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Abstract

This paper proposes new jackknife IV estimators that are robust to the effects of many

weak instruments and error heteroskedasticity in a cluster sample setting with cluster-specific

effects and possibly many included exogenous regressors. The estimators that we propose are

designed to properly partial out the cluster-specific effects and included exogenous regressors

while preserving the re-centering property of the jackknife methodology. To the best of our

knowledge, our proposed procedures provide the first consistent estimators under many weak

instrument asymptotics in the setting considered. We also present results on the asymptotic

normality of our estimators and show that t-statistics based on our estimators are asymptotically

normal under the null and consistent under fixed alternatives. Our Monte Carlo results further

show that our t-statistics perform better in controlling size in finite samples than those based

on alternative jackknife IV procedures previously introduced in the literature.

Keywords: Cluster sample, instrumental variables, heteroskedasticity, jackknife, many weak instru-

ments, panel data

JEL classification: C12, C13, C23, C26, C38

1 Introduction

The problem of endogeneity remains central to economics, despite the vast literature on the

topic. One key reason for this is that there are many different regression settings for which endo-

geneity is an issue, but for which valid estimators are not currently available. One such setting
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involves the case where the objective is to estimate an IV regression with fixed effects using panel

or cluster-sampled data in situations where the number of available instruments may be large, but

where the instruments themselves are all only weakly correlated with the endogenous regressors.

There is now a substantial literature on estimation and inference under many weak instruments,

including Chao and Swanson (2005), Stock and Yogo (2005), Hansen, Hausman, and Newey (2008),

Hausman et al. (2012), Chao et al. (2012, 2014), Bekker and Crudu (2015), Crudu, Mellace, and

Sándor (2020), and Mikusheva and Sun (2020). However, the analyses given in these papers are

for cross-sectional data, thus precluding panel data or cluster sampling settings where there is ad-

ditional unobserved heterogeneity modeled by fixed or cluster-specific effects. Moreover, even in

the cross-sectional context, 2SLS and the LIML estimators are not well behaved under many weak

instruments. In particular, Chao and Swanson (2005) and Stock and Yogo (2005) show that the

2SLS estimator is inconsistent under many weak instrument asymptotics, even when the errors

are homoskedastic. In addition, Hausman et al. (2012) and Chao et al. (2012) both point out

that LIML is also inconsistent under many weak instruments, when there is error heteroskedastic-

ity. Estimators that are robust to the effects of many weak instruments in cross sectional settings

with error heteroskedasticity turn out to have a jackknife form, as discussed in Chao and Swanson

(2004). These include the JIVE1 and JIVE2 estimators studied in Angrist, Imbens, and Krueger

(1999), for example. For further discussion, see Phillips and Hale (1977), Blomquist and Dahlberg

(1999), Ackerberg and Devereux (2009), and Bekker and Crudu (2015). These papers again only

study various versions of the jackknife IV estimator in a cross-sectional setup without fixed effects.

The goal of this paper is to consider the problem of many weak instruments in a panel data

or cluster-sampling framework with fixed or cluster specific effects. In addition to the presence of

unobserved heterogeneity, our setup allows the structural equation of interest to have a partially

linear form so that additional exogenous regressors can enter the equation nonlinearly. In this

sense, our paper is also related to recent work by Cattaneo, Jansson, and Newey (2018a,b) on the

partially linear model. However, the focus of these papers differs from ours, as they do not consider

the problem of endogeneity. Thus, rather than employing IV estimators, estimation is done using

an OLS estimator, with the nonlinear component being first approximated nonparametrically by a

set of basis functions.

To consistently estimate the parameters of an IV regression with fixed or cluster-specific effects,

we propose three new estimators, which we refer to by the acronyms FEJIV, FELIM, and FEFUL.

These estimators are so named as they are modified versions and generalizations, respectively, of

the jackknife IV (JIV), the LIML, and the Fuller (1977) estimators. In contrast to the original

JIV, LIML, and Fuller estimators, our new estimators are designed to be robust to the effects of

many weak instruments and error heteroskedasticity, even in the presence of additional compli-
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cations caused by having fixed or cluster-specific effects and many included exogenous regressors.

To achieve consistency in our setting requires an estimator that not only properly partials out

additional covariates and cluster-specific effects, but at the same time is also properly centered in

a form similar to a degenerate U-statistic. It turns out that accomplishing both of these objec-

tives simultaneously is quite challenging. While a number of innovative JIV-type estimators have

been proposed recently (see, for example, the improved jackknife estimators, IJIVE1 and IJIVE2, of

Ackerberg and Devereux (2009), and the UJIVE estimator of Kolesár (2013)), due to the aforemen-

tioned difficulties, these estimators are not consistent when applied to our setting under many weak

instrument asymptotics, as we shall elaborate in greater detail in Section 2. On the other hand,

the estimation procedures that we introduce here are carefully designed to properly partial out the

presence of fixed or cluster-specific effects and included exogenous regressors, while preserving the

re-centering property of the jackknife methodology. To the best of our knowledge, the estimators

presented here are the first consistent estimators under many weak instrument asymptotics in an

IV regression model with fixed or cluster-specific effects and possibly many included exogenous

regressors. In addition to consistency, we also establish the asymptotic normality of the FELIM

and FEFUL estimators1.

This paper also provides a number of results showing that hypothesis testing procedures based on

FELIM and FEFUL are robust to the effects of many weak instruments. In particular, we construct

t-statistics based on these two estimators and show that, when the null hypothesis is true, these

t-statistics converge to an asymptotic standard normal distribution under both standard (strong

but fixed number of instruments) asymptotics and also under many weak instrument asymptotics.

Moreover, our t-statistics are shown to be consistent in the sense that under fixed alternatives they

diverge, with probability approaching one, in the direction of the alternative hypothesis.

The many-weak-instrument asymptotic framework used in this paper to analyze the perfor-

mance of FELIM and FEFUL was first proposed in Chao and Swanson (2005). This framework

extends earlier work by Morimune (1983) and Bekker (1994) on what has become known in the IV

literature as the many-instrument asymptotics or “Bekker asymptotics”, whereby a large sample

approximation is carried out by considering an alternative sequence where the number of instru-

ments is allowed to approach infinity as the sample size grows to infinity. A key difference between

the Bekker asymptotic framework and the many-weak-instrument asymptotic framework is the rate

1We do not provide a formal proof of the asymptotic normality of the FEJIV estimator because the results of

our Monte Carlo study, as reported in Section 5, show that FELIM and FEFUL tend to have better finite sample

properties than FEJIV. For this reason, we shall focus the presentation of our theoretical results on FELIM and

FEFUL only. However, one can easily show, by slightly modifying the arguments that we give for FELIM and

FEFUL, that FEJIV is also asymptotically normal, under many weak instrument asymptotics. Note also that our

simulation finding regarding the properties of FEJIV are consistent with the findings of Davidson and MacKinnon

(2006).
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of growth of the so-called concentration parameter. As has been pointed out by Phillips (1983) and

Rothenberg (1984), among others, the concentration parameter is the natural measure of instru-

ment strength in a linear IV model. In the original papers by Morimune (1983) and Bekker (1994),

the concentration parameter is assumed to grow at the same rate as the sample size, which is also

what is assumed under standard (strong but fixed number of instruments) asymptotics, whereas

the many-weak-instrument asymptotic framework allows the concentration parameter to grow at

a rate much slower than the sample size, thus allowing for much weaker instruments. Let 2 be

a sequence that gives the rate of growth of the concentration parameter, and let 2 denote the

number of instruments. Chao and Swanson (2005) show that for consistent point estimation to

be possible, a sufficient condition is
p
2

2
 → 0, as 2, 

2
  → ∞. This allows for the

possibility that 2 is of an order smaller than 2 which, in turn, can be of an order much smaller

than the sample size . The original Bekker framework, on the other hand, requires 2 
2
 and

 to all be of the same order of magnitude. Recent work by Mikusheva and Sun (2020) indicates

that the condition
p
2

2
 → 0, as 2, 

2
 →∞ is not only sufficient but also necessary for

consistency in point estimation and hypothesis testing2.

The rest of the paper is organized as follows. Section 2 states the model, defines the FELIM,

FEFUL, and FEJIV estimators, and provides an explanation of how our estimators improve upon

various alternative jackknife IV estimators that have previously been proposed in the literature.

Analytical results presented in Section 3 establish that our estimators are consistent and asymp-

totically normally distributed. Section 4 shows how to estimate the variances of the estimators

and also provides asymptotic results for t-statistics based on our estimators. Section 5 contains the

results of a series of Monte Carlo experiments in which the relative performance of our estimators

is compared with that of extant estimators in the literature. Section 6 concludes. Proofs of Theo-

rem 1, Corollary 1, and Theorems 4-6 are presented in the Appendix to this paper. The proofs of

Theorems 2 and 3 are longer and are given in a supplemental Appendix3.

Before proceeding, we will first say a few words about some of the commonly used notations

in this paper. In what follows, we use min (), max (), and  () to denote, respectively,

the minimal eigenvalue, the maximal eigenvalue, and the trace of a square matrix  whereas 0

denotes the transpose of a (not necessarily square) matrix . kk2 denotes the usual Euclid-
ean norm when applied to a (finite-dimensional) vector . On the other hand, for a matrix

2An alternative to the asymptotic framework considered here is the weak instrument asymptotic framework pro-

posed in Staiger and Stock (1997). The Staiger-Stock framework considers a setting where 2 =  (1), in which case

the IV model is not point identified. We do not consider the Staiger-Stock framework in this paper because our focus

is on consistency of point estimation and on test consistency.
3The supplemental Appendix can be viewed at the URL:http://econweb.umd.edu/~chao/Research/research_files/

Supplemental_Appendix_to_Jackknife_Estimation_Cluster_Sample_IV_Model.pdf
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, kk2 ≡ max
np

 (0) :  (0) is an eigenvalue of 0
o
denotes the matrix spectral norm,

while kk ≡
p
 {0} denotes the Frobenius norm and kk∞ ≡ max1≤≤

X

=1
| | (i.e.,

the maximal row sum of an  × matrix). In addition, we use  ◦ to denote the Hadamard

product of two conformable matrices  and  (i.e.,  ◦ ≡ [ ]  for  = [ ] and  = [ ])

We take  () to be a diagonal matrix whose diagonal elements correspond with the elements of

the vector  while  () is taken to be a diagonal matrix whose diagonal elements are the same as

the diagonal elements of the square matrix . Furthermore, we will let  = (1 1  1)
0 denote a

×1 vector of ones. Finally, we use CS and T, respectively, to denote the Cauchy-Schwarz and the
triangle inequality, and the abbreviation w.p.a.1 stands for “with probability approaching one”.

2 Model, Assumptions, and Estimation Procedures

The model that we consider is a cluster-sample IV regression model

()
1×1

=  0
()0 + 

¡
1()

¢
+  + () (1)

() = Φ
¡
1()

¢
+Υ

¡
2()

¢
+  + () (2)

where  = 1    = 1   and the total sample size is given by  =
X

=1
. The notation

( ) : N×N→ N denotes a pairing function which maps an ordered pair of natural numbers into

a natural number, so that, in particular, we have (1 1) = 1, (1 1) = 1, (2 1) = 1 + 1, and

( ) = . This is just a notational device used to convert a double index into a single index,

thus, facilitating certain vectorization and summation operations while still allowing one to keep

track of both  and . In this setup, we take () to be a  × 1 vector of endogenous regressors,
and we let 1() and 2() denote, respectively, a 1× 1 vector and a 2× 1 vector of exogenous
variables, for  = 1 2   and  = 1   (or, equivalently, for ( ) = 1 ). Note that  (·),
Φ (·), and Υ (·) are allowed to be nonlinear functions, so that the structural equation (1) can be
taken to be a partially linear equation, and the system of first-stage equations given by (2) may be

interpreted as a generalized additive model in the sense of Hastie and Tibshirani (1990). In addition,

 and  in the above equations are unobserved or individual effects interpreted as “fixed effects” in

the sense that although we do not necessarily require  and  to be (non-random) constants, they

are allowed to be correlated with the exogenous variables 1() and 2(), unlike the typical

assumptions specified in a traditional “random effects” model. More precise assumptions on the

model given by equations (1) and (2) are given below.
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We will develop some additional notations before proceeding. First, let

() =
³
 0
1()

 0
2()

´0
 for ( ) = 1 , and define

 =
¡
(11) (11) (1) ()

¢0
. Now, stacking the observations ( ) = 1 ,

we can write the model given by equations (1) and (2) more succinctly as


×1

= 
×

0
×1

+ 
×1

+ 
×


×1

+ 
×1

, (3)


×

= Φ
×

+ Υ
×

+ 
×

Ξ
×

+ 
×

, (4)

where  = (1  )
0, Ξ = (1  )

0, and


×

=

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0

0 2
. . .

...
...

. . .
. . . 0

0 · · · 0 

⎞⎟⎟⎟⎟⎟⎠ .

and where the other vectors and matrices are stacked similar to . For notational convenience,

we have suppressed the dependence of , Φ, and Υ on . Note that our setup allows the

clusters to be of possibly different sizes, so that our model can also be interpreted as a possibly

unbalanced panel data model.

Making use of these notations, we can write down the following assumptions for our model.

Assumption 1: Let F
 =  () (i.e., the -algebra generated by ). Suppose that the

following conditions are satisfied (i) Conditional on F
 ,

³
(11) 

0
(11)

´
 

³
(11) 

0
(11)

´



³
(1) 

0
(1)

´
 

³
() 

0
()

´
are mutually independent. (ii) 

£
()|F



¤
= 0 and


£
()|F



¤
= 0  for ( ) = 1 .

Assumption 2: Suppose that there exists a constant  ≥ 1 such that for all 
(i) max1≤()≤


h
8
()
|F



i
≤   ∞ and max1≤()≤


h°°()°°82 |F



i
≤   ∞ 

and (ii) inf1≤()≤
min

¡
Ω()

¢ ≥ 1  0 , where Ω() = 
h
()

0
()
|F



i
with () =³

()  0
()

´0
.

Assumption 3: Suppose that Υ

¡
2()

¢
= 

¡
2()

¢

√
 for ( ) = 1 , where =


¡
1  

¢
. The following conditions are assumed on the diagonal elements 1   as

 → ∞. (i) Either  =
√
 or 

√
 → 0 for  ∈ {1  }. (ii) Let min = min1≤≤  ,

and suppose that min →∞ as →∞, such thatp2
¡
min

¢2 → 0. (iii) min () ≥ 1  0

and max (Γ
0Γ) ≤  ∞  for all  sufficiently large, where  = Γ

0 (1)Γ and
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Γ
×

=
³

¡
2(11)

¢ · · · 
¡
2(11)

¢ · · · 
¡
2(1)

¢ · · · 
¡
2()

¢ ´0
.

Assumption 4: Suppose that Φ
¡
1()

¢
= 

¡
1()

¢

√
 and 

¡
1()

¢
= 

¡
1()

¢

√
 for ( ) = 1 , where 

×
=  (1  ) and  is a sequence of

positive real numbers. The following conditions are assumed on 1   and on  as →∞:
(i) either  =

√
 or 

√
→ 0 for  ∈ {1  }; (ii) either  =

√
 or 

√
→ 0

We shall consider approximating the function 
¡
2()

¢
in Assumption 3 by the series ex-

pansion
X2

=1
2

¡
2()

¢
 for some family of approximating functions 21 (·)  22 (·)  4.

Stacking the observed values of these functions into a matrix, we obtain the  × 2 ma-

trix, 2 =
£
2
¡
2(11)

¢
  2

¡
2(11)

¢
  2

¡
2(1)

¢
  2

¡
2()

¢¤
, where 2

¡
2()

¢
=¡

21
¡
2()

¢
  22

¡
2()

¢¢0
is a 2 × 1 vector, for each ( ) ∈ {1 }. Similarly, we

shall approximate the functions 
¡
1()

¢
and 

¡
1()

¢
given in Assumption 4 by, respectively,

the series expansions
X1

=1
Θ1

¡
2()

¢
andX1

=1
1

¡
2()

¢
 for a family of approximating functions 11 (·)  12 (·)   Stacking the

observed values of these functions, we get the  ×1 matrix,

1 =
£
1
¡
1(11)

¢
  1

¡
1(11)

¢
  1

¡
1(1)

¢
  1

¡
1()

¢¤
,

with 1
¡
1()

¢
=
¡
11

¡
1()

¢
  11

¡
1()

¢¢0
being a 1 × 1 vector, for each ( ) ∈

{1 }. For notational convenience, we shall suppress the dependence of 1 and 2 on .

In addition, let 
×

=
h
1 2

i
, with  = 1 + 2, and let Π

2 =
¡
1  2

¢0
,

Θ1 =
¡
Θ1 Θ1

¢0
, and 1 =

¡
1  1

¢0
.

Analogous to the linear IV model, we could interpret 2 as the matrix of observations on the

instruments of the model and 1 as the matrix of observations on the additional covariates or

included exogenous regressors. Viewed in this light, we see that Assumption 3 is general enough

to accommodate a range of situations including both cases where there are strong instruments and

cases where the instruments are weaker. In particular, when 1 = · · · =  = min =
√
, our

model specializes to the more classical situation where the instruments are strong. On the other

hand, the cases where some of the ’s ( = 1  ) grow at a rate slower than
√
 correspond

to cases where at least some of the components of the parameter vector of interest  are weakly

identified. By allowing for the possibility that different ’s may grow at different rates, our

setup also allows for heterogeneity in how strongly the different components of  are identified.

Note, however, that we do require that
p
2

¡
min

¢2 → 0, since (as discussed in Chao and

Swanson (2005), Hausman et al. (2012), and Chao et al. (2012)), if this condition is not fulfilled,

4The approximating functions 2 (·), for  = 1 2, may be polynomials, splines, or some other family of

functions as discussed in Newey (1997).
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then consistent estimation of at least some of the components of  may not be possible; and, in

this paper, we focus only on situations where we can consistently estimate . To interpret this

condition, it is easiest to consider the special case where 1 = · · · =  = min . In this case,¡
min

¢2
can be interpreted as giving the order of magnitude of the signal component of the IV

model, whereas
p
2 measures the order of magnitude of a leading noise term, so that, in order

for consistent estimation to be possible, the signal-to-noise ratio
¡
min

¢2

p
2 must diverge to

infinity.

Likewise, Assumption 4 allows for possible local-to-zero modeling of the nonlinear components


¡
1()

¢
and 

¡
1()

¢
. In the special case where 1 = · · · =  =  =

√
 and 1 = · · · =

 = min =
√
, our structural equation of interest becomes a standard partially linear model,

whereas the system of first-stage equations becomes a standard multivariate generalized additive

model . However, by allowing for the possibility that some of the ’s and/or  may grow at a

rate slower than
√
, we also accommodate situations where the additional covariates may only be

weakly correlated with () and/or with some elements of ().

Assumption 5: (i)  →∞ as →∞ such that  ∼ . (ii) 12 →∞ as →∞ such

that2
1 =  (1) and2

2 =  (1). (iii) Let = − (0)−10. There exists a positive
constant  such that min

¡
 0

¢ ≥   0  for all  sufficiently large. (iv) Let ⊥ =  ()−
 (1) =  (1)2

¡
 02

(1)2
¢−1

 02
(1) and let ⊥1 = 1

¡
 01

1
¢−1

 01
,

where (1) =−1
¡
 01

1
¢−1

 01
 with as defined in part (iii) above. Suppose

that max1≤()≤

⊥1
()()

=  (1) and max1≤()≤
⊥
()()

=  (2).

Note that part (ii) of Assumption 5 requires that both 1 and 2 grow at a rate slower

than the sample size . Hence, our setup does not include the type of many-instrument setup of

Morimune (1983) and Bekker (1994), where the number of instruments grows at the same rate as

, nor the type of many-regressor setup of Cattaneo, Jansson, and Newey (2018a,b), where the

number of exogenous regressors grows to infinity on the same order as . However, note that our

assumptions are in accord with the interpretation of the structural equation as a partially linear

model with the nonlinear component being estimated nonparametrically by a series estimator, as

Newey (1997) has given results which show that consistent series estimation requires , the number

of approximating functions, to grow slower than the sample size . In fact, for consistent series

estimation using regression spline functions, Newey (1997) provides an explicit rate restriction,

where 2 → 0 as  → ∞, and our assumption is in accord with this rate condition. Moreover,
note that our setup does allow the number of fixed or cluster-specific effects to be on the order

of , so that the number of overall covariates in the structural equation of interest will be on the

order of . Hence, we believe that our framework is general enough to accommodate a wide range
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of empirical problems of interest.

Assumption 6: (i) min1≤≤  ≥ 3 for all ; (ii) There exists a positive integer  ≥ 3 such that
max1≤≤  ≤  ∞ for all .

Assumption 7: Let W1 ⊆ R1 and W2 ⊆ R2 denote the support of 1() and 2(), respec-

tively. The following rates of approximation are assumed. (i) There exists a positive real number

 and a vector of coefficients 
1  such that

°° (·)− 101 (·)
°°
∞ = 

³

−
1

´
, as 1 →∞,

where 

1 =  (1) and

°° (·)− 101 (·)
°°
∞ = sup1∈W1

¯̄
 (1)− 101 (1)

¯̄
.

(ii) There exists a positive real number  and a matrix of coefficients Θ
1  such that

°° (·)−Θ101 (·)
°°
∞

= 

³

−
1

´
, as 1 →∞,

where max 

1 =  (1)  with max = max1≤≤  and

°° (·)−Θ101 (·)
°°
∞

= max∈{12} sup1∈W1

¯̄̄
 (1)− 0Θ

101 (1)
¯̄̄
 with  denoting a ×1 elementary vector

with 1 in the  component and 0 in all other components.

(iii) There exists a positive real number  and a matrix of coefficients Π
2  such that

°° (·)−Π202 (·)
°°
∞

= 

³

−
2

´
, as 2 →∞,

where max 

2 =  (1)  with max = max1≤≤  and

°° (·)−Π202 (·)
°°
∞

= max∈{12} sup2∈W2

¯̄̄
 (2)− 0Π

202 (2)
¯̄̄
.

(iv) Assume that max1≤()≤

°°Γ0 (1)()
°°
2

√
 =  (1).

A few comments about Assumption 7 are in order. Parts (i)-(iii) of this assumption place

conditions on the rate at which the error in approximating the functions  (·),  (·),  (·), and Γ (·)
must vanish uniformly. A similar assumption has been specified in Newey (1997) in studying

convergence rates for nonparametric series estimators (see Assumption 3 of that paper). As noted

in that paper, the size of the exponents, such as ,  ,  , and  depends both on the degree of

smoothness of the function to be approximated (i.e., the number of continuous derivatives that the

functions has) and on the dimension of the argument of the function (i.e., the dimension of 1()

or 2() in our case). For example, under Assumption 7(i), if the approximating functions used

are splines or polynomials, then
°° (·)− 101 (·)

°°
∞ = 

³

−
1

´
 with  = 1, where  is

the number of continuous derivatives of the function  (·) and 1 is the dimension of 1(). Since

our results require that these approximation errors vanish sufficiently fast, this, in turn, places
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certain requirements on the smoothness of the functions  (·),  (·),  (·), and Γ (·) and on the
dimension of 1() or 2(), with some trade-offs between the two. Finally, note that part (iv)

of Assumption 7 is similar to a condition given in Assumption 3 of Cattaneo, Jansson, and Newey

(2018b). As noted in that paper, this condition comes close to being minimal for the central limit

theorem to hold.

Although our specification allows the structural equation (1) and the system of first-stage equa-

tions (2) to have nonlinear components, the results that we give in this paper will also, of course,

hold under a linear specification with (possibly) many weak instruments and/or many weak covari-

ates taking the form

() =  0
()0 +


101()√


+  + () (5)

() =
Θ

101()√


+
Π

202()√


+  + () (6)

where  = 1   and  = 1  . In this case, 1() and 2() will be exogenous regres-

sors/instruments that need not depend on other variables such as 1() and 2(). In addition,

in a strictly linear setup, parts (i)-(iii) of Assumption 7 that impose conditions on the approximation

errors by series estimation will no longer be needed.

Assumption 8: Let  = 
£
 0

¤

£
0

¤
. Suppose that the limit of  exists, so that

 →  , as →∞ for some fixed × 1 vector  ∈ S, where S denotes some compact subset of
R.

To estimate the parameter (vector) of interest  in equation (1), we propose three new jackknife-

type IV estimators. We shall use the acronyms FEJIV, FELIM, and FEFUL to denote, respectively,

the Fixed Effect Jackknife IV, the Fixed Effect LIML, and the Fixed Effect Fuller estimator.

1. FEJIV: b = ¡ 0
¢−1

 0,

where  = ⊥− () (), ⊥ =  ()− (1), and  () =  − (), with

 () and  (1) being projection matrices that project into the column space of
h
 

i
and

h
1 

i
, respectively. In addition,  denotes an  × diagonal matrix, whose

diagonal elements b = ³ b1 b2 · · · b

´0
, when stacked into a vector, correspond to the

solution of the system of linear equations ⊥ =
¡
 () ◦ ()

¢
, where ⊥ is an ×1

vector containing the diagonal elements of the projection matrix ⊥.

10



2. FELIM: The FELIM estimator b is the estimator that minimizes the objective function
b () =

( −)0 ( −)

( −)0 (1) ( −)
 (7)

where  is as defined above in the definition of FEJIV and  (1) =  −  (1) with

 (1) as defined above. b has the explicit representation
b = ³ 0

h
− b (1)

i

´−1 ³

 0
h
− b (1)

i

´
 (8)

where b is the smallest root of the determinantal equation detn 0
 − 

0
 (1)

o
= 0 with  =

h
 

i
.

3. FEFUL: The FEFUL estimator b is defined as follows
b = ³ 0

h
− b (1)

i

´−1 ³

 0
h
− b (1)

i

´


where  (1) =  −  (1) and b = hb − ³1− b´

i

h
1−

³
1− b´

i
for

some constant . Here, b is the smallest root of equation
det

n

0
 − 

0
 (1)

o
= 0. For the Monte Carlo results reported in section 5, we shall

take  = 1.

To help develop some intuition for these new estimators, it is easiest if we focus the discussion

on FEJIV. To proceed, note first that, under our setup, it is not difficult to show that

b − 0 =
¡
 0

¢−1
 0+  (1) =

¡
 0

¢−1 ¡
Υ0+  0

¢
+  (1) 

so that, at least in large samples, the “numerator” of the right-hand side of this equation has a

familiar form (i.e., it is in terms of a linear form Υ0 plus a bilinear form  0). Next, note

that an elementary result from linear algebra states that if  =  , where  is a square

matrix,  is a diagonal matrix, and  is a symmetric matrix, then  = ( ◦) , where  =
(11 22  )

0 and  = (11 22  )
0. Put in words, this result states that the vector

of diagonal elements of  is a linear transformation of the vector of diagonal elements of , with

the transformation matrix given by ( ◦). Since in the definition of b , we have specified
 = ⊥ − () (), it follows that by choosing the diagonal elements of  to satisfy
the system of linear equations ⊥ =

¡
 () ◦ ()

¢
, where ⊥ =

¡
⊥11 

⊥
22  

⊥


¢0
, we

would, by construction, end up with a matrix  whose diagonal elements 11   are all

11



zero. This, in turn, leads to the bilinear form  0 having the characteristics of a degenerate U-

statistic, with expectation that is properly centered at zero. This proper centering, in turn, allowsb to be both consistent and asymptotically normal under many weak instrument asymptotics. In
addition, write b − 0 = (

0)−1 0 ( ++ ), and note that

 0 ( ++ ) = (Φ +Υ +Ξ+ )
h
⊥ − () ()

i
( + )

= (Φ +Υ + )
h
⊥ − () ()

i
( + ) 

Looking at the equation above, we see that the matrix  is designed to not only partial out the

fixed effects, but also to make all the “projection residues”  (), 
()Υ, and  ()Φ

sufficiently small so as not to cause a bias problem even in the presence of many weak instruments.

For this purpose, it is important that our specification uses  () This matrix projects into the

orthogonal complement of the full set of exogenous variables/approximating functions, () =

(1 2 ), and not 
(1) whose use may still leave the projection residue  (1)Υ relatively

large. In addition, note that  () appears on both sides of the jackknife correction matrix

 () () so that fixed effects and nonlinear exogenous components are taken out on both

sides of the (multivariate) bilinear form, not just on one side. FELIM and FEFUL are a bit more

complicated than FEJIV, but they share the same basic design as FEJIV; and, in consequence,

they will also be consistent and asymptotically normal under many weak instrument asymptotics,

as we will show in the theorems below.

On the other hand, jackknife IV estimators currently available in the literature do not fully

accomplish the dual goals of being both properly centered and of having all cluster-specific effects

and additional covariates properly partialed out. To be more specific, we will briefly discuss a

number of jackknife IV estimators that have been proposed in the literature. The paper by Angrist,

Imbens, and Krueger (1999) consider the JIVE1 and JIVE2 estimators of the parameter vector 

but in a cross-sectional setup without either fixed effects or included exogenous regressors. Hence,

these authors do not explicitly study the more general version of these estimators that partials

out additional covariates. Hausman et al. (2012) introduce jackknife versions of LIML and Fuller

estimators called HLIM and HFUL, but they do so in a cross-sectional context where there are no

fixed effects and where only a small number of included exogenous regressors is allowed, so that the

problem of having to partial out fixed effects and a potentially large number of included exogenous

variables is not studied in that paper. In addition, the symmetric jackknife IV (SJIVE) estimator

proposed by Bekker and Crudu (2015) is formulated in a setting without fixed effects and with no

included exogenous regressors. Hence, that paper also does not consider issues related to having to

partial out additional covariates.

12



A recent paper, Evdokimov and Kolesár (2018), does examine a number of interesting jackknife

IV estimators that allow for partialing out of additional covariates. In the following discussion we

discuss how these estimators might perform if applied to our setting under many weak instrument

asymptotics. Consider first the IJIVE1 estimator studied in that paper. This estimator was orig-

inally proposed by Ackerberg and Devereux (2009) and is further analyzed in the grouped data

setting by Evdokimov and Kolesár (2018). Using our notation, the estimator can be written in the

form

b 1 =

µ
 0 (1)

h
⊥ −

³
⊥
´i h

 −
³
⊥
´i−1

 (1)

¶−1
×
µ
 0 (1)

h
⊥ −

³
⊥
´i h

 −
³
⊥
´i−1

 (1)

¶


It follows that we can further write the deviation of this estimator from the true value 0 as

b 1 − 0 =
¡
 01

¢−1 ¡
 01 + 01

¢
=

¡
 01

¢−1 ¡
 01 +Φ

0
1+Υ

0
1+  01

¢
, (9)

where 1 = (1)
£
⊥ −

¡
⊥
¢¤ £

 −
¡
⊥
¢¤−1

 (1). By straightforward

calculation, it is easy to see that the ( ) diagonal element of the matrix 1 is given by

1()() =

X
()=1


(1)

()()

1− ⊥
()()

h
⊥()() −

(1)

()()
⊥()()

i
6= 0

for ( ) = 1 , so that 
01, the bilinear form on the right-hand side of equation (9) above,

will not be a degenerate U-statistic and will not be properly centered at zero. Another way of looking

at this issue is that although the matrix
£
⊥ −

¡
⊥
¢¤ £

 −
¡
⊥
¢¤−1

does have a “jackknife

form” in the sense that the elements of its main diagonal are all zero, it defines a bilinear form not

with respect to  and  but with respect to the projected vectors b = (1) and b = (1).

Note, however, that in general the  element of b will contain not just the  element of  but other
elements as well, and similarly for b. In consequence, merely having the diagonal elements zeroed out
in this case is not sufficient for the bilinear form 01 = b0 £⊥ −

¡
⊥
¢¤ £

 −
¡
⊥
¢¤−1b

to be properly centered at zero. In some sense, the process of partialing out the covariates has

interfered with the process of jackknife recentering in the way this estimator is constructed. We

can use a similar argument to also show that the bilinear form for IJIVE2 is not properly centered

at zero.

Now consider the UJIVE estimator, which was first introduced in Kolesár (2013) and is further
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analyzed in the grouped data setting by Evdokimov and Kolesár (2018). This estimator takes the

form

b  =

µ
 0
∙ e () ³ ()

´−1
− e (1) ³ (1)

´−1¸


¶−1
×
µ
 0
∙ e () ³ ()

´−1
− e (1) ³ (1)

´−1¸


¶


where  =
h
1 2

i
, e () =  () − 

¡
 ()

¢
, and e (1) =  (1) − 

¡
 (1)

¢
. To

discuss this estimator, it is most convenient to consider the  = 1 case (i.e., the case where there

is only one endogenous regressor). In this case, the diagonal matrix  defined in Assumption 3

reduces to the scalar  = min . Now, we can write the deviation of this estimator from the true

value 0 as

b  − 0 =

µ
 0

2

¶−1µ
 0 + 0+Φ

0
+Υ

0
+  0

2

¶


where  =
£
 () −

¡
 ()

¢¤

¡
 ()

¢−1 − £ (1) −
¡
 (1)

¢¤

¡
 (1)

¢−1
. Note

first that the diagonal elements of the matrix  are all equal to zero, so the bilinear term for

this estimator,  0, is properly centered. However, this estimator has a bias problem that

arises from the presence of the term  0
2
, which can be nonnegligible and even large

in order of magnitude. To see this, observe first that simple manipulation shows that  =

 (1)
¡
 (1)

¢−1 − ()
¡
 ()

¢−1
. Using this identity, we can write

 0
2

=
Υ0 (1)

¡
 (1)

¢−1


2
− Υ

0


()
¡
 ()

¢−1


2

+
Φ0 (1)

¡
 (1)

¢−1


2
− Φ

0


()
¡
 ()

¢−1


2

+
 0 (1)

¡
 (1)

¢−1


2
−  0 ()

¡
 ()

¢−1


2
 (10)

Note that the term on the right-hand side of (10) which can be particularly large in order of

magnitude is Υ0 (1)
¡
 (1)

¢−1


2
. In fact, one can show that

Υ0 (1)
¡
 (1)

¢−1


2
=

Γ
0


(1)
¡
 (1)

¢−1
√
2

√


=




Γ0 (1)
¡
 (1)

¢−1



= 

µ




¶
.
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Hence, this estimator will be inconsistent as long as  =  (). This will certainly be true in

weak instrument cases where  =  (), but can also occur even in strong instrument cases where

 ∼
√
 if the included exogenous regressors enter significantly into the structural equation of

interest, in which case  ∼
√
. Our simulation results, given in Section 5, confirm that UJIVE

tends to do much less well in terms of bias when there are included exogenous regressors that enter

significantly into the structural equation of interest.

It should be noted, however, that, in the context of a linear IV model such as that given

by (5) and (6), UJIVE can be shown to be consistent under many weak instrument asymp-

totics in the special case where the equation of interest contains no included exogenous regres-

sors and only fixed effects. This is not only because in this case there is no term of the form

 0
2
 = 

01
1

¡
2
√

¢
, but also because, in a linear model with no included

exogenous regressors, Υ0
2


= Π20 02
h


¡


¢−1 − (2)
¡
 (2)

¢−1i
 (

√
) = 0 so that, without the con-

taminating effects of the included exogenous regressors, UJIVE does properly partial out the fixed

effects.

Since our setup essentially has a panel data structure, one may also wonder if it is possible to

simply first difference away the fixed effects and then do a jackknife-type recentering. A problem

with this strategy occurs if the IV regression contains, in addition to fixed effects, other included

exogenous regressors which cannot be eliminated by first-differencing. In that case, one will have to

do a projection to partial out these included exogenous regressors, leading to the same problem as

we have discussed previously with regard to IJIVE1. In fact, the problem will be worse in this case

due to the serial correlation in the errors induced by the first-differencing. Moreover, even if there

are no additional included exogenous regressors, the serial correlation induced by first differencing

causes additional complications. In particular, let  =  ( 0)−1  0 denote the projection matrix

of the instruments5. Then, to achieve proper jackknife recentering in this case requires the removal

not only of the elements on the main diagonal of  but also the elements on the superdiagonal

and the subdiagonal of  , so that with serial correlation proper recentering is attained only at

the cost of greater information loss. Finally, the presence of serial correlation also makes the large

sample covariance matrix of a jackknife IV estimator under many weak instrument asymptotics

both more complicated and more difficult to estimate. Hence, we believe that our approach for

removing fixed or cluster-specific effects has certain advantages over any alternative procedure that

is based on first-differencing. It should be noted that a recent panel data paper by Hsiao and Zhou

(2018) does take the approach of constructing a jackknife IV estimator after first-differencing the

5Here, we let  denote the matrix of observations on the instruments because we are referring to a case where

there are no included exogenous variables, 1.
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data. However, the objective and focus of that paper differs greatly from ours. First of all, the

panel data simultaneous equations model specified in Hsiao and Zhou (2018) does not allow for the

degree of instrument weakness that we consider. In addition, the model that they consider does not

have error heteroskedasticity or included exogenous regressors. If we apply their estimator to our

setting, the estimator will not be consistent in the case where 2 ∼
¡
min

¢2
or in the case where

2
¡
min

¢2 →∞ but
p
2

¡
min

¢2 → 0. Still, it should be stressed that in their setting with

strong instruments and error homoskedasticity their estimator has good asymptotic properties.

Turning our attention back to the equation ⊥ =
¡
 () ◦ ()

¢
, note that in order for

this system of linear equations to have a unique solution, we need the matrix
¡
 () ◦ ()

¢
to

be invertible. The following lemma provides sufficient conditions for the invertibility of
¡
 () ◦ ()

¢
.

Lemma 1: Suppose that Assumptions 5 and 6(i) are satisfied. Then, there exists a positive

constant  such that min
¡
 () ◦ ()

¢ ≥   0 , for all  sufficiently large6.

It should be noted that a more general result on conditions for the invertibility of Hadamard

products has been given previously in Cattaneo, Jansson, and Newey (2018b)7. However, we choose

to present a specialization of their result because it shows that, in the context of our cluster-sampling

setup, a key condition for ensuring the invertibility of
¡
 () ◦ ()

¢
is min1≤≤  ≥ 3,

which we explicitly assume in Assumption 6 part (i) above.

A further observation is that, in analyzing estimators that are obtained from minimizing a

variance ratio (e.g., FELIM), it is often convenient to first consider the objective function in the

form  () =
³
0 0


´

³
0 0

 (1)
´
, where  = [] and where  is a (+ 1) × 1

vector, not initially normalized to identify the dependent variable from the regressors. Here, ones

performs the minimization problem on  () in order to obtain a minimizer e =
³ e1 e02 ´0,

with e1 a scalar and e2 a × 1 vector, and subsequently normalize the last  components of e to
obtain an estimator e = −e2e1 for the coefficients of the endogenous regressors . The following
assumption ensures that this subsequent normalization is well-defined. Moreover, in the proof of

Lemma S2-11 given in the Supplemental Appendix to this paper, we show that, by following this

procedure, we end up with exactly the FELIM estimator b, that satisfies the first-order conditions
of the objective function given by (7) and that also has explicit representation given by equation

(8) above.

Assumption 9: Consider the variance-ratio objective function

6A proof of Lemma 1 is given in section 2 of the additional Online Appendix for this paper. This online appendix

can be viewed at the URL:

http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_

Cluster_Sample_IV_Model.pdf
7See, in particular, the analysis given in Section 3 of their Supplemental Appendix.
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 () =
³
0 0


´

³
0 0

 (1)
´
, where  ∈  =

©
 ∈ R+1 : kk2 = 1

ª
. Let e be

a (+ 1) × 1 vector that minimizes the objective function  ()  among all  ∈  (i.e., e =

argmin∈  ()). Partition e = ³e1 e02´0 as defined above and assume that there exists a positive
constant  such that ¯̄̄e1 ¯̄̄ ≥   0  for all  sufficiently large. (11)

Note that constraining  (so that kk2 = 1) is not restrictive since we are dealing with an objective
function  () that is a ratio of quadratic forms in . More precisely, let  = argmin∈R+1  (),

where  6= 0, and let e = 
°°°°

2
so that

°°°e°°°
2
= 1. Then, 

¡

¢
=
³

0

0


´

³

0

0
 (1)

´
=
³°°°°−1

2

0

0


°°°°−1
2

´

³°°°°−1

2

0

0
 (1)

°°°°−1
2

´
= 

³e´, so any minimal value of
 () obtained by minimizing  over all  ∈ R+1 can also be achieved by some e such that°°°e°°°

2
= 1.

3 Consistency and Asymptotic Normality

of Point Estimators

Theorem 1: Suppose that Assumptions 1-7 are satisfied. Let

 =
¡
 0 £− 

(1)
¤

¢−1 ¡

 0 £− 
(1)

¤

¢
, for some sequence  such that  =



³£
min

¤2

´
=  (1). Then, as →∞,

°°

¡
 − 0

¢
min

°°
2

→ 0 and
°° − 0

°°
2

→ 0.

Special cases of the class of estimators that satisfy the conditions of Theorem 1, and are

thus consistent in the sense described in the theorem, include FEJIV b, FELIM b, and
FEFUL b. Evidently, the main difference between these estimators is the different specifi-

cations of . b takes  = 0 for all ; b takes  = b where b is the smallest
root of the determinantal equation det

n

0
 − 

0
 (1)

o
= 0; and b takes  = b

=
hb − ³1− b´

i

h
1−

³
1− b´

i
, as described earlier. Hence, by verifying that, in

all three cases,  satisfies the condition  = 

³£
min

¤2

´
=  (1), we can easily specialize the

consistency result of Theorem 1 to establish the consistency of FEJIV, FELIM, and FEFUL. These

results are given in the following corollary.

Corollary 1: Under Assumptions 1-7 and 9, the following results hold as →∞.
(a)

°°°

³b − 0

´
min

°°°
2

→ 0 and
°°°b − 0

°°°
2

→ 0. (b)
°°°

³b − 0

´
min

°°°
2

→ 0 and°°°b − 0

°°°
2

→ 0. (c)
°°°

³b − 0

´
min

°°°
2

→ 0 and
°°°b − 0

°°°
2

→ 0.

The next two results establish asymptotic normality for the FELIM and FEFUL estimators,

under two different cases: (i) Case I: 2
¡
min

¢2
=  (1) and (ii) Case II: 2

¡
min

¢2 → ∞
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but
p
2

¡
min

¢2 → 0. The FEJIV estimator can also be shown to have an asymptotic normal

distribution under both Cases I and II. However, we choose to focus our theoretical analysis on

FELIM and FEFUL because, as noted previously, the results of our Monte Carlo study indicate

that FELIM and FEFUL have better finite sample properties than FEJIV.

To facilitate the statement of the next two results, define

Λ = −1
 (Σ1 +Σ2)

−1
 = −1

 Σ
−1
 , (12)

Λ =

¡
min

¢2
2

−1
 Σ2

−1
 , (13)

where  = Γ
0 (1)Γ, Σ1 =  

¡
Γ0 (1)

√
|F



¢
= Γ0 (1)2

(1)Γ, and

Σ2 = −1  
¡
 0|F



¢
−1

=

X
()()=1
()6=()

2()()
h
2()|F



i
−1 

h
 ()

0
()|F



i
−1

+

X
()()=1
()6=()

2()()
−1
 

h
 ()()|F



i

h
()

0
()|F



i
−1 ,

with Σ = Σ1 +Σ2 and  () = () − () for ( ) = 1 . Here, for any random vector

,  
¡
|F



¢
denotes the conditional variance-covariance matrix of  given F

 . In addition,

let 2 = 
³
2
(11)

  2
()

´
= 

¡
21  

2


¢
, where 2

()
=
h
2
()
|F



i
 for ( ) =

1  and where, for notational convenience, we suppress the dependence of 
2
()

on F
 .

As evident from the results given below, Λ and Λ are the (conditional) variance-covariance

matrices of FELIM (and also of FEFUL) in large samples under Cases I and II, respectively.

Theorem 2: Suppose that Assumptions 1-9 are satisfied. In addition, suppose that Case I holds

so that 2
¡
min

¢2
=  (1). Then, Λ is positive definite  for all  sufficiently large; and,

as →∞, Λ−12 

³b − 0

´
→  (0 ) and Λ

−12
 

³b − 0

´
→  (0 ).

Theorem 3: Suppose that Assumptions 1-9 are satisfied, and suppose that Case II holds, so

that
¡
min

¢2
2 =  (1)  but

p
2

¡
min

¢2 → 0. In addition, let e be a  ×  matrix with

1 ≤  ≤ , and suppose that there exists a positive constant  such that
°°°e

°°°
2
≤   ∞ and

min

³eΛe0´ ≥ 1  0 . Then,¡
min 

p
2

¢ ³eΛe0´−12 e

³b − 0

´
→  (0 ) and¡

min 
p
2

¢ ³eΛe0´−12 e

³b − 0

´
→  (0 ).
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As alluded to earlier, the asymptotic results for FEJIV, FELIM, and FEFUL given in the above

theorems can be specialized to obtain results for the linear IV regression case with (possibly) many

weak instruments and/or many weak covariates, as specified in equations (5) and (6) above.

4 Covariance Matrix Estimation and Hypothesis

Testing

To consistently estimate the asymptotic variance-covariance matrix of FELIM and FEFUL,

we propose the following estimators

b = b−1

bΣ b−1

 and b = b−1

bΣ b−1

 , (14)

where

b =  0
h
− b (1)

i
, b =  0

h
− b (1)

i


bΣ =  0 ( [b ◦ b]) − b (b ◦ b)0  ( ◦) ³b0 ◦ ()
´

−
³b0 ◦ ()

´0
 ( ◦) (b ◦ b)b0 + bb0 (b ◦ b)0  ( ◦) (b ◦ b)

+
³b0 ◦ b

´0
 ( ◦)

³b0 ◦ b

´
,

bΣ =  0 ( [b ◦ b ]) − b (b ◦ b )0  ( ◦) ³b 0 ◦ ()
´

−
³b 0 ◦ ()

´0
 ( ◦) (b ◦ b )b0 + bb0 (b ◦ b )0  ( ◦) (b ◦ b )

+
³b 0 ◦ b

´0
 ( ◦)

³b 0 ◦ b

´
.

and where  =
£
 ◦

¤−1
, b = ()

³
 −b´, b = ()

³
 −b´,b = () − bb0, and b = () − bb0 . In addition, letb = h 0 ()

³
 −b´i  ∙³ −b´0 ()

³
 −b´¸ and

b = h 0 ()
³
 −b´i ³ −b´0 ()

³
 −b´ denote estimators of the parameter

 = lim→∞
£
 0

¤

£
0

¤
 based on b and b , respectively.

Our next result shows the consistency of the covariance matrix estimators given in equation

(14) under both Cases I and II8.

8 It can be shown that an estimator of the asymptotic covariance matrix of FEJIV, which will be consistent under

both Case I and II, is given by

 = −1Σ
−1 = 0


−1 


0
 +

 ◦ 0  ( ◦)  ◦  0


−1
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Theorem 4: Suppose that Assumptions 1-9 are satisfied. Then, the following statements are true.

(a) For Case I, where2
¡
min

¢2
=  (1),

b = Λ+ (1) and
b = Λ+ (1),

where Λ is as defined in equation (12).

(b) For Case II, where2
¡
min

¢2 →∞, butp2
¡
min

¢2 → 0,
h¡
min

¢2
2

i

b =

Λ +  (1) and
h¡
min

¢2
2

i

b = Λ +  (1), where Λ is as defined in

equation (13).

Theorem 5 below provides asymptotic normality results for t-statistics associated with the

FELIM and FEFUL estimators in the case where 1 = · · · =  = min . The case where the

degree of instrument weakness is homogeneous and does not vary across the different first-stage

equations is one which is often assumed in previous papers on weak and/or many instruments. In

this case, we show that, without any additional side conditions that may restrict the form of the

linear hypothesis tested, the t-ratio based on our estimators has an asymptotic standard normal

distribution under the null hypothesis, as long as
p
2

¡
min

¢2
=
p
2 ()

2 → 0. Moreover,

the results show that, under these same rate conditions, the tests are also consistent, as the test

statistics diverge under fixed alternatives.

Theorem 5: Suppose that Assumptions 1-9 are satisfied. Suppose further that the diagonal matrix

 in Assumption 3 takes the form = min · (i.e., 1 = ··· =  = min ). Then, the following

statements are true for the t-statistics T =
³
0b − 

´


q
0 b and T = ³0b − 

´


q
0 b .

a. For Case I, where 2
¡
min

¢2
=  (1):

(i) Under 0 : 
00 = , T

→  (0 1) and T
→  (0 1) 

(ii) Under 1 : 
00 6= , with probability approaching one, as →∞, the following results

hold: T → +∞ if 00  ; T → −∞ if 00  ; T → +∞ if 00  ; and

T → −∞ if 00  .

b. For Case II, where 2
¡
min

¢2 →∞ but
p
2

¡
min

¢2 → 0:

(i) Under 0 : 
00 = , T

→  (0 1) and T
→  (0 1) 

where  = 
(11) (11) (1) (), () = 0() ( ◦ ),  =  ()


 −, and = (). Note also that the standard error used for FEJIV in our Monte Carlo study given in section 5 is

based on the above formula.
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(ii) Under 1 : 
00 6= , with probability approaching one, as →∞, the following results

hold: T → +∞ if 00  ; T → −∞ if 00  ; T → +∞ if 00  ; and

T → −∞ if 00  .

Our next result considers cases where we test a null hypothesis involving only one coefficient,

such as testing the significance of a particular parameter. We choose to analyze this case because

this seems to be the most frequent use of the t-statistic by empirical researchers. In these cases,

we establish that, under mild additional conditions, the t-test based on our proposed estimators

will be robust to many weak instruments, even if there is heterogeneity in the degree of instrument

weakness across the different first-stage equations. Moreover, our test will be robust to many weak

instruments even if the empirical researcher using our test has no knowledge of how the degree of

instrument weakness varies across the different first-stage equations. For this result, we introduce

a modification of Assumption 3.

Assumption 3*: Suppose that Υ

¡
2()

¢
= 

¡
2()

¢

√
 for ( ) = 1 , where 

has the form

 =

⎛⎝ 1
1×1

0

0
¡
min

¢ · 2
⎞⎠ , (15)

with 1 = 
¡
1  1

¢
 and where 1 and 2 are positive integers, with 1 + 2 = . The

following conditions are assumed. (i) Either  =
√
 or 

√
 → 0 for  ∈ {1  }. (ii)

Let min = min1≤≤ and suppose that min →∞ as →∞ such that
p
2

¡
min

¢2 → 0.

(iii)
¡
min

¢
 → 0 as  → ∞ for  ∈ {1  1}. (iv) Let  be as defined in Assumption

3(iii) above, and suppose that there exists a positive constant  such that max () ≤   ∞
and min () ≥ 1  0  for all  sufficiently large. (v) Let  denote a  × 1 elementary
vector whose  element is 1 with all other elements (or components) equal to 0. Partition −1



as −1
 =  =

³

0
1· 

0
2·
´0
, where 1· is 1 ×  and 2· is 2 × . Suppose that there

exists a positive constant ∗ such that 0
0
2·2· ≥ ∗  0 for all  sufficiently large and for

 ∈ {1  }.

Note that writing the matrix  in the form given by equation (15) may appear to require a

particular ordering of the diagonal elements 1  1 
min
 of , where 

min
 is placed in the last

2 diagonal position. However, it is easily seen that the way is specified in equation (15) does not

really lead to any loss of generality. In fact, a more general  matrix, where not all of the diagonal

elements grow at the same rate, as →∞, can always be put in the form given in equation (15), via
repermutation of the rows and columns of . To see this, suppose that 1  1 

min
 are not

ordered as in equation (15), so that we have some diagonal matrix ∗ whose diagonal elements
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are 1  1 
min
  but in some other ordering. Then, there exists some permutation matrix

 such that  = ∗ 0, where  is the diagonal matrix given in equation (15). Moreover,

let the elements of b∗ ∗0, ∗, and b ∗ be ordered in a way that is conformable with ∗ and letb 0, , and b be the corresponding vectors and matrix but with elements ordered conformably

with . Then, it is easy to see that b = b∗, 0 = ∗0,  = ∗, b =  b ∗ 0. Hence, by
making use of these relations and of the fact that  is an orthogonal matrix, we further obtain that

T∗ = ∗0
³b∗ − ∗0

´

p
∗0 b ∗∗ = ∗0 0

³b∗ − ∗0
´

p
∗0 0 b ∗ 0∗ = 0

³b − 0

´

p
0 b  = T.

It follows that the value of the t-statistic is invariant to repermutation of the order of the elements

of b, 0, , and b , so that the asymptotic distribution which we derive for T, under an assumed
ordering of the elements of b, 0, , and b that is conformable with equation (15) will still apply,

even if the t-statistic computed by the empirical researcher is based on some other ordering.

Here, we let1 = 
¡
1  1

¢
 such that

¡
min

¢
 → 0 as →∞ for  ∈ {1  1},

where 1 and 2 are positive integers with 1 + 2 = . This specification excludes the case where

1 = 0, or 2 = , because this case has already been covered by Theorem 5.

Theorem 6: Suppose that Assumptions 1, 2, 3*, 4-9 are satisfied; and, in what follows, let 

denote a × 1 elementary vector whose  element is 1 with all other elements (or components)
equal to 0, and define the t-statistics T =

³
0b − 

´


q
0 b and T = ³0b − 

´


q
0 b .

a. For Case I, where 2
¡
min

¢2
=  (1), the following results hold for any  ∈ {1  }.

(i) Under 0 : 
0
0 = , T

→  (0 1) and T
→  (0 1).

(ii) Under 1 : 
0
0 6= , with probability approaching one, as →∞, the following results

hold: T → +∞ if 00  ; T → −∞ if 00  ; T → +∞ if 00  ; and

T → −∞ if 00  .

b. For Case II, where 2
¡
min

¢2 → ∞ but
p
2

¡
min

¢2 → 0, the following results hold,

for any  ∈ {1  }.

(i) Under 0 : 
0
0 = , T

→  (0 1) and T
→  (0 1).

(ii) Under 1 : 
0
0 6= , with probability approaching one, as →∞, the following results

hold: T → +∞ if 00  ; T → −∞ if 00  ; T → +∞ if 00  ; and

T → −∞ if 00  .

Comparing Assumption 3* with Assumption 3, we see that the one additional side condition

required for Theorem 6 is the condition placed on elements of 2· in part (v) of Assumption 3*.
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To test hypotheses involving only the  coefficient, this condition will be violated only if the

 column of 2· does not have a single nonzero entry, which seems unlikely in most practical

applications.

To date, papers in the weak instrument literature have focused primarily on size control, with

little attention paid to test consistency under weak identification. One exception is a recent paper

by Mikusheva and Sun (2020), which shows that a condition similar to
p
2

¡
min

¢2 → 0 is

both necessary and sufficient for the existence of a consistent test. Interpreted in light of their

result, the results presented in Theorems 5 and 6 above prove that t-tests based on FELIM and

FEFUL are consistent as long as instruments are strong enough so that consistency in hypothesis

testing is possible. In contrast, t-tests based on estimators such as the 2SLS estimator will only be

consistent if 2
¡
min

¢2 → 0 (i.e., under stronger instruments). Test statistics based on LIML

also have undesirable properties under many weak instrument asymptotics, when there is error

heteroskedasticity. In addition, note that one advantage of t-tests is that they are particularly easy

to apply if one is interested in testing against one-sided alternatives. The results of Theorems 5 and

6 show that, when the null hypothesis is incorrect, t-tests based on FELIM and FEFUL diverge

in the direction of the true alternative, with probability approaching one, even in situations where

identification is weaker than that typically assumed under standard large sample theory, provided

of course that
p
2

¡
min

¢2 → 0. Hence, the test statistics proposed in this paper should be

useful to empirical researchers interested in testing whether an effect in a particular direction is

statistically significant.

5 Monte Carlo Results

In this section, we report some Monte Carlo results based on a setup similar to that of Hausman et

al. (2012), but extended to the cluster-sample/panel data setting. In particular, we consider two

closely related groups of data-generating processes:

DGP 1:

() = 
1×1

()
1×1

+ 0
1×9

1()
9×1

+  + (),

() = 
1×1

2()
1×1

+ Φ0
1×9

1()
9×1

+  + ().

In all experiments that utilize this DGP, we take  =
³
1 1 · · · 1

´0
andΦ =

³
1 1 · · · 1

´0
.
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DGP 2:

() = 
1×1

()
1×1

+ 1
1×1

1()
1×1

+  + (),

() = 
1×1

2()
1×1

+ Φ1
1×1

1()
1×1

+  + ().

In all experiments that utilize this DGP, we take 1 = 1 and Φ1 = 1. Additionally, we set

 = 300 and  = 3 for each  ∈ {1 2  300}, so that  = 900. We also take
©
1()

ª900
()=1

≡
 (0 1),

©
2()

ª900
()=1

≡  (0 1), and
©
()

ª900
()=1

≡  (0 1). Moreover, 1(),

2(), and () are all mutually independent. The ( )
 observation of the vector of instruments

is specified to be 2() =
³
2() 2

2()
3
2()

4
2()

2()()1 · · ·
· · · 2()()5

´0
, while the ( ) observation of the vector of included exogenous regressors,

or covariates, is given by 1() =
³
1() 2

1()
3
1()

4
1()

1()()1 · · ·
· · · 1()()5

´0
, where () ∈ {0 1} for  ∈ {1 2  5} is a binary variable such that

Pr
¡
() = 1

¢
= 12 and where

©
()

ª
is independent across both ( ) and . The structural

disturbance, () is allowed to exhibit conditional heteroskedasticity in a manner similar to the

design given in Hausman et al. (2012). In particular, under DGP1, we take

() = () +

s
1− 2

2 + (086)4

¡
1() + 0862()

¢
 (16)

where 1()|1() 2() ∼ 
³
0 1

h
1 +

¡
091() + 2()

¢2i´
and 2() ∼ 

³
0 (086)2

´
. Both

of these distributions are assumed to be independent across the index ( ). Under DGP2, ()

has a similar structure as given in equation (16) above, except that we take 1()|1() 2() ≡
1()|1() 2() ∼ 

³
0 2

h
1 +

¡
1() + 2()

¢2i´
. Also, 1 and 2 are normalization con-

stants chosen so that under both DGP1 and DGP2 the unconditional variance,  
¡
1()

¢
, is

equal to 1. For all experiments reported below, we set  = 03 and, under both DGP1 and DGP2,

we choose the parameter , so that the R-squared for the regression of 2 on the instruments and

the included exogenous variables take the values 0, 01, and 02.

Our simulation study examines the finite sample properties of our three estimators (FEJIV,

FELIM, and FEFUL) and their associated t-statistics. Additionally, we compare the performance

of our estimators with the 2SLS estimator, the IJIVE1 estimator originally proposed in Ackerberg

and Devereux (2009), the IJIVE2 estimator introduced in Evdokimov and Kolesár (2018), and

the UJIVE estimator originally proposed in Kolesár (2013) and further studied in Evdokimov and

Kolesár (2018). The comparison of these point estimators is made on the basis of median bias and
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nine decile range. We also evaluate the associated t-statistics for these estimators on the basis of

size control, as measured by their rejection frequencies under the null hypothesis 0 :  = 0.

The results of our Monte Carlo study are reported in Tables 1-6 below.

Table 1: Median Bias, DGP 1

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1056 0.0429 0.0417 0.3405 0.0012 0.0029 0.0157

24 0.1 0.1028 0.0417 0.0400 0.3474 -0.0002 0.0007 0.0122

0.2 0.1060 0.0423 0.0417 0.3517 0.0022 0.0083 0.0200

0 0.0852 0.0321 0.0298 0.2241 -0.0059 0.0009 0.0105

32 0.1 0.0830 0.0273 0.0264 0.2376 -0.0131 -0.0010 0.0082

0.2 0.0842 0.0295 0.0285 0.2453 -0.0094 0.0026 0.0118

0 0.0729 0.0247 0.0244 0.1622 -0.0062 -0.0004 0.0079

40 0.1 0.0714 0.0245 0.0240 0.1783 -0.0084 -0.0014 0.0058

0.2 0.0724 0.0270 0.0255 0.1802 -0.0050 0.0032 0.0104

0 0.0625 0.0212 0.0200 0.1269 -0.0068 0.0004 0.0065

48 0.1 0.0605 0.0182 0.0176 0.1272 -0.0117 -0.0020 0.0042

0.2 0.0605 0.0190 0.0182 0.1414 -0.0082 0.0009 0.0073

Results based on 10,000 simulations

Table 2: Nine Decile Range 0.05 to 0.959, DGP 1

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.5986 0.9415 0.9447 6.1610 1.5655 1.2073 1.0575

24 0.1 0.6032 0.9402 0.9428 6.1080 1.5857 1.2502 1.0800

0.2 0.5968 0.9392 0.9360 6.2265 1.5635 1.1811 1.0528

0 0.5386 0.7618 0.7639 5.7060 1.1133 0.9156 0.8485

32 0.1 0.5367 0.7662 0.7657 6.2091 1.1017 0.9167 0.8526

0.2 0.5492 0.7763 0.7716 5.8831 1.1172 0.9282 0.8678

0 0.4994 0.6591 0.6570 5.5880 0.8722 0.7608 0.7229

40 0.1 0.4961 0.6412 0.6415 5.1816 0.8585 0.7572 0.7170

0.2 0.4970 0.6528 0.6546 5.5664 0.8550 0.7454 0.7109

0 0.4608 0.5790 0.5764 4.7318 0.7231 0.6490 0.6237

48 0.1 0.4586 0.5822 0.5822 5.0871 0.7322 0.6516 0.6288

0.2 0.4700 0.5873 0.5855 5.0922 0.7309 0.6636 0.6389

Results based on 10,000 simulations

9By nine decile range we mean the range between the 005 and the 095 quantiles.
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Table 3: 0.05 Rejection Frequencies10, DGP 1

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1861 0.1056 0.0961 0.5167 0.0322 0.0559 0.0588

24 0.1 0.1809 0.1013 0.0920 0.5333 0.0307 0.0583 0.0602

0.2 0.1894 0.1038 0.0940 0.5318 0.0317 0.0579 0.0610

0 0.1716 0.1077 0.0962 0.5281 0.0313 0.0486 0.0515

32 0.1 0.1678 0.1061 0.0974 0.5307 0.0367 0.0556 0.0587

0.2 0.1767 0.1124 0.1033 0.5342 0.0373 0.0581 0.0620

0 0.1662 0.1143 0.1055 0.5390 0.0371 0.0510 0.0536

40 0.1 0.1600 0.1084 0.0987 0.5573 0.0371 0.0519 0.0553

0.2 0.1643 0.1129 0.1033 0.5469 0.0387 0.0521 0.0555

0 0.1551 0.1166 0.1039 0.5749 0.0348 0.0479 0.0508

48 0.1 0.1542 0.1126 0.1033 0.5695 0.0399 0.0531 0.0555

0.2 0.1643 0.1200 0.1102 0.5733 0.0409 0.0567 0.0603

Results based on 10,000 simulations

Table 4: Median Bias, DGP 2

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1056 0.0429 0.0417 -0.0095 0.0012 0.0029 0.0157

24 0.1 0.1030 0.0403 0.0397 -0.0110 -0.0037 0.0034 0.0155

0.2 0.1076 0.0457 0.0445 -0.0047 0.0051 0.0135 0.0258

0 0.0852 0.0321 0.0298 -0.0120 -0.0059 0.0009 0.0105

32 0.1 0.0837 0.0285 0.0281 -0.0137 -0.0102 -0.0007 0.0087

0.2 0.0869 0.0315 0.0305 -0.0138 -0.0079 0.0058 0.0156

0 0.0729 0.0247 0.0244 -0.0135 -0.0062 -0.0004 0.0079

40 0.1 0.0715 0.0255 0.0246 -0.0137 -0.0069 -0.0002 0.0073

0.2 0.0752 0.0277 0.0271 -0.0077 -0.0030 0.0082 0.0148

0 0.0625 0.0212 0.0200 -0.0096 -0.0068 0.0004 0.0065

48 0.1 0.0603 0.0196 0.0185 -0.0108 -0.0098 -0.0013 0.0048

0.2 0.0635 0.0208 0.0198 -0.0111 -0.0089 0.0026 0.0085

Results based on 10,000 simulations

10See Ackerberg and Devereux (2009), Kolesár (2013), and Evdokimov and Kolesár (2018) for formulae for the

estimators IJIVE1, IJIVE2, and UJIVE as well as for the standard errors used in constructing the t-statistics for

these estimators.
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Table 5: Nine Decile Range 0.05 to 0.95, DGP 2

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.5986 0.9415 0.9447 1.5682 1.5655 1.2073 1.0575

24 0.1 0.6153 0.9693 0.9704 1.6082 1.6216 1.3049 1.1267

0.2 0.6399 1.0004 0.9935 1.6862 1.6536 1.3127 1.1508

0 0.5386 0.7618 0.7639 1.0812 1.1133 0.9156 0.8485

32 0.1 0.5574 0.7975 0.7949 1.1461 1.1600 0.9613 0.8939

0.2 0.5821 0.8192 0.8103 1.1639 1.1644 1.0028 0.9361

0 0.4994 0.6591 0.6570 0.8578 0.8722 0.7608 0.7229

40 0.1 0.5119 0.6670 0.6634 0.8851 0.8864 0.7891 0.7481

0.2 0.5301 0.6920 0.6876 0.9098 0.9150 0.8068 0.7691

0 0.4608 0.5790 0.5764 0.7159 0.7231 0.6490 0.6237

48 0.1 0.4762 0.6038 0.6019 0.7554 0.7649 0.6822 0.6560

0.2 0.4995 0.6237 0.6216 0.7731 0.7742 0.7101 0.6838

Results based on 10,000 simulations

Table 6: 0.05 Rejection Frequencies, DGP 2

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1861 0.1056 0.0961 0.2236 0.0322 0.0559 0.0588

24 0.1 0.1783 0.1015 0.0924 0.2243 0.0304 0.0627 0.0646

0.2 0.1786 0.1018 0.0927 0.2306 0.0313 0.0631 0.0657

0 0.1716 0.1077 0.0962 0.2563 0.0313 0.0486 0.0515

32 0.1 0.1718 0.1098 0.0992 0.2575 0.0356 0.0547 0.0579

0.2 0.1739 0.1155 0.1039 0.2607 0.0380 0.0600 0.0627

0 0.1662 0.1143 0.1055 0.2770 0.0371 0.0510 0.0536

40 0.1 0.1600 0.1133 0.1029 0.2767 0.0380 0.0558 0.0590

0.2 0.1608 0.1167 0.1063 0.2851 0.0389 0.0578 0.0609

0 0.1551 0.1166 0.1039 0.2958 0.0348 0.0479 0.0508

48 0.1 0.1579 0.1173 0.1057 0.2960 0.0384 0.0524 0.0555

0.2 0.1614 0.1240 0.1121 0.2988 0.0440 0.0605 0.0616

Results based on 10,000 simulations

Looking over the results reported in Tables 1-6, note first that, in terms of median bias, the

performance of FEJIV, FELIM, and FEFUL are almost uniformly better than 2SLS, IJIVE1, and

IJIVE2, although our experiments do show the latter three to be less dispersed than the three

estimators studied in this paper. Comparing FELIM and FEFUL in terms of the nine decile range,
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we see that FEFUL is less dispersed than FELIM, which is in accord with the motivation behind

the original Fuller (1977) modification. Perhaps the most notable difference in performance is that

t-statistics based on FELIM and FEFUL have much less size distortion than t-statistics constructed

from any of the other five estimators. The t-statistics based on the FEJIV estimator tend to be

undersized, but the empirical rejection frequencies are still closer to the nominal level than t-

statistics based on 2SLS, IJIVE1, IJIVE2, or UJIVE. Finally, we note that UJIVE did much better

under DGP2 than under DGP1. This is due to the fact that UJIVE does not properly partial out

the included exogenous regressors; hence, it performs less well under DGP1, where a larger number

of included exogenous regressors enter significantly into the structural equation of interest.

6 Conclusion

This paper considers an IV regression model with many weak instruments, cluster specific effects,

error heteroskedasticity, and possibly many included exogenous regressors. To carry out point

estimation in this setup, we propose three new jackknife-type IV estimators, which we refer to by

the acronyms FEJIV, FELIM, and FEFUL. All three of these estimators are shown to be robust

to the effects of many weak instruments, in the sense that they are shown to be consistent in

a framework broad enough to include both the standard situation with strong instruments and

situations with many weak instruments. To the best of our knowledge, the estimators proposed

in this paper are the first to be consistent under many weak instrument asymptotics when the

IV regression under consideration has both cluster specific effects and possibly many included

exogenous regressors. We establish asymptotic normality for FELIM and FEFUL under both

strong instrument and many weak instrument asymptotics. In addition, we provide consistent

standard errors for our estimators and show that, when the null hypothesis is true, t-statistics

based on these standard errors are asymptotically normal under both strong instrument and many

weak instrument asymptotics. Finally, we show that under both strong instrument and many

weak instrument asymptotics, the t-statistics based on these standard errors are consistent under

fixed alternatives. Thus, we underscore an interesting aspect of the many weak instrument setup.

Namely, test consistency is still possible under this framework, as has been pointed out in a recent

paper by Mikusheva and Sun (2020). In a series of Monte Carlo experiments, we find that t-

statistics based on FELIM and FEFUL control size better in finite samples than t-statistics based

on alternative jackknife-type IV estimators that have previously been proposed in the literature.

Hence, based on the findings of this paper, we recommend that either FELIM or FEFUL be used

in settings where there are many weak instruments. cluster specific effects, and possibly many

included exogenous regressors.
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7 Appendix: Proofs of Main Theorems and Other Key Results

This appendix provides the proofs for Theorem 1, Corollary 1, and Theorems 4-6 of the paper. The

proofs of Theorems 2 and 3 are longer and, thus, are given in Appendix S1 of a Supplemental Appen-

dix to this paper. This Supplemental Appendix can be viewed at the URL::http://econweb.umd.edu

/~chao/Research/research_files/Supplemental_Appendix_to_Jackknife_Estimation_Cluster

_Sample_IV_Model.pdf. In addition, the proofs provided below rely on a number of technical

results that are stated without proof in Appendix S2 of the Supplemental Appendix. These results

are designated in the derivations that follow by the use of the prefix S. So, for example, Lemma

S2-2 will refer to the second lemma in Appendix S2 of the Supplemental Appendix. Proofs for these

additional supporting lemmas (more specifically, Lemmas S2-1 to S2-18) are available in a separate

online appendix which can be viewed at the URL: http://econweb.umd.edu/~chao/Research

/research_files/Additional_Online_Appendix_Jackknife_Estimation_Cluster_Sample_IV_Model.pdf

Proof of Theorem 1:

To proceed, note first that, by parts (a) and (b) of Lemma S2-2 and by the assumption on ,

we have −1  0 £− 
(1)

¤
−1 = −1  0−1 − 

−1
  0 (1)−1 = +  (1),

where  = Γ
0 (1)Γ =  (1). By Assumption 3(iii), we also have that  is positive definite

almost surely for  sufficiently large, so that −1  0 £− 
(1)

¤
−1 is invertible w.p.a.1.

Hence, w.p.a.1., we can write
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Moreover, by applying part (a) of Lemma S2-4 and part (a) of Lemma S2-5, we obtain
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Applying part (b) of Lemma S2-4 and part (b) of Lemma S2-5, we get

1

min

−1  0
h
− 

(1)
i
 =

1

min

−1  0− 
1

min

−1  0 (1)

= 

Ã
max

(
1

min



p
2

(min )
2

)!
+  (1) =  (1) 

It follows by the triangle inequality and the Slutsky’s Theorem that
°°
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¢

¡
min

¢°°
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 (1), which gives the first result. To show the second result, note that, by straightforward

calculations, we obtain
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→ 0, as required. ¤

Proof of Corollary 1:

In light of the results given in Theorem 1, it suffices that we verify the condition  =



³£
min

¤2

´
=  (1) for all three estimators. For the FEJIV estimator considered in part

(a),  = 0 for all , so this condition is trivially satisfied. Now, part (b) considers the FE-

LIM estimator. For this estimator, the result of Lemma S2-11 has shown that we can take
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, so FELIM also satisfies the needed condition. Finally, part (c)
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=
hb − ³1− b´ ()

i

h
1−

³
1− b´ ()

i
. By part (b) of Lemma S2-7, we have

that b = 

³£
min

¤2

´
, so the needed condition is satisfied again. The consistency results

given in parts (a)-(c) of this corollary then follow as a consequence of Theorem 1. ¤

Proof of Theorem 4:

We shall prove this theorem for the FELIM case since the proof for FEFUL is similar. To
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()
, (), Ψ(), (), and Ψ() on F

 =  ().
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Using these notations, to show part (a), we first write 
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Turning our attention to b3, note that, in this case, we can apply Lemma S2-10, parts (b) and
(e) of Lemma S2-18, and Slutsky’s theorem to obtain
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Lastly, we consider b4. Here, we can apply Lemma S2-10, part (f) of Lemma S2-18, the fact that
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It follows from equations (17), (18), (19), and (20) that
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To show the same result for FEFUL, note that b satisfies the conditions of both Lemma

S2-12 and Lemma S2-18. Hence, we can make the same argument as given above for FELIM,
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except that we use the result of Lemma S2-12 in lieu of Lemma S2-10 to obtain 
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To show part (b), we again only provide an explicit argument for b since the proof of b
follows in a similar way. To proceed, write
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Next, consider b3. Given that 2
¡
min

¢2 →∞ under Case II, we get, upon applying the result
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given in Lemma S2-10, as well as parts (b) and (e) of Lemma S2-18 and Slutsky’s theorem,¡
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Finally, we consider b4. Again, noting that 2
¡
min

¢2 → ∞ under Case II, we have, upon

applying the result given in Lemma S2-10, as well as part (f) of Lemma S2-18 and Slutsky’s theorem,¡
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It follows from equations (21), (22), (23), and (24) that¡
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To show the same result for FEFUL, note again that b satisfies the conditions of Lemmas S2-12
and S2-18. Hence, we can make the same argument as given above for FELIM, except using Lemma

S2-12 in lieu of Lemma S2-10 to obtain
h¡
min

¢2
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b =h¡
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 Σ2
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Proof of Theorem 5:

To show part (a), first note that since 1 = · · · =  = min here, we can take min = .

Moreover, by part (d) of Lemma S2-3 and Assumption 3(iii), Λ is positive definite . In

addition, specializing the result of part (a) of Theorem 4 to this case, we have 
b = 2

b =
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Λ +  (1), so that 
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S2-3 and Assumption 3(iii). In addition, by parts (a) and (c) of Lemma S2-3; Assumption 3(iii);

and the fact that, under Case I, 2
¡
min

¢2
= 2

2
 =  (1); there exists a positive constant

 ∞ such that, almost surely for all  sufficiently large,

max (Λ) ≤
max

£
 

¡
Γ0 (1)

√

¢ |F



¤
+

2

2
max

£
 

¡
 0

p
2

¢ |F


¤
[min ()]

2
≤ .

(26)

It follows that, in this case, 
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q
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¢
[1 +  (1)]. So, w.p.a.1,
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0 b → +∞ if   0 whereas 

q
0 b → −∞ if   0, from which the stated result

follows. Finally, note that the results for T can be shown in the same way, so to avoid redundancy,

we omit the proof.

To show part (b), note that, setting e = 0 and  =  ·  in Theorem 3, we have¡
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Under 1, we again write 00 =  +  for some  ∈ R\ {0}, and note that, in this case,
by part (b) of Theorem 4 and Slutsky’s theorem, we have

¡
42

¢
0 b = 0Λ +  (1).
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Moreover, there exists a positive constant  such that 0Λ = 2
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It follows that, for this case,
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Hence, w.p.a.1, 

q
0 b→ +∞ if   0 whereas 

q
0 b→ −∞ if   0, given the condition

that 2
p
2 →∞. Finally, write

T =
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0 b .

Since the first term on the right-hand side above is  (1) as shown in (27), we deduce that w.p.a.1,

T → +∞ if   0 and T → −∞ if   0. The results for T can be shown in the same way,

so to avoid redundancy, we omit the proof. ¤

Proof of Theorem 6:

To show part (a), note first that, by part (d) of Lemma S2-3 and Assumption 3*(iv), Λ is

positive definite . Hence, under 0 : 
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where the last equality follows from the fact that
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and note that 0 = 1. It follows from these intermediate results and the continuous mapping
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where the last line again follows from the identity 0
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¢
−1 = 0, as shown previously. Now, the

first term on the right-hand side of the last equality above has previously been shown to converge to a

 (0 1) distribution so that, in particular, 0
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0 b =  (1). Moreover, application

of part (a) of Theorem 4 and Slutsky’s theorem shows that 0
b = 0Λ+ (1), where

0Λ  0  since Λ is positive definite  by part (d) of Lemma S2-3 and Assumption
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and since, by applying the result of part (b) of Lemma S2-3 and Assumption 3*(v), we have

0−1
 0

¡
 0

p
2|F



¢
0

−1
  ≥ 0

0
2·2· ≥ ∗ =   0  for 2· as

defined in Assumption 3*(v) and for positive constants  (defined in Lemma S2-3), ∗ (de-

fined in Assumption 3*(v)), and  = ∗. Now, setting e = 0 in Theorem 3, we have
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´
→  (0 1), and, by applying part (b) of Theorem 4

and Slutsky’s theorem, we also obtain
h¡
min
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i
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b = 0Λ +  (1). Hence,

under 0 : 
0
0 = , we can apply the identity 0

¡


¢
−1 = 0 to obtain
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¢ h
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¡
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[1 +  (1)]
→  (0 1) .

Under 1, write 
0
0 =  +  for some  ∈ R\ {0}. As shown above,h¡

min

¢2
2

i
0

b = 0Λ +  (1), where there exists a positive constant  such

that 0Λ ≥   0 w.p.a.1 as  → ∞. In addition, by part (c) of Lemma S2-3 and Assump-
tion 3*(iv), there exists a positive constant  such that, almost surely for all  sufficiently large,

max (Λ) ≤  ∞, as can be shown by following an argument similar to that given previously
in obtaining expression (28) in the proof of Theorem 5. It follows from these results and from

making use of the identity 0
¡


¢
−1 = 0 that

q
0 b =

¡
min 

p
2

¢ ¡


¢
r

(min )
2

2
0
¡


¢
−1 

b
−1


¡


¢


=
minp
2

¡


¢
p

0Λ
[1 +  (1)] .

Thus, w.p.a.1, 

q
0 b → +∞ if   0 whereas 

q
0 b → −∞ if   0, given that¡

min

¢2

p
2 →∞ and min  =  (1) for any  ∈ {1  }. Finally, write

T =
0b − q
0 b =

0
³b − 0

´
q
0 b +

q
0 b . (30)

Since the first term on the right-hand side of equation (30) is  (1)  as shown above, we deduce

that w.p.a.1., T → +∞ if   0 and T → −∞ if   0. Finally, the results for T can be

shown in the same way, so to avoid redundancy, we omit the proof. ¤
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