 0.96,WHI* -0.17,NONE
FSNCOM (-0.14, -0.07, 0.05, -0.28) 1 0.65,MA(1) 0.65,RR* -0.33,NONE
FSNFI (-0.32, -0.25, 0.04, -0.94) 2 0.69,MA(1) 0.69,RR* -0.74,NONE
FSNIN (-0.31, -0.49, 0.05, -0.76) 1 0.70,MA(1) 0.69,RR* -0.77,NONE
FSNTR (-0.66, -0.10, 0.07, -1.16) 3 0.69,MA(1) 0.68,RR* -0.46,NONE
FSNUT (-0.12, -0.15, 0.05, -0.46) 2 0.57,AR(1) 1.42,AML 1.22,NONE
FSNVV3 (0.01, -0.48, -0.12, 0.75) 1 0.34,AR(2) 0.62,WHI 5.08,AR(2)
FSPCAP (-0.22, -0.49, 0.01, -0.29) 0 0.62,MA(1) 0.61,WHI* -0.41,NONE
FSPCOM (-0.16, -0.06, 0.03, -0.28) 0 0.65,MA(1) 0.65,RR* -1.05,NONE
FSPFI (-0.19, -0.13, 0.04, -0.78) 1 0.65,AR(1) 0.65,RR* 0.05,NONE
FSPIN (-0.16, -0.48, 0.03, -0.25) 0 0.66,MA(1) 0.65,RR* -1.01,NONE
FSPTR (-0.23, -0.48, 0.01, -0.27) 0 0.63,MA(1) 0.63,GPH* -0.20,NONE
FSPUT (-0.24, -0.11, 0.10, -0.48) 2 0.60,AR(1) 0.62,AML 1.53,NONE
FSPXE (1.31, 0.51, 0.33, 1.73) 4 0.94,AR(2) 0.93,GPH* -0.45,NONE
FSTB (-0.24, -0.25, -0.12, -0.10) 0 0.38,MA(1) 0.41,WHI 1.73,MA(1)
FSTE (0.69, —, -0.03, 0.77) 2 0.37,AR(1) 0.36,WHI* -0.64,NONE
FSTM (0.07, 0.04, -0.16, 0.55) 1 0.37,MA(2) 0.37,GPH* -0.13,NONE
FTB (-0.03, -0.27, -0.13, 0.03) 0 0.47,MA(1) 0.47,WHI* -0.10,NONE
FTMD (0.22, 0.01, -0.16, 0.55) 1 0.47,AR(1) 0.48,GPH 0.54,NONE
FWAFIT (1.79, 2.38, 0.30, 2.02) 4 0.84,ARMA(2,1) 0.86,GPH 0.24,NONE
FYAAAC (0.22, 0.04, 0.09, 0.20) 0 0.64,MA(1) 0.63,AML* -1.35,AML
FYBAAC (0.34, 0.19, 0.13, 0.01) 2 0.72,ARX 0.72,RR* -0.15,NONE

(∗) Notes: See notes to Table 2. Data used in this table correspond to those used in Stock and Watson (2002), and
the variables are monthly, spanning the period 1959-1998 (see above for further details). For the following series we
could not estimate AML due to convergence problems: FM2, FSTE, LEHCC, PUNEW, PUXHS, PUXM.
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Table 3: Analysis of Macroeconomic Data (cont.)(∗)

Macroeconomic d Estimates SM Rejec MSFE MSFE DM Test
Variable best non-ARFIMA best ARFIMA
FYCP90 (-0.15, -0.10, 0.06, -0.48) 1 0.63,ARIMA(0,1,1) 0.64,RR 1.08,NONE
FYFF (-0.12, -0.49, 0.07, -0.50) 1 0.68,AR(1) 0.68,GPH* -0.34,NONE
FYFHA (0.09, -0.11, 0.05, -0.04) 0 0.66,MA(2) 0.66,AML* -0.36,NONE
FYGM3 (0.01, -0.49, 0.02, -0.33) 0 0.68,MA(1) 0.68,WHI* 0.30,NONE
FYGM6 (0.02, 0.03, 0.02, -0.32) 0 0.67,MA(1) 0.67,AML* 0.09,NONE
FYGT1 (-0.01, -0.03, 0.04, -0.24) 0 0.63,MA(1) 0.62,AML* -1.28,AML
FYGT10 (0.17, -0.13, 0.01, 0.06) 0 0.64,MA(1) 0.64,WHI* -0.27,NONE
FYGT5 (0.01, -0.13, 0.02, -0.09) 0 0.66,MA(1) 0.64,AML* -0.50,NONE
GMCANQ (-0.14, -0.15, -0.07, -0.12) 0 0.45,AR(1) 0.47,AML 0.53,NONE
GMCDQ (0.29, 0.06, -0.05, 0.35) 1 0.40,MA(3) 0.41,RR 0.45,NONE
GMCNQ (0.59, 1.07, -0.04, 0.34) 2 0.32,AR(1) 0.31,GPH* -0.58,NONE
GMCQ (0.82, 0.92, 0.01, 0.44) 2 0.40,MA(1) 0.37,WHI* -2.00,WHI
GMCSQ (0.59, 0.96, 0.04, 0.49) 2 0.40,AR(1) 0.36,GPH* -2.50,GPH
GMDC (-0.31, 0.41, -0.15, -0.85) 2 0.28,MA(1) 0.27,AML* -1.07,NONE
GMDCD (-0.76, 0.35, -0.16, -1.21) 2 0.22,ARIMA(0,1,1) 0.22,RR* 2.46,ARIMA(0,1,1)
GMDCN (-0.22, 0.37, -0.14, -0.77) 2 0.38,AR(5) 0.39,GPH 0.28,NONE
GMDCS (-0.31, -0.49, -0.20, -0.85) 1 0.18,ARIMA(0,1,1) 0.18,AML* 0.02,NONE
GMPYQ (0.77, 1.07, 0.07, 0.45) 2 0.42,AR(1) 0.41,GPH* -0.45,NONE
GMYXPQ (0.88, 1.23, 0.12, 0.41) 3 0.62,AR(1) 0.59,WHI* -2.09,WHI
HHSNTN (1.22, 0.81, 0.34, 1.81) 4 0.98,AR(1)GARCH 2.13,GPH 5.96,AR(1)GARCH
HMOB (1.16, 1.30, 0.33, 2.30) 5 1.00,RW 1.04,GPH 0.64,NONE
HNIV (0.82, 0.65, 0.36, 1.92) 5 0.82,ARMA(3,1) 0.86,WHI 3.00,ARMA(3,1)
HNR (0.88, 0.83, 0.30, 1.86) 5 0.97,AR(1) 0.94,AML* -0.91,NONE
HNS (0.80, 0.84, 0.29, 1.91) 5 0.99,ARX 0.96,AML* -1.12,NONE
HNSMW (0.98, 0.91, 0.32, 2.64) 5 0.73,ARX 0.74,GPH 1.08,NONE
HNSNE (0.79, 1.37, 0.28, 2.61) 5 0.71,ARMA(1,1) 0.72,GPH 0.92,NONE
HNSSOU (0.86, 0.80, 0.22, 2.66) 5 0.86,ARIMA(1,1,1) 0.84,GPH* -0.75,NONE
HNSWST (0.95, 0.94, 0.29, 2.64) 5 0.89,AR(2) 0.90,GPH 0.93,NONE
HSBMW (0.81, 0.94, 0.25, 1.93) 4 0.94,ARMA(1,1) 0.94,GPH* -0.04,NONE
HSBNE (0.82, 1.03, 0.30, 1.94) 4 0.98,ARIMA(1,1,1) 0.94,WHI* -0.91,NONE
HSBR (0.89, 0.51, 0.24, 2.38) 4 0.98,AR(1) 1.14,GPH 1.69,AR(1)
HSBSOU (0.80, 0.57, 0.27, 1.96) 4 0.98,AR(2) 1.01,GPH 0.82,NONE
HSBWST (0.75, 0.57, 0.26, 1.95) 4 0.97,AR(1) 1.04,GPH 0.94,NONE
HSFR (0.87, 0.69, 0.24, 2.38) 4 0.89,ARX 0.95,GPH 0.82,NONE
HSMW (0.81, 1.50, 0.24, 2.33) 4 0.86,AR(4) 0.81,GPH* -1.44,GPH
HSNE (0.92, 1.23, 0.25, 2.38) 4 0.75,AR(1)-GARCH 0.71,GPH* -1.07,NONE
HSSOU (0.96, 1.16, 0.26, 2.34) 4 0.79,ARIMA(2,1,2) 0.81,GPH 0.58,NONE
HSWST (0.97, 1.12, 0.27, 2.30) 4 0.85,ARMA(1,1) 0.87,GPH 1.88,ARMA(1,1)
IP (0.42, 0.15, 0.08, 0.33) 1 0.66,AR(1) 0.65,RR* -1.20,NONE
IPC (0.18, -0.02, 0.04, 0.37) 1 0.46,AR(1) 0.46,GPH* -0.50,NONE
IPCD (0.07, -0.14, 0.01, 0.20) 1 0.49,AR(1) 0.50,RR 0.53,NONE
IPCN (0.33, 0.04, 0.01, 0.41) 2 0.44,MA(1) 0.41,AML* -1.24,NONE
IPD (0.37, 0.17, 0.07, 0.23) 1 0.64,AR(1) 0.67,WHI 1.53,AR(1)
IPE (0.65, 0.51, 0.10, 0.33) 2 0.49,ARIMA(1,1,1) 0.49,WHI* 0.66,NONE
IPF (0.50, 0.27, 0.10, 0.39) 2 0.53,MA(1) 0.51,WHI* -1.19,NONE
IPI (0.42, 0.24, 0.08, 0.30) 1 0.51,MA(3) 0.51,WHI* 0.00,NONE
IPM (0.19, 0.06, 0.04, 0.25) 1 0.67,AR(1) 0.67,RR* -0.04,NONE
IPMD (0.08, -0.02, 0.04, 0.13) 1 0.69,AR(1) 0.77,WHI 2.45,AR(1)
IPMFG (0.37, 0.16, 0.09, 0.31) 1 0.65,AR(1) 0.64,RR* -1.09,NONE
IPMIN (0.09, -0.34, -0.04, 0.24) 1 0.49,AR(1) 0.57,WHI 1.23,NONE
IPMND (0.02, -0.31, 0.09, 0.39) 1 0.56,ARX 0.58,WHI 0.94,NONE
IPN (0.16, 0.18, 0.09, 0.39) 1 0.54,AR(2) 0.52,WHI* -1.28,WHI
IPP (0.51, 1.24, 0.10, 0.37) 2 0.56,MA(1) 0.54,WHI* -1.19,NONE
IPUT (0.55, 0.51, 0.03, 0.53) 2 0.41,MA(1) 0.38,WHI* -2.14,WHI
IPX (0.89, 0.51, 0.23, 1.89) 4 0.97,AR(1)GARCH 1.09,GPH 1.21,NONE
IPXDCA (0.91, 0.53, 0.22, 1.87) 4 0.97,AR(1)GARCH 1.16,GPH 2.03,AR(1)GARCH
IPXMCA (1.07, 0.57, 0.28, 2.24) 3 0.99,AR(2) 0.98,GPH* -0.17,NONE
IPXMIN (0.96, 0.86, 0.30, 1.90) 4 1.00,RW-D 1.03,GPH 0.73,NONE
IPXNCA (0.87, 0.59, 0.25, 1.91) 4 0.98,AR(1) 1.07,GPH 1.69,AR(1)
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Table 3: Analysis of Macroeconomic Data (cont.)(∗)

Macroeconomic d Estimates SM Rejec MSFE MSFE DM Test
Variable best non-ARFIMA best ARFIMA
IPXUT (0.92, 0.83, 0.35, 1.92) 4 0.96,AR(1) 0.96,WHI* -0.42,NONE
IVMFDQ (0.77, 1.28, 0.17, 0.43) 4 0.68,AR(3) 0.67,RR* -0.25,NONE
IVMFGQ (0.91, 1.29, 0.17, 0.45) 3 0.71,ARIMA(1,1,1) 0.69,RR* -1.28,RR
IVMFNQ (0.42, 0.46, 0.09, 0.45) 2 0.66,AR(1) 0.63,WHI* -1.95,WHI
IVMTQ (0.73, 1.30, 0.14, 0.50) 3 0.68,ARIMA(1,1,1) 0.66,WHI* -0.73,NONE
IVRRQ (0.38, -0.48, 0.08, 0.46) 3 0.60,AR(1) 0.60,RR* -1.25,NONE
IVSRMQ (0.16, 0.07, 0.03, -0.92) 1 0.43,AR(1) 0.42,GPH* -0.34,NONE
IVSRQ (0.21, 0.16, 0.02, -0.41) 1 0.43,AR(1) 0.43,AML* -0.28,NONE
IVSRRQ (-0.15, -0.22, -0.01, -0.43) 1 0.42,MA(1) 0.42,GPH* -0.69,NONE
IVSRWQ (0.11, 0.12, -0.02, 0.06) 0 0.39,MA(1) 0.39,AML* 0.04,NONE
IVWRQ (0.59, 0.53, 0.05, 0.59) 2 0.56,AR(1) 0.54,RR* -2.20,RR
LEH (-0.76, -0.49, -0.19, -1.32) 4 0.11,AR(8) 0.15,AML 3.86,AR(8)
LEHCC (-0.91, —, -0.20, -1.28) 2 0.09,ARIMA(0,1,2) 0.09,RR* 0.61,NONE
LEHFR (-0.92, 0.10, -0.27, -1.73) 3 0.06,AR(8) 0.12,AML 5.32,AR(8)
LEHM (-0.74, -0.05, -0.17, -1.17) 2 0.14,AR(9) 0.17,GPH 2.54,AR(9)
LEHS (-0.80, 0.07, -0.24, -0.95) 3 0.10,AR(5) 0.13,RR 2.77,AR(5)
LEHTT (-1.20, -0.10, -0.28, -1.66) 4 0.12,ARX 0.17,RR 1.84,ARX
LEHTU (-0.58, -0.11, -0.21, -0.92) 3 0.12,ARX 0.15,RR 3.93,ARX
LHEL (0.43, 0.50, 0.13, -0.15) 2 0.43,AR(3) 0.44,WHI 0.95,NONE
LHELX (1.17, 0.65, 0.32, 0.34) 4 0.85,ARMA(2,1) 0.90,GPH 1.54,ARMA(2,1)
LHEM (0.58, 0.70, 0.03, 0.28) 1 0.55,MA(1) 0.53,WHI* -1.04,NONE
LHNAG (0.50, 0.99, 0.04, 0.31) 2 0.56,AR(1) 0.52,WHI* -1.32,WHI
LHU14 (1.40, 1.13, 0.33, 1.61) 4 1.00,RW 0.98,GPH* -0.99,NONE
LHU15 (1.54, 1.64, 0.30, 1.33) 4 0.90,AR(p) 0.90,GPH* 0.01,NONE
LHU26 (1.25, 1.25, 0.29, 1.37) 3 1.00,AR(1)-GARCH 1.03,GPH 0.82,NONE
LHU5 (1.30, 0.94, 0.35, 1.80) 4 0.81,ARIMA(2,1,0) 0.81,GPH* 0.07,NONE
LHU680 (1.35, 1.35, 0.34, 1.82) 4 0.90,ARMA(2,2) 0.92,GPH 0.71,NONE
LHUR (1.55, 1.51, 0.31, 1.74) 4 1.00,RW-D 0.99,GPH* -0.14,NONE
LP (0.62, 0.53, 0.11, 0.28) 1 0.64,AR(2) 0.62,GPH* -0.85,NONE
LPCC (0.22, 0.26, 0.01, -0.01) 1 0.69,MA(1) 0.60,AML* -1.61,AML
LPED (0.40, 0.27, 0.11, -0.12) 1 0.82,ARIMA(1,1,1) 0.79,GPH* -0.74,NONE
LPEM (0.41, -0.49, 0.13, -0.13) 2 0.84,AR(2) 0.83,RR* -1.05,NONE
LPEN (0.28, 0.27, 0.16, -0.19) 1 0.69,ARIMA(2,1,0) 0.69,RR* 0.55,NONE
LPFR (0.94, 0.89, 0.14, 0.41) 4 0.66,AR(5) 0.68,RR 1.09,NONE
LPGD (0.40, -0.49, 0.12, -0.09) 2 0.79,ARIMA(1,1,1) 0.81,GPH 0.29,NONE
LPGOV (0.91, 1.21, 0.14, 0.43) 4 0.61,ARIMA(3,1,1) 0.58,GPH* -2.00,GPH
LPHRM (0.83, 0.86, 0.28, 2.54) 3 0.88,ARMA(1,1) 0.84,GPH* -1.82,GPH
LPMI (-0.11, -0.15, 0.02, 0.11) 1 0.70,AR(1) 0.79,GPH 2.52,AR(1)
LPMOSA (1.30, 1.13, 0.28, 1.78) 4 0.99,AR(2) 0.95,GPH* -1.18,NONE
LPNAG (0.79, 0.51, 0.11, 0.32) 1 0.65,AR(2) 0.61,GPH* -0.61,NONE
LPS (0.83, 1.12, 0.09, 0.49) 2 0.64,ARIMA(1,1,1) 0.63,WHI* -0.50,NONE
LPSP (1.01, 0.52, 0.13, 0.41) 3 0.44,ARIMA(1,1,2) 0.44, RR* -0.61,NONE
LPT (0.98, 1.28, 0.10, 0.38) 3 0.86,ARIMA(1,1,2) 0.82,WHI* -1.43,WHI
LPTU (0.47, 0.19, 0.03, 0.06) 1 0.32,AR(1) 0.32,WHI* -1.24,NONE
LW (0.21, -0.09, -0.04, 0.29) 1 0.26,MA(1) 0.26,GPH* -2.19,GPH
MDO (0.25, 0.16, 0.01, 0.45) 1 0.36,AR(1) 0.36,AML* 0.14,NONE
MDOQ (0.17, 0.07, 0.01, 0.04) 0 0.36,AR(1) 0.37,WHI 0.70,NONE
MDU (0.62, 0.72, 0.14, 0.44) 4 0.76,ARIMA(1,1,1) 0.76,RR* -1.14,NONE
MDUWU (0.22, 0.22, -0.01, 0.42) 1 0.32,MA(1) 0.33,GPH 0.60,NONE
MNO (0.59, 0.95, 0.11, 0.63) 2 0.41,ARIMA(3,1,3) 0.41,GPH* 0.60,NONE
MNOU (0.43, 0.14, 0.01, 0.57) 2 0.29,MA(1) 0.29,AML* -0.90,NONE
MNU (0.05, 0.29, 0.10, 0.26) 0 0.64,ARIMA(2,1,2) 0.65,GPH 2.69,ARIMA(2,1,2)
MO (0.41, 0.11, 0.06, 0.56) 2 0.39,AR(1) 0.40,AML 0.27,NONE
MOCMQ (0.17, -0.03, 0.02, 0.02) 0 0.46,MA(1) 0.46,WHI* -0.19,NONE
MOWU (0.27, 0.12, 0.01, 0.46) 1 0.34,AR(1) 0.35,AML 1.20,NONE
MPCON (0.25, -0.14, -0.12, 0.52) 1 0.27,MA(1) 0.27,GPH* 0.81,NONE
MPCONQ (0.12, -0.01, -0.09, 0.21) 0 0.27,MA(1) 0.27,GPH* -0.68,NONE
MSDQ (0.42, -0.05, 0.01, 0.22) 1 0.40,MA(1) 0.40,WHI* -0.40,NONE
MSMQ (0.48, 0.02, 0.02, 0.27) 1 0.40,MA(1) 0.39,WHI* -0.52,NONE

31



Table 3: Analysis of Macroeconomic Data (cont.)(∗)

Macroeconomic d Estimates SM Rejec MSFE MSFE DM Test
Variable best non-ARFIMA best ARFIMA
MSMTQ (0.38, 0.10, 0.03, 0.36) 0 0.42,AR(1) 0.41,WHI* -0.83,NONE
MSNQ (0.23, 0.01, 0.01, 0.34) 0 0.40,AR(1) 0.39,AML* -0.67,NONE
MSONDQ (0.21, -0.01, -0.09, 0.18) 0 0.26,ARIMA(0,1,1) 0.26,WHI* 0.38,NONE
MU (0.61, 0.77, 0.14, 0.44) 4 0.77,ARIMA(1,1,1) 0.77,RR* -0.76,NONE
PCGOLD (-0.86, -0.49, -0.11, -1.18) 3 0.18,ARIMA(0,1,2) 0.19,RR 2.34,ARIMA(0,1,2)
PMCP (1.24, 0.51, 0.27, 1.83) 3 1.00,RW 1.25,RR 2.00,RW
PMDEL (1.22, 1.21, 0.23, 1.35) 3 0.98,ARX 1.01,GPH 0.63,NONE
PMEMP (1.13, 1.17, 0.16, 1.76) 3 0.98,AR(1)-GARCH 0.99,GPH 0.18,NONE
PMI (0.99, 0.51, 0.14, 1.80) 3 0.96,AR(2) 0.98,GPH 0.38,NONE
PMNO (1.01, 0.83, 0.17, 1.82) 3 0.96,ARX 1.01,AML 0.63,NONE
PMNV (0.99, 0.82, 0.16, 1.87) 3 0.96,ARX 1.05,GPH 2.17,ARX
PMP (1.01, 0.81, 0.17, 1.80) 3 0.97,ARX 1.03,GPH 0.71,NONE
PSM99Q (-0.77, 0.36, -0.12, -1.56) 2 0.40,AR(3) 0.37,AML* -1.81,AML
PU81 (-0.69, -0.49, -0.10, -1.72) 3 0.23,ARIMA(0,1,1) 0.23,RR* 2.07,ARIMA(0,1,1)
PU83 (-0.49, 0.23, -0.12, -0.85) 3 0.19,MA(1) 0.20,RR 0.89,NONE
PU84 (-0.79, 0.22, -0.19, -1.08) 3 0.47,MA(1) 0.43,AML* -2.17,AML
PU85 (-0.35, 0.40, -0.19, -0.9) 2 0.25,AR(1) 0.26,RR 0.17,NONE
PUC (-0.38, -0.47, -0.14, -0.82) 2 0.39,ARIMA(0,1,1) 0.41,RR 2.21,ARIMA(0,1,1)
PUCD (-0.62, -0.49, -0.19, -0.77) 2 0.37,MA(1) 0.33,AML* -2.53,AML
PUH (-0.64, -0.49, -0.12, -1.1) 3 0.17,MA(1) 0.17,RR* 2.62,MA(1)
PUNEW (-0.07, —, -0.15, -0.78) 2 0.38,ARIMA(0,1,1) 0.39,GPH 2.65,ARIMA(0,1,1)
PUS (-0.47, -0.42, -0.26, -1.05) 2 0.30,MA(3) 0.31,AML 0.24,NONE
PUXF (-0.14, -0.30, -0.21, -0.91) 1 0.33,ARIMA(0,1,1) 0.34,GPH 2.02,ARIMA(0,1,1)
PUXHS (-0.26, —, -0.18, -0.80) 2 0.37,ARIMA(0,1,1) 0.39,RR 2.41,ARIMA(0,1,1)
PUXM (-0.20, —, -0.17, -0.85) 2 0.36,MA(1) 0.38,AML 1.04,NONE
PW150A (-1.02, -0.49, -0.16, -1.89) 4 0.32,ARIMA(1,1,1) 0.31,RR* -0.59,NONE
PW160A (-1.00, 0.21, -0.17, -1.24) 3 0.21,ARIMA(0,1,2) 0.24,RR 2.70,ARIMA(0,1,2)
PWCMSA (-0.4, -0.02, -0.12, -0.54) 2 0.31,AR(5) 0.26,RR* -2.94, RR
PWFCSA (-0.46, 0.09, -0.17, -0.75) 1 0.30,ARIMA(0,1,1) 0.32,AML 1.37,ARIMA(0,1,1)
PWFSA (-0.45, -0.49, -0.17, -0.80) 1 0.28,ARIMA(0,1,1) 0.29,AML 0.76,NONE
PWFXSA (-0.34, -0.43, -0.09, -0.88) 4 0.29,ARIMA(0,1,1) 0.29,RR* 0.38,NONE
PWIMSA (-0.78, -0.49, -0.09, -0.99) 2 0.47,AR(1) 0.52,AML 0.86,NONE
RTNQ (0.57, 1.18, -0.04, 0.39) 2 0.33,AR(1) 0.35,WHI 1.01,NONE
RTQ (0.48, -0.01, -0.01, 0.36) 1 0.38,MA(1) 0.38,GPH* -0.70,NONE
SFYAAAC (0.79, 0.54, 0.23, 0.38) 3 0.98,AR(1) 0.96,WHI* -0.30,NONE
SFYBAAC (0.90, 0.58, 0.23, 0.65) 3 0.98,AR(1) 1.00,WHI 0.17,NONE
SFYFHA (1.03, 0.51, 0.26, 0.83) 3 0.90,ARX 0.92,WHI 0.99,NONE
SFYGM3 (0.84, 0.87, 0.27, 0.45) 3 0.93,AR(1) 0.93,AML* -0.14,NONE
SFYGM6 (0.72, 0.86, 0.27, 0.08) 2 0.93,AR(1) 0.91,AML* -0.59,NONE
SFYGT1 (0.73, 0.90, 0.27, -0.21) 2 0.94,AR(1) 0.90,AML* -1.37,AML
SFYGT10 (0.77, 0.51, 0.25, 0.10) 2 0.97,AR(1) 0.97,RR* -0.16,NONE
SFYGT5 (0.80, 0.51, 0.25, 0.09) 2 0.97,AR(1) 0.97,RR* 0.04,NONE
WTDQ (0.37, 0.25, 0.03, 0.38) 1 0.40,AR(1) 0.40,AML* 0.12,NONE
WTNQ (0.14, -0.20, -0.07, 0.41) 1 0.43,AR(1) 0.43,RR* 0.21,NONE
WTQ (0.18, 0.08, -0.01, 0.42) 1 0.42,MA(1) 0.42,GPH* -0.11,NONE
SFYCP90 (0.82, 0.98, 0.26, 0.30) 2 0.91,AR(1) 0.88,GPH* -0.37,NONE
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Table 4: Power of Tests of Short Memory with ARFIMA DGPs(∗)

Sample Size 500 Sample Size 2000
Model d LHM RR MRR GPH WHI LHM RR MRR GPH WHI
ARFIMA1 0.05 0.05 0.89 0.04 0.17 0.23 0.07 0.96 0.14 0.13 0.28
ARFIMA2 0.05 0.32 0.05 0.12 0.22 0.05 0.44 0.09 0.12 0.19
ARFIMA3 0.05 0.94 0.08 0.14 0.26 0.06 0.97 0.09 0.13 0.21
ARFIMA4 0.06 0.98 0.10 0.33 0.31 0.07 1.00 0.12 0.24 0.38
ARFIMA5 0.05 0.80 0.08 0.21 0.26 0.07 0.93 0.12 0.21 0.37
ARFIMA6 0.07 0.99 0.07 0.37 0.30 0.10 1.00 0.12 0.24 0.38
ARFIMA7 0.74 1.00 0.52 0.98 0.95 0.85 1.00 0.64 0.99 1.00
ARFIMA8 0.74 1.00 0.51 0.94 0.94 0.82 1.00 0.63 0.98 1.00
ARFIMA9 0.73 1.00 0.55 0.97 0.92 0.83 1.00 0.66 0.99 1.00
ARFIMA10 0.25 0.23 0.99 0.29 0.70 0.71 0.57 1.00 0.64 0.86 0.97
ARFIMA11 0.23 0.98 0.28 0.68 0.68 0.52 1.00 0.66 0.85 0.98
ARFIMA12 0.23 0.99 0.30 0.70 0.68 0.57 1.00 0.69 0.85 0.96
ARFIMA13 0.28 1.00 0.31 0.83 0.73 0.63 1.00 0.68 0.84 0.99
ARFIMA14 0.28 1.00 0.34 0.81 0.72 0.59 1.00 0.71 0.88 0.99
ARFIMA15 0.26 0.99 0.33 0.81 0.72 0.66 1.00 0.72 0.92 0.99
ARFIMA16 0.96 1.00 0.77 1.00 0.99 0.99 1.00 0.91 1.00 1.00
ARFIMA17 0.92 1.00 0.73 1.00 1.00 0.99 1.00 0.92 1.00 1.00
ARFIMA18 0.93 1.00 0.77 0.99 0.99 1.00 1.00 0.92 1.00 1.00
ARFIMA19 0.45 0.65 1.00 0.61 0.95 0.95 0.98 1.00 0.96 1.00 1.00
ARFIMA20 0.65 1.00 0.64 0.93 0.96 0.96 1.00 0.94 1.00 1.00
ARFIMA21 0.65 1.00 0.62 0.95 0.95 0.97 1.00 0.94 1.00 1.00
ARFIMA22 0.69 1.00 0.64 0.97 0.94 0.99 1.00 0.96 0.99 1.00
ARFIMA23 0.71 1.00 0.64 0.97 0.95 0.99 1.00 0.94 1.00 1.00
ARFIMA24 0.74 1.00 0.65 0.97 0.94 0.97 1.00 0.94 1.00 1.00
ARFIMA25 0.99 1.00 0.88 1.00 1.00 1.00 1.00 0.98 1.00 1.00
ARFIMA26 0.98 1.00 0.86 1.00 1.00 1.00 1.00 0.98 1.00 1.00
ARFIMA27 0.99 1.00 0.88 1.00 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA28 0.55 0.84 1.00 0.74 0.98 0.98 0.99 1.00 0.98 1.00 1.00
ARFIMA29 0.83 1.00 0.77 0.97 0.98 0.99 1.00 0.98 1.00 1.00
ARFIMA30 0.82 1.00 0.76 0.98 0.99 0.99 1.00 0.97 1.00 1.00
ARFIMA31 0.88 1.00 0.82 0.99 0.99 0.99 1.00 0.98 1.00 1.00
ARFIMA32 0.87 1.00 0.75 0.98 0.98 1.00 1.00 0.98 1.00 1.00
ARFIMA33 0.86 1.00 0.77 0.98 0.98 1.00 1.00 0.98 1.00 1.00
ARFIMA34 1.00 1.00 0.92 1.00 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA35 1.00 1.00 0.91 0.99 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA36 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA37 0.75 0.97 1.00 0.89 1.00 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA38 0.96 1.00 0.90 0.99 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA39 0.97 1.00 0.90 1.00 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA40 0.98 1.00 0.92 0.99 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA41 0.97 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ARFIMA42 0.99 1.00 0.89 1.00 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA43 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA44 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.99 1.00 1.00
ARFIMA45 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(∗) Notes: Table reports the power of short memory tests for various ARFIMA models, using 5% nominal level critical
values. Model acronyms used are outlined in Table 1. The five tests considered were LHM, Leybourne, Harris and
McCabe (2003); RR, Rescaled Range; MRR, Modified Rescaled Range, Lo (1991); GPH, Geweke and Porter-Hudak
(1983) and WHI, Local Whittle, Robinson (1995). LHM is based on the rate of decay of autocovariance function.
RR and MRR are range based tests, while GPH and WHI are tests based on the estimated value of differencing
paremeter d. Results are based on 500 Monte Carlo iterations.
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Table 5: Size of Tests of Short Memory with Stationary Non-ARFIMA DGPs(∗)

Sample Size 500 Sample Size 2000
Model LHM RR MRR GPH WHI LHM RR MRR GPH WHI
AR1 0.05 0.18 0.05 0.11 0.25 0.03 0.19 0.06 0.10 0.11
AR2 0.03 0.53 0.04 0.11 0.26 0.04 0.64 0.06 0.08 0.11
AR3 0.03 0.95 0.06 0.19 0.24 0.04 0.98 0.14 0.10 0.16
AR4 0.66 1.00 0.67 0.95 0.89 0.72 1.00 0.87 0.99 1.00
REG1 0.15 0.99 0.40 0.70 0.45 0.11 0.99 0.52 0.60 0.86
REG2 0.87 1.00 0.88 0.97 0.99 0.98 1.00 0.99 1.00 1.00
REG3 0.87 0.98 0.86 0.93 0.97 0.89 0.89 0.90 0.96 1.00
MA1 0.04 0.31 0.04 0.11 0.23 0.04 0.31 0.04 0.12 0.13
MA2 0.05 0.11 0.05 0.10 0.24 0.05 0.12 0.03 0.12 0.12
MA3 0.04 0.35 0.05 0.13 0.21 0.03 0.35 0.07 0.08 0.11
MA4 0.04 1.00 0.44 0.28 0.27 0.06 1.00 0.77 0.16 0.21
GARCH1 0.04 0.08 0.06 0.13 0.24 0.06 0.06 0.05 0.11 0.12
GARCH2 0.05 0.62 0.04 0.11 0.28 0.04 0.63 0.04 0.10 0.11
GARCH3 0.13 1.00 0.32 0.77 0.84 0.10 1.00 0.55 0.66 0.92
ARX1 0.05 0.15 0.03 0.11 0.22 0.06 0.24 0.04 0.11 0.11
ARX2 0.04 0.58 0.06 0.10 0.22 0.03 0.66 0.06 0.10 0.10
ARX3 0.03 0.97 0.10 0.23 0.25 0.04 0.98 0.14 0.12 0.18
ARX4 0.65 1.00 0.63 0.95 0.92 0.72 1.00 0.87 0.98 1.00
ARIMA1 0.02 0.53 0.07 0.12 0.23 0.07 0.50 0.08 0.10 0.11
ARIMA2 0.04 0.46 0.05 0.10 0.24 0.04 0.48 0.04 0.09 0.12
ARIMA3 0.04 0.64 0.07 0.17 0.24 0.04 0.74 0.07 0.09 0.14
ARIMA4 0.04 0.98 0.10 0.22 0.22 0.05 0.98 0.15 0.11 0.15

(∗) Notes: See notes to Table 4. This table report the size properties of the short memory tests for all the stationary
non-ARFIMA DGPs.
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Table 6: Estimated d for ARFIMA DGPs(∗)
Sample Size 500 Sample Size 2000

Model d GPH RR WHI AML GPH RR WHI AML
ARFIMA1 0.05 0.08(0.18) 0.15(0.04) 0.04(0.21) -0.06(0.23) 0.06(0.10) 0.14(0.03) 0.07(0.08) 0.04(0.12)
ARFIMA2 0.04(0.17) 0.08(0.04) 0.03(0.21) 0.02(0.25) 0.05(0.10) 0.08(0.03) 0.06(0.07) 0.08(0.14)
ARFIMA3 0.08(0.17) 0.16(0.04) 0.04(0.21) -0.10(0.23) 0.04(0.10) 0.14(0.03) 0.06(0.07) 0.02(0.11)
ARFIMA4 0.18(0.18) 0.18(0.04) 0.09(0.23) -0.02(0.22) 0.09(0.11) 0.17(0.03) 0.10(0.08) 0.02(0.13)
ARFIMA5 0.12(0.18) 0.13(0.04) 0.05(0.21) -0.02(0.38) 0.09(0.09) 0.13(0.03) 0.09(0.08) 0.03(0.27)
ARFIMA6 0.19(0.18) 0.19(0.04) 0.09(0.22) -0.05(0.24) 0.09(0.11) 0.17(0.03) 0.10(0.08) 0.01(0.12)
ARFIMA7 0.72(0.16) 0.28(0.03) 0.58(0.20) 0.77(0.33) 0.49(0.10) 0.26(0.03) 0.54(0.08) 0.52(0.52)
ARFIMA8 0.68(0.18) 0.27(0.04) 0.57(0.21) 0.61(0.34) 0.48(0.11) 0.25(0.03) 0.52(0.08) 0.34(0.48)
ARFIMA9 0.73(0.18) 0.28(0.03) 0.56(0.21) 0.71(0.33) 0.48(0.11) 0.26(0.03) 0.53(0.08) 0.48(0.51)
ARFIMA10 0.25 0.35(0.19) 0.22(0.04) 0.35(0.22) 0.20(0.36) 0.29(0.11) 0.22(0.04) 0.30(0.08) 0.20(0.18)
ARFIMA11 0.32(0.19) 0.18(0.04) 0.33(0.21) 0.23(0.53) 0.28(0.10) 0.19(0.04) 0.29(0.08) 0.26(0.23)
ARFIMA12 0.35(0.17) 0.22(0.04) 0.33(0.21) 0.15(0.40) 0.28(0.12) 0.23(0.04) 0.29(0.09) 0.20(0.19)
ARFIMA13 0.44(0.18) 0.24(0.04) 0.37(0.22) 0.29(0.35) 0.31(0.10) 0.25(0.04) 0.33(0.08) 0.20(0.21)
ARFIMA14 0.42(0.18) 0.22(0.04) 0.38(0.23) 0.17(0.51) 0.31(0.11) 0.23(0.04) 0.32(0.07) 0.01(0.34)
ARFIMA15 0.44(0.18) 0.24(0.04) 0.36(0.22) 0.26(0.38) 0.33(0.11) 0.25(0.04) 0.34(0.08) 0.21(0.24)
ARFIMA16 0.97(0.18) 0.31(0.03) 0.85(0.21) 0.87(0.34) 0.72(0.10) 0.30(0.03) 0.75(0.08) 1.02(0.37)
ARFIMA17 0.93(0.18) 0.30(0.03) 0.85(0.20) 0.84(0.26) 0.71(0.10) 0.30(0.03) 0.74(0.08) 0.80(0.37)
ARFIMA18 0.97(0.19) 0.31(0.03) 0.84(0.22) 0.78(0.35) 0.72(0.10) 0.30(0.03) 0.75(0.08) 1.00(0.37)
ARFIMA19 0.45 0.61(0.18) 0.27(0.04) 0.64(0.23) 0.58(0.38) 0.53(0.10) 0.30(0.03) 0.54(0.08) 0.54(0.45)
ARFIMA20 0.57(0.17) 0.26(0.04) 0.63(0.21) 0.51(0.56) 0.50(0.11) 0.28(0.04) 0.52(0.08) 0.36(0.62)
ARFIMA21 0.61(0.17) 0.28(0.04) 0.62(0.22) 0.56(0.38) 0.51(0.10) 0.30(0.04) 0.53(0.08) 0.59(0.49)
ARFIMA22 0.69(0.19) 0.28(0.04) 0.65(0.24) 0.62(0.34) 0.56(0.11) 0.31(0.03) 0.57(0.08) 0.60(0.41)
ARFIMA23 0.67(0.18) 0.28(0.04) 0.66(0.22) 0.60(0.37) 0.54(0.11) 0.30(0.04) 0.55(0.08) 0.53(0.46)
ARFIMA24 0.71(0.18) 0.29(0.04) 0.66(0.24) 0.59(0.32) 0.56(0.10) 0.31(0.03) 0.56(0.08) 0.56(0.38)
ARFIMA25 1.21(0.17) 0.33(0.03) 1.12(0.20) 0.82(0.39) 0.94(0.11) 0.33(0.03) 0.97(0.08) 0.85(0.43)
ARFIMA26 1.15(0.19) 0.32(0.03) 1.09(0.20) 0.97(0.31) 0.93(0.10) 0.33(0.03) 0.96(0.08) 0.78(0.38)
ARFIMA27 1.18(0.19) 0.33(0.03) 1.11(0.20) 0.76(0.35) 0.94(0.11) 0.33(0.03) 0.97(0.08) 0.85(0.43)
ARFIMA28 0.55 0.73(0.18) 0.30(0.04) 0.77(0.22) 0.70(0.35) 0.62(0.11) 0.32(0.03) 0.64(0.08) 0.70(0.39)
ARFIMA29 0.71(0.18) 0.29(0.04) 0.75(0.22) 0.68(0.39) 0.61(0.10) 0.31(0.03) 0.63(0.08) 0.59(0.39)
ARFIMA30 0.75(0.18) 0.30(0.04) 0.77(0.22) 0.70(0.33) 0.63(0.11) 0.32(0.03) 0.65(0.08) 0.68(0.39)
ARFIMA31 0.84(0.17) 0.31(0.03) 0.81(0.23) 0.70(0.30) 0.65(0.11) 0.32(0.03) 0.67(0.08) 0.67(0.39)
ARFIMA32 0.80(0.19) 0.30(0.04) 0.80(0.22) 0.75(0.29) 0.65(0.10) 0.32(0.03) 0.66(0.08) 0.70(0.34)
ARFIMA33 0.83(0.18) 0.31(0.04) 0.79(0.22) 0.65(0.29) 0.66(0.11) 0.33(0.03) 0.68(0.08) 0.63(0.33)
ARFIMA34 1.26(0.17) 0.34(0.03) 1.21(0.19) 0.76(0.33) 1.04(0.11) 0.34(0.03) 1.08(0.08) 0.68(0.28)
ARFIMA35 1.25(0.18) 0.33(0.03) 1.22(0.20) 1.03(0.34) 1.03(0.10) 0.34(0.03) 1.07(0.08) 0.77(0.37)
ARFIMA36 1.28(0.18) 0.33(0.03) 1.23(0.19) 0.84(0.37) 1.04(0.11) 0.34(0.03) 1.08(0.08) 0.66(0.27)
ARFIMA37 0.75 0.99(0.17) 0.33(0.03) 1.03(0.21) 0.85(0.30) 0.83(0.11) 0.34(0.03) 0.86(0.08) 0.77(0.17)
ARFIMA38 0.96(0.18) 0.32(0.03) 1.03(0.22) 0.89(0.25) 0.84(0.10) 0.34(0.03) 0.85(0.08) 0.82(0.13)
ARFIMA39 1.00(0.17) 0.33(0.03) 1.04(0.21) 0.81(0.29) 0.84(0.11) 0.34(0.03) 0.86(0.08) 0.77(0.18)
ARFIMA40 1.06(0.18) 0.33(0.03) 1.06(0.21) 0.81(0.27) 0.87(0.10) 0.34(0.03) 0.89(0.07) 0.80(0.16)
ARFIMA41 1.04(0.19) 0.33(0.03) 1.06(0.22) 0.93(0.28) 0.87(0.11) 0.34(0.03) 0.89(0.08) 0.85(0.22)
ARFIMA42 1.05(0.19) 0.33(0.03) 1.04(0.22) 0.79(0.27) 0.88(0.10) 0.35(0.03) 0.90(0.08) 0.77(0.13)
ARFIMA43 1.32(0.17) 0.34(0.03) 1.34(0.14) 0.79(0.15) 1.20(0.13) 0.35(0.03) 1.26(0.10) 0.76(0.11)
ARFIMA44 1.30(0.18) 0.34(0.02) 1.34(0.14) 1.02(0.40) 1.21(0.12) 0.35(0.03) 1.26(0.09) 0.73(0.21)
ARFIMA45 1.32(0.17) 0.35(0.02) 1.35(0.14) 0.81(0.18) 1.22(0.12) 0.35(0.02) 1.27(0.09) 0.76(0.12)

(∗) Notes: Models are estimated as discussed above, and model acronyms used are outlined in Table 1. d estimateds
are based on GPH, RR, WHI and AML estimators. Table lists the average estimated value of d for ARFIMA DGPs
over the 500 Monte Carlo iterations. Values in parenthesis are the standard deviation of the estimated d.
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Table 7: Estimated d for Non-ARFIMA DGPs(∗)
Sample Size 500 Sample Size 2000

Model GPH RR WHI AML GPH RR WHI AML
RW 1.18(0.16) 0.34(0.03) 1.24(0.18) 1.03(0.19) 1.16(0.10) 0.37(0.02) 1.22(0.11) 1.01(0.11)
AR1 -0.03(0.17) 0.06(0.04) -0.04(0.21) -0.05(0.23) -0.02(0.11) 0.06(0.03) -0.01(0.08) -0.05(0.18)
AR2 -0.01(0.17) 0.10(0.04) -0.03(0.21) -0.12(0.23) -0.01(0.10) 0.09(0.03) 0.00(0.08) -0.03(0.12)
AR3 0.11(0.17) 0.17(0.04) 0.01(0.20) -0.08(0.20) 0.04(0.10) 0.14(0.03) 0.05(0.07) -0.02(0.12)
AR4 0.65(0.18) 0.27(0.04) 0.51(0.22) 0.67(0.37) 0.43(0.10) 0.24(0.03) 0.48(0.08) 0.28(0.46)
REG1 0.33(0.19) 0.19(0.04) 0.21(0.21) 0.10(0.47) 0.19(0.11) 0.17(0.03) 0.21(0.08) 0.19(0.26)
REG2 0.67(0.17) 0.25(0.06) 0.80(0.18) 0.74(0.35) 0.61(0.09) 0.26(0.03) 0.67(0.07) 0.63(0.27)
REG3 0.68(0.18) 0.25(0.09) 0.93(0.15) 0.77(0.37) 0.67(0.18) 0.28(0.11) 0.76(0.04) 0.82(0.34)
MA1 -0.04(0.17) 0.08(0.04) -0.03(0.21) -0.06(0.18) -0.02(0.11) 0.07(0.03) -0.01(0.08) -0.02(0.09)
MA2 -0.04(0.18) 0.06(0.04) -0.04(0.21) -0.07(0.20) -0.02(0.11) 0.05(0.03) -0.01(0.08) -0.02(0.10)
MA3 -0.04(0.18) -0.02(0.04) -0.05(0.20) -0.10(0.20) -0.02(0.11) -0.02(0.03) -0.02(0.08) 0.00(0.16)
MA4 -0.19(0.18) -0.18(0.03) -0.09(0.19) -0.09(0.22) -0.07(0.11) -0.16(0.02) -0.06(0.08) -0.03(0.11)
GARCH1 -0.05(0.19) 0.02(0.04) -0.05(0.21) -0.05(0.18) -0.02(0.11) 0.02(0.03) -0.01(0.08) -0.02(0.11)
GARCH2 -0.01(0.18) 0.11(0.04) -0.03(0.21) -0.11(0.24) -0.01(0.11) 0.09(0.03) 0.00(0.08) -0.02(0.13)
GARCH3 0.41(0.18) 0.23(0.04) 0.22(0.21) 0.22(0.38) 0.21(0.10) 0.21(0.03) 0.23(0.08) -0.02(0.14)
ARX1 -0.04(0.18) 0.06(0.04) -0.04(0.20) -0.06(0.24) -0.01(0.11) 0.06(0.03) 0.00(0.08) -0.04(0.17)
ARX2 0.00(0.17) 0.11(0.04) -0.03(0.20) -0.11(0.23) -0.01(0.11) 0.09(0.03) 0.00(0.08) -0.02(0.12)
ARX3 0.12(0.17) 0.17(0.04) 0.03(0.22) -0.07(0.21) 0.03(0.10) 0.14(0.03) 0.04(0.08) -0.02(0.12)
ARX4 0.65(0.18) 0.27(0.04) 0.52(0.21) 0.67(0.36) 0.44(0.10) 0.24(0.03) 0.48(0.08) 0.25(0.46)
ARIMA1 -0.07(0.17) -0.04(0.04) -0.06(0.19) -0.16(0.21) -0.03(0.10) -0.03(0.03) -0.02(0.08) -0.10(0.19)
ARIMA2 -0.03(0.17) 0.09(0.04) -0.03(0.21) -0.06(0.24) -0.01(0.10) 0.08(0.03) 0.00(0.08) -0.07(0.19)
ARIMA3 0.07(0.19) 0.11(0.04) 0.00(0.21) -0.11(0.36) 0.02(0.11) 0.10(0.03) 0.03(0.08) 0.01(0.23)
ARIMA4 0.13(0.17) 0.18(0.04) 0.01(0.20) -0.09(0.22) 0.03(0.10) 0.15(0.03) 0.04(0.08) -0.04(0.12)
ARIMA5 1.26(0.16) 0.34(0.03) 1.35(0.15) 0.89(0.28) 1.17(0.09) 0.37(0.02) 1.23(0.12) 0.87(0.24)
ARIMA6 1.28(0.16) 0.34(0.02) 1.36(0.16) 1.04(0.26) 1.18(0.10) 0.37(0.02) 1.24(0.12) 0.90(0.22)
ARIMA7 1.32(0.15) 0.35(0.03) 1.36(0.14) 1.05(0.37) 1.20(0.10) 0.37(0.02) 1.26(0.12) 1.02(0.28)
ARIMA8 1.33(0.14) 0.35(0.03) 1.38(0.13) 0.93(0.27) 1.19(0.10) 0.37(0.02) 1.25(0.12) 1.00(0.17)

(∗) Notes: See notes for Table 6.
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Table 8: Relative MSFE Performance: ARFIMA DGPs(∗)
Sample Size 500 Sample Size 2000

Model d ARFIMA Non-ARFIMA ARFIMA Non-ARFIMA
ARFIMA1 0.05 0.47 (0.32) 0.53 (0.06) 0.48 (0.26) 0.52 (0.07)
ARFIMA2 0.55 (0.35) 0.45 (0.11) 0.57 (0.38) 0.43 (0.11)
ARFIMA3 0.45 (0.15) 0.55 (0.07) 0.53 (0.11) 0.47 (0.11)
ARFIMA4 0.45 (0.33) 0.55 (0.05) 0.43 (0.23) 0.57 (0.08)
ARFIMA5 0.54 (0.33) 0.46 (0.10) 0.53 (0.12) 0.47 (0.10)
ARFIMA6 0.38 (0.14) 0.62 (0.06) 0.51 (0.13) 0.49 (0.12)
ARFIMA7 0.27 (0.23) 0.73 (0.09) 0.36 (0.20) 0.64 (0.09)
ARFIMA8 0.44 (0.15) 0.56 (0.08) 0.35 (0.11) 0.65 (0.06)
ARFIMA9 0.44 (0.14) 0.56 (0.16) 0.35 (0.15) 0.65 (0.05)
ARFIMA10 0.25 0.57 (0.17) 0.43 (0.07) 0.78 (0.19) 0.22 (0.05)
ARFIMA11 0.65 (0.18) 0.35 (0.08) 0.76 (0.17) 0.24 (0.02)
ARFIMA12 0.62 (0.02) 0.38 (0.09) 0.75 (0.20) 0.25 (0.01)
ARFIMA13 0.60 (0.07) 0.40 (0.06) 0.76 (0.23) 0.24 (0.02)
ARFIMA14 0.59 (0.12) 0.41 (0.07) 0.74 (0.17) 0.26 (0.02)
ARFIMA15 0.57 (0.02) 0.43 (0.09) 0.78 (0.20) 0.22 (0.01)
ARFIMA16 0.51 (0.03) 0.49 (0.03) 0.55 (0.09) 0.45 (0.04)
ARFIMA17 0.48 (0.17) 0.52 (0.03) 0.62 (0.08) 0.38 (0.06)
ARFIMA18 0.52 (0.05) 0.48 (0.05) 0.52 (0.08) 0.48 (0.05)
ARFIMA19 0.45 0.60 (0.09) 0.40 (0.04) 0.72 (0.20) 0.28 (0.01)
ARFIMA20 0.65 (0.14) 0.35 (0.07) 0.74 (0.20) 0.26 (0.02)
ARFIMA21 0.65 (0.22) 0.35 (0.01) 0.91 (0.39) 0.09 (0.00)
ARFIMA22 0.57 (0.08) 0.43 (0.05) 0.84 (0.31) 0.16 (0.00)
ARFIMA23 0.64 (0.10) 0.36 (0.13) 0.68 (0.24) 0.32 (0.02)
ARFIMA24 0.60 (0.11) 0.40 (0.03) 0.85 (0.34) 0.15 (0.01)
ARFIMA25 0.44 (0.03) 0.56 (0.05) 0.62 (0.09) 0.38 (0.03)
ARFIMA26 0.53 (0.03) 0.47 (0.10) 0.70 (0.10) 0.30 (0.02)
ARFIMA27 0.39 (0.03) 0.61 (0.08) 0.60 (0.12) 0.40 (0.03)
ARFIMA28 0.55 0.54 (0.08) 0.46 (0.05) 0.81 (0.31) 0.19 (0.01)
ARFIMA29 0.65 (0.14) 0.35 (0.08) 0.68 (0.19) 0.32 (0.03)
ARFIMA30 0.58 (0.13) 0.42 (0.04) 0.84 (0.32) 0.16 (0.01)
ARFIMA31 0.50 (0.09) 0.50 (0.07) 0.78 (0.29) 0.22 (0.01)
ARFIMA32 0.48 (0.06) 0.52 (0.24) 0.64 (0.18) 0.36 (0.12)
ARFIMA33 0.55 (0.12) 0.45 (0.05) 0.71 (0.20) 0.29 (0.02)
ARFIMA34 0.38 (0.02) 0.62 (0.07) 0.52 (0.06) 0.48 (0.05)
ARFIMA35 0.44 (0.03) 0.56 (0.06) 0.58 (0.07) 0.42 (0.04)
ARFIMA36 0.31 (0.02) 0.69 (0.08) 0.45 (0.06) 0.55 (0.07)
ARFIMA37 0.75 0.33 (0.05) 0.67 (0.12) 0.63 (0.15) 0.37 (0.04)
ARFIMA38 0.38 (0.03) 0.62 (0.23) 0.56 (0.11) 0.44 (0.08)
ARFIMA39 0.40 (0.07) 0.60 (0.11) 0.32 (0.06) 0.68 (0.17)
ARFIMA40 0.31 (0.03) 0.69 (0.11) 0.34 (0.07) 0.66 (0.11)
ARFIMA41 0.29 (0.01) 0.71 (0.33) 0.47 (0.04) 0.53 (0.14)
ARFIMA42 0.36 (0.03) 0.64 (0.13) 0.39 (0.07) 0.61 (0.12)
ARFIMA43 0.32 (0.02) 0.68 (0.07) 0.28 (0.03) 0.72 (0.10)
ARFIMA44 0.33 (0.02) 0.67 (0.08) 0.40 (0.03) 0.60 (0.05)
ARFIMA45 0.28 (0.01) 0.72 (0.11) 0.25 (0.01) 0.75 (0.13)

(∗) Notes: Entries show the proportion of times different models are preferred based on comparison of point MSFE.
Model acronyms used are outlined in Table 1. Values in the brackets show the same on the basis of Diebold and
Mariano (DM) tests based on nominal 20% level critical values. Results are based on 500 Monte Carlo iterations.

37



Table 9: Relative MSFE Performance: Non-ARFIMA DGPs(∗)
Sample Size 500 Sample Size 2000

Model ARFIMA Non-ARFIMA ARFIMA Non-ARFIMA
RW 0.22 (0.01) 0.78 (0.41) 0.15 (0.00) 0.85 (0.41)
AR1 0.44 (0.05) 0.56 (0.30) 0.42 (0.07) 0.58 (0.31)
AR2 0.41 (0.04) 0.59 (0.31) 0.49 (0.06) 0.51 (0.25)
AR3 0.41 (0.04) 0.59 (0.30) 0.36 (0.04) 0.64 (0.32)
AR4 0.24 (0.02) 0.76 (0.37) 0.18 (0.02) 0.82 (0.46)
MA1 0.54 (0.06) 0.46 (0.05) 0.50 (0.04) 0.50 (0.06)
MA2 0.47 (0.04) 0.53 (0.21) 0.50 (0.03) 0.50 (0.09)
MA3 0.49 (0.06) 0.51 (0.09) 0.52 (0.05) 0.48 (0.07)
MA4 0.48 (0.04) 0.52 (0.07) 0.50 (0.06) 0.50 (0.09)
GARCH1 0.36 (0.02) 0.64 (0.22) 0.37 (0.04) 0.63 (0.24)
GARCH2 0.14 (0.01) 0.86 (0.69) 0.11 (0.01) 0.89 (0.75)
GARCH3 0.12 (0.01) 0.88 (0.68) 0.09 (0.01) 0.91 (0.74)
ARX1 0.48 (0.05) 0.52 (0.26) 0.34 (0.19) 0.66 (0.32)
ARX2 0.44 (0.04) 0.56 (0.29) 0.42 (0.02) 0.58 (0.30)
ARX3 0.39 (0.03) 0.61 (0.32) 0.40 (0.03) 0.60 (0.31)
ARX4 0.26 (0.09) 0.74 (0.38) 0.24 (0.09) 0.76 (0.46)
ARIMA1 0.50 (0.08) 0.50 (0.06) 0.50 (0.04) 0.50 (0.06)
ARIMA2 0.47 (0.05) 0.53 (0.08) 0.48 (0.02) 0.52 (0.06)
ARIMA3 0.49 (0.04) 0.51 (0.27) 0.47 (0.03) 0.53 (0.21)
ARIMA4 0.43 (0.02) 0.57 (0.06) 0.42 (0.03) 0.58 (0.08)
ARIMA5 0.36 (0.02) 0.64 (0.17) 0.30 (0.01) 0.70 (0.17)
ARIMA6 0.33 (0.04) 0.67 (0.15) 0.30 (0.03) 0.70 (0.12)
ARIMA7 0.34 (0.03) 0.66 (0.21) 0.26 (0.02) 0.74 (0.18)
ARIMA8 0.25 (0.03) 0.75 (0.24) 0.20 (0.03) 0.80 (0.24)

(∗) Notes: See notes for Table 8.
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