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Abstract

In this paper, we add to the literature on the assessment of how well RBC simulated data reproduce the

dynamic features of historical data. In particular, we evaluate a variety of new Keynesian DSGE models,

including the standard sticky price model discussed in Calvo (1983), the sticky price with dynamic indexation

model discussed in Christiano, Eichenbaum and Evans (2001), Smets and Wouters (2003), and Del Negro

and Schorfheide (2005), and the sticky information model of Mankiw and Reis (2002). We carry out our

evaluation by using standard impulse response and correlation measures and via use of a distribution based

approach for comparing all of our (possibly) misspecified DSGE models via direct comparison of simulated

inflation and output gap values with corresponding historical values. In this sense, our analysis can be

thought of as an empirical model selection exercise. In addition, and given that one of our objectives is to

choose the model which yields simulation distributions that are closest to the historical record, our analysis

can be viewed as a type of predictive density model selection, where the “best” simulated distributions can

be used as predictive densities whenever the starting values for the simulations correspond to those actual

historical values which are most recently available. Some important precedents to our approach to accuracy

assessment include DeJong, Ingram, and Whiteman (1996) and Geweke (1999a,b). One of our main findings

is that for a standard level of stickiness (i.e. annual price or information adjustment), the sticky price model

with indexation dominates other models. However, when models are calibrated using the lower level of

information and price stickiness, there is much less to choose from between the models.

JEL classification: E12, E3, C32

Keywords: sticky price, sticky information, empirical distribution, model selection.

∗ Oleg Korenok (okorenok@vcu.edu): Department of Economics, VCU School of Business, 1015 Floyd Avenue,

Richmond, VA 23284. Norman R. Swanson (nswanson@econ.rutgers.edu): Department of Economics, Rutgers Uni-

versity, 75 Hamilton Street, New Brunswick, NJ 08901, USA. The authors are grateful to the editor and an anonymous

referee for numerous insightful and useful comments made on an earlier version of this paper. The authors are also

grateful to Laurence Ball, Michael Bordo, Christopher Carroll, Roberto Chang, Valentina Corradi, Bruce Mizrach,

Thomas Lubik, Ricardo Reis and seminar participants at Johns Hopkins University and Rutgers University for use-

ful suggestions and comments on earlier drafts of the paper. Swanson has benefited from the support of Rutgers

University in the form of a Research Council grant.



1 Introduction

Of critical importance in the analysis of stochastic dynamic general equilibrium models is the

reconciliation of historical and simulation based empirical evidence. A partial list of recent advances

in this area includes: (i) the examination of how RBC simulated data reproduce the covariance

and autocorrelation functions of actual time series and second moments in general (see e.g. Watson

(1993) and Cogley and Nason (1995a)); (ii) the comparison of RBC and historical spectral densities

(see e.g. Diebold, Ohanian and Berkowitz (1998)); (iii) the evaluation of the difference between

the second order time series properties of vector autoregression (VAR) predictions and out-of-

sample predictions from RBC models (see e.g. Rotemberg and Woodford (1996) and Schmitt-Grohe

(2000)); (iv) the construction of Bayesian odds ratios for comparing RBC models with unrestricted

VAR models (see e.g. Schorfheide (2000), Chang, Gomes and Schorfheide (2002), and Fernandez-

Villaverde and Rubio-Ramirez (2004)); (v) the comparison of historical and simulated data impulse

response functions (e.g. Cogley and Nason (1993), (1995a)); and (vi) the formulation of “reality”

bounds for measuring how close the density of an RBC model is to the density associated with

an unrestricted VAR model (see e.g. Bierens and Swanson (2000) and Bierens (2003)). Of note is

that the papers cited above are mainly concerned with the issue of model evaluation (i.e. with the

problem of measuring how well a given model fits certain aspects of actual time series), and that

the papers usually address the case in which the objective is to test for the “correct specification”

of some aspects of a given candidate model. In the case of real business cycle models, however, we

view it as crucial to account for the fact that all models may well be approximations, and so are

misspecified (i.e. no models are “correctly specified”). Thus, we posit that the notion of “correct

specification” may be inappropriate when comparing alternative DSGE models. For this reason,

one of the tools that we use in our empirical analysis is the distributional accuracy assessment

methodology of Corradi and Swanson (2005a,b). It should be noted, however, that the idea of

allowing for misspecification is not new. For example, important papers by DeJong, Ingram and

Whiteman (1996), and Geweke (1999a,b) allow for calibrator’s uncertainty with respect to model

specification, parameter values, and the actual data’s support of the moments of interest. In this

sense, their Bayesian calibration approach offers many of the same tools as those used in these
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paper that are due to Corradi and Swanson.1

Our intent in this paper is to add to the first strand of the literature enumerated above. We

do this in conjunction with the evaluation of a variety of currently available new Keynesian DSGE

models. In particular, the models that we consider include the standard sticky price model dis-

cussed in Calvo (1983), the sticky price with dynamic indexation model discussed in Christiano,

Eichenbaum and Evans (2001), Smets and Wouters (2003), and Del Negro and Schorfheide (2005),

and the sticky information model of Mankiw and Reis (2002). We carry out our evaluation by: (i)

using standard impulse response and correlation measures, and (ii) using a distribution based ap-

proach for comparing all of our (possibly) misspecified DSGE models via direct analysis of simulated

and historical inflation and output gap distributions. In this sense, our analysis can be thought

of as an empirical model selection exercise. In addition, and given that one of our objectives is to

choose the model which yields simulation distributions that are closest to the historical record, our

analysis can be viewed as a type of predictive density model selection, where the “best” simulated

distributions can be used as predictive densities whenever the starting values for the simulations

correspond to those actual historical values which are most recently available.

This paper also contributes to the discussion of shortcomings of new Keynesian Phillips curves.

In particular, we use a series of theoretical experiments to show, among other things, that the

Ball (1994) critique of the standard new Keynesian Phillips curve (derived under static sticky price

assumptions) may be not robust to experiment design and parametrization. In this sense, our

experiments add to earlier related evidence presented in Mankiw and Reis (2002) and Trabandt

(2005).

The impetus for our study comes from the observation that new Keynesian Phillips curves de-

rived under standard sticky price assumptions have several shortcomings. For example, Ball (1994)

has found that such models yield the controversial result that an announced credible disinflation

causes booms rather than recessions. Additionally, Fuhrer and Moore (1995) show that the New

Keynesian Phillips curve falls short when used to explain inflation persistence, one of the stylized

empirical facts describing US inflation. Furthermore, Mankiw and Reis (2002) note that such mod-

els have trouble explaining why shocks to monetary policy have delayed and gradual effects on

1Furthermore, Smith (1993) and Gourieroux, Monfort and Renault (1993) fully account for the fact that DSGE

models are misspecified. Additionally, the source of misspecification in these papers can be induced by both linear

approximation solution methods and the fact that the DSGE model is an abstraction of the true model.
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inflation.2

Some of the problems outlined in the previous paragraph are addressed in a series of important

papers, including those of Christiano et al. (2001), Smets and Wouters (2003), and Del Negro and

Schorfheide (2005) - sticky prices with dynamic indexation, and Mankiw and Reis (2002) - sticky in-

formation. For example, Mankiw and Reis posit that information about macroeconomic conditions

spreads slowly because of information acquisition and/or re-optimization costs. Compared to the

standard sticky price model, prices in this setup are always readjusted, but decisions about prices

are not always based on the latest available information. The model is representative of the wider

class of Rational Inattention (RI) models developed by Phelps (1970), Lucas (1973), and more re-

cently by Mankiw and Reis (2002), Sims (2003), and Woodford (2003b). As might be expected, the

three models that we consider have very different properties. For example, Ball, Mankiw and Reis

(2003) show that implications with regard to optimal monetary policy are quite different for sticky

price and sticky information models. In the sticky price model, inflation enters the loss function,

which leads to inflation targeting. It is thus optimal to allow inflation drift in this model. On the

other hand, in the sticky information model, inflation drift or inflation targeting is a suboptimal

policy, as it is optimal to target the price level. These sorts of model implications suggest that

the dynamic properties of the alternative models may be quite different, in turn implying that our

distributional comparison of historical and simulated inflation and the output gap measures may

uncover interesting new evidence concerning the relative merits of the models. Put another way,

our approach allows us to shed light on the issue of whether theoretical advantages translate into

a better empirical fit, and if not, then why not?

From a theoretical perspective, we follow the sticky information approach of Mankiw and Reis

(2002), who suggest that a “more realistic” aggregated demand specification is desirable. In par-

ticular, we extend their sticky information model by specifying standard consumer preferences and

money demand.3 Thus, aggregate demand is derived from intertemporal household maximization,

rather than from a static quantity-theory type of model. This is especially important since we are

interested in assessing the empirical performance of alternative models. In addition, we assume

2Bernanke and Gertler (1995) and Christiano, Eichenbaum and Evans (2000) present empirical evidence supporting

this problem noted by Mankiw and Reis (2002).
3Our approach to incorporating consumer preferences and money demand is similar to the approach used by Gali

(2002) and Woodford (2003a).
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dynamic inflation indexation, as is also commonly done in empirical applications.

In addition to shedding light on the relative merits of various new Keynesian DSGE models,

one of the contributions of this paper is the implementation of a distribution-based approach for

comparing DSGE models. In particular, it is our intent to add to the model evaluation literature

by introducing a measure of “goodness of fit” of DSGE models that is based on applying standard

notions of Kolmogorov distance and drawing on recent advances in the theory of the bootstrap. As

opposed to the common practice of testing for the correct specification of some aspects of a given

candidate model, we evaluate the overall distributional fit of our candidate models, assuming that

all models are potentially misspecified. We thus follow the approach recently elucidated by Corradi

and Swanson (2005a,b,c). To be more precise, the approach we take begins by fixing a given DSGE

model as the “benchmark” model, against which all “alternative” models are compared. We then

form statistics based on the comparison between the empirical distribution of the historical series

and that of the simulated series. These statistics can be viewed as distributional analogs of the

mean square error based statistical tests discussed in Diebold and Mariano (1995) and White (2000).

The limiting distribution of the test statistics is a Gaussian process with a covariance kernel that

reflects the effect of (possible) dynamic misspecification, simulation error, and measurement error

in the actual data.4 This limiting distribution is thus not nuisance parameter free; thus critical

values cannot be tabulated. In order to obtain valid asymptotic critical values, we outline two

block bootstrap procedures that depend on the relative rate of growth of the actual and simulated

sample sizes.

Our findings can be summarized as follows. First, we question the extent to which the sticky

information model has better theoretical properties than the sticky price model. In particular, we

show in our theoretical experiments that the Ball (1994) critique is to some extent limited to the

special case of anticipated disinflation with low semi-elasticity of money demand with respect to

interest rate. Output booms that proceed disinflation do not occur in experiments with unantici-

pated disinflation or in the case if the interest rate semi-elasticity is very high. These findings are

in accord with results presented in Mankiw and Reis (2002) and Trabandt (2005).

Second, for a standard level of stickiness (i.e. annual price or information adjustment), we find

4In general, the testing procedure used in this paper (see discussion in Section 5 and the Appendix) can also

accommodate parameter estimation error, for cases where parameters are estimated rather than calibrated (see

Corradi and Swanson (2005b)).
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that the sticky price model with indexation dominates other alternatives. For example, the joint

distribution of inflation and the output gap simulated from a sticky price model with indexation

is “closest” to the historical distribution. Informally, we define the level of “closeness” to be

the distance between distribution and density graphs and distributional quantile differences when

comparing both historical and simulated data. More formally, we evaluate “closeness” using the

distributional accuracy testing framework of Corradi and Swanson (2005b) that is discussed above.

Of note is that data simulated using the sticky price model with indexation also yields the “closest”

fit to historical data based on other “goodness of fit” measures, like auto- and cross-correlations of

inflation and the output gap, contingency tables, and the relationship between level of economic

activity and inflation growth (i.e. the so called acceleration phenomena). We conclude that these

results arise because the model has the largest response of inflation and the smallest response of

the output gap, after a shock occurs.

Third, in our empirical analysis we find evidence for a lower level of stickiness (i.e. twice annual

price or information adjustment) than the commonly assumed annual adjustment. For example,

simulated inflation and output gap data from all models are much “closer” to historical levels when

an adjustment occurs twice annually.

Fourth, when the alternative models are calibrated using the lower level of information and price

stickiness, there is much less to choose from between the sticky price, sticky price with indexation,

and sticky information models. One reason why the sticky information model does not dominate

both versions of the sticky price model (i.e. with higher and lower degrees of stickiness) is because

we use what we view as realistic models of the persistence of exogenous shocks. In addition, the

lower level of stickiness reduces the delays in the response of inflation to monetary policy shocks, so

that the effect of sluggish inflation responses generated by the sticky price model with indexation

and the sticky information model is no longer strong enough to result in overall dominance of the

sticky price model.

The rest of the paper is organized as follows. Section 2 outlines our DSGE models, in which the

New Keynesian Phillips curve is derived under sticky price, sticky price with indexation, and sticky

information assumptions. In Section 3, we describe the data used to construct historical measures of

inflation and the output gap. Baseline calibration of the DSGE model is discussed, and theoretical

impulse response functions are evaluated in Section 4. Section 5 briefly outlines our distributional

accuracy testing framework, with further details given in an appendix. The empirical results of
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our informal and formal comparisons of the sticky price, sticky price with indexation and sticky

information models are gathered in Section 6. Finally, concluding remarks are given in Section 7.

2 New Keynesian DSGE Models for Inflation and the Output Gap

In this section we outline the sticky price, sticky information and sticky price with indexation models

that will be compared and contrasted via impulse response, correlation, and, most importantly,

distributional comparison. Our presentation of the models follows closely along the lines of Gali

(2002) and Woodford (2003a).

2.1 Households

Assume that the representative consumer’s preferences are represented by the following utility

function:

U(Ct , Nt(i)) =
Ct

(1−σ)

1 − σ
−
∫ 1

0

Nt(i)
(1+ϕ)

1 + ϕ
di, (1)

where Nt(i) denotes the quantity of labor supplied by a consumer of type “i”, and Ct is an index of

the different goods consumed. We assume a factor specific labor market, so that production of good

i requires labor of type i to be used. The parameter σ is the inverse of the intertemporal elasticity

of substitution, and the parameter ϕ is the inverse of the elasticity of labor supply. Assume further

that Ct is a constant-elasticity-of-substitution index, namely:

Ct =

(∫ 1

0
Ct(i)

( ε−1
ε

) di

)( ε
ε−1

)

,

where ε < 0. The corresponding price index, Pt, is given by:

Pt =

(∫ 1

0
Pt(i)

(1−ε) di

)( 1
1−ε

)

,

where Pt(i) denotes the price of good i ∈ [0, 1].

Subject to a standard sequence of budget constraints and a solvency condition, the solution to

the consumer’s optimization problem can be summarized in log-linear (xt = lnXt) form by two

static conditions:

ct(i) = −ε (pt(i) − pt) + ct (2)
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and

wt(i) − pt = σ ct + ϕnt(i), (3)

where wt(i) is the log nominal wage paid for labor type i; and by the intertemporal Euler equation:

ct = − 1

σ
(rt − Et πt+1 − ρ) + Et ct+1, (4)

where rt is the yield on a nominal riskless one period bond (i.e. the nominal interest rate), πt+1

is the rate of inflation between t and t + 1, ρ = − lnβ represents the time discount rate (as well

as the steady state real interest rate, given the absence of secular growth), and β is the subjective

discount factor.

Following Gali (2002) we postulate (without derivation) a standard money demand equation:

mt − pt = yt − η rt, (5)

which has unit income elasticity.

2.2 Firms

Assume that there exists a continuum of firms, each producing a differentiated good:

Yt(i) = AtNt(i)
α,

where log of productivity evolves according to the following process:

△at = ρa△at−1 + εa, t, (6)

which is an exogenous, difference-stationary stochastic process. Assume further that the producer

is a wage taker, so that the real marginal cost of supplying good i is equal to:

MC t (i) =
1

α

Wt (i)

PtAt

(
Yt (i)

At

) 1
α
−1

. (7)

Total demand for good i is thus given by:

Yt(i) = Ct(i).

Now, let Yt =

(∫ 1

0
Yt(i)

( ε−1
ε

) di

)( ε
ε−1

)

denote aggregate output. Then equilibrium in the goods

market implies that:

Yt = Ct.
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Combining the real marginal cost equation together with a market clearing condition and the static

first order condition from the consumer optimization problem (i.e. see equation (3)) and taking

a log transformation yields the equilibrium real marginal cost of the individual firm in terms of

output produced by the individual firm, aggregate output and productivity. Namely:

mct (i) = σ yt + ωyt(i) − (1 + ω) at − ln (α) , (8)

where ω = ψ
α

+ 1
α
− 1. We also can combine the Euler equation with the market clearing condition

to get another equilibrium condition, as follows:

yt = − 1

σ
(rt − Et πt+1 − ρ) + Et yt+1. (9)

2.3 Optimal Pricing

In deriving equilibrium behavior it remains to discuss how firms set prices. In this section we

describe four alternative models of price setting behavior, the final three of which will be examined

in the sequel.

I. Flexible Prices: First, suppose that all firms choose the price of good i each period, indepen-

dent of prices that were charged in the past, and with full information about current demand and

cost. Due to the fact that real marginal costs are increasing in yt(i), the same quantity of each

good is supplied, and it is equal to Yt. This implies that all firms will choose a common constant

markup given by µ = ǫ
(ǫ−1) . The flexible price equilibrium process for output, consumption, and

the expected real rate is given by:

ynt = γ + ψa at, (10)

cnt = γ + ψa at, (11)

rnt = ρ+ σ φa ρa△at−1, (12)

where ψa = 1+ω
σ+ω and γ = lnα−µ

σ+ω . We will refer to the above equilibrium conditions as a natural

levels of the corresponding variables.

II. The Sticky Price Model: Following Calvo (1983), assume that in every period, a fraction,

(1− θ1), of firms can set a new price, independent of the past history of price changes. This set-up

implies that the expected time between price changes is 1
1−θ1 . Also assume that firms that cannot

set their prices optimally have to keep last periods’ price (i.e. Pt(i) = Pt−1(i)).
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III. The Sticky Price Model with Indexation: Modifications of the standard sticky price model

have been shown by numerous authors to perform better in empirical applications. For example,

we follow Christiano et al. (2001), Smets and Wouters (2003), and Del Negro and Schorfheide

(2005), who use dynamic inflation indexation. In this model, as in Calvo (1983), only a proportion

of firms, (1 − θ2), can reset their prices during the current period; but other firms, unable to set

prices optimally, set their price equal to: Pt(i) = ΠtPt−1(i).

IV. The Sticky Information Model: Following Mankiw and Reis (2002), assume that all firms

reset prices each period. A fraction of firms, (1 − θ3), use current information in pricing decisions,

so that the probability that a firm acts upon the newest information available in a given quarter is

1 − θ3, independent of the past history of price changes. The remaining fraction of firms use past

or outdated information when they set prices. The sticky information model can be interpreted as

a model where firms, which are unable to set prices optimally, use even more complex updating

schemes than in the case of the sticky price model with indexation. Instead of using past inflation for

indexation, when they have opportunity to use current information, firms in the sticky information

model solve not only for the optimal current price, but also for the infinite path of future prices.

Later, when firms do not have the opportunity to update information, they set price equal to the

appropriate value in their solution set; a set which was calculated based on the old information set.

In these models, the fact that a fraction of firms is not able to adjust prices optimally implies a

difference between the actual and the potential (natural) level of output. We denote this difference

by ygt = yt − ynt , and refer to it as the output gap. Now, solving the associated optimization

problems and using a log-linear transformation, we can write expressions for the Phillips curve for

each model.5 In particular, the dynamics of inflation in the sticky price economy is characterized

by New Keynesian Phillips Curve:

πt = β Et πt+1 + λ1 y
g
t , (13)

where λ1 = (1−θ1) (1−β θ1) ξ
θ1

and ξ = ω+σ
1+ε ω . In the sticky price model with indexation the above

equation has a hybrid New Keynesian Phillips Curve analog:

πt =
1

1 + β
πt−1 +

β

1 + β
Et πt+1 +

λ2

1 + β
ygt , (14)

5For a detailed derivation for the sticky price and the sticky price with indexation models, see Woodford (2003a).

For derivation using the sticky information model, see Khan and Zhu (2002).
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where λ2 = (1−θ2) (1−β θ2) ξ
θ2

. Finally, in the sticky information model, dynamics of inflation are

governed by a sticky information Phillips Curve:

πt =
(1 − θ3) ξ

θ3
ygt + (1 − θ3)

∞∑

k=0

Et−k−1θ
k
3(πt + ξ△ygt ). (15)

Finally, notice that the Euler equation above can be written in terms of the output gap. Namely:

ygt = − 1

σ
(rt − Et πt+1 − rnt ) + Et y

g
t+1. (16)

2.4 Equilibrium Dynamics

To close our models, we specify a monetary policy rule by assuming that an exogenous path for

the growth rate of the money supply is given by the following stationary process:

△mt = ρm△mt−1 + ǫm,t, (17)

where ρm ∈ [0, 1].

This yields the desired outcome that: (i) the money demand equation (5), (ii) the equilibrium

Euler equation (16), (iii) one of three of the Phillips curve equations: (13), (14) or (15), and (iv)

the specification of an exogenous process for technology (6), and (v) an exogenous process for the

money supply (17) fully describe the equilibrium dynamics of the economy, and in particular, the

dynamics of the (endogenous) output gap and inflation variables in the models.

3 Data

Our empirical investigation is based upon the use of quarterly U.S. data for the period 1964:1 and

2003:4. For our measure of inflation, we use the consumer price index (CPI) (the GDP deflator is

also used in order to check for the robustness of our results). We construct our measures of the

output gap using real GDP.6 Our approach to output decomposition is to apply the widely used

Hodrick-Prescott (H-P) filter (for a detailed discussion, see Hodrick and Prescott (1997)).7

6We also used the output gap measure constructed by the OECD and the one-sided optimal bandpass filter in

order to check the robustness of our results. Empirical results were qualitatively the same as those reported here,

and are available upon request.
7The H-P filter minimizes the sum of squared deviations of the actual output, yt, from the estimated trend, τt,

subject to a smoothness constraint. Formally, it minimizes:

min
τt

∑
(yt − τt)

2 + λ
∑

((τt+1 − τt) − (τt − τt−1))
2 ,
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All data were obtained from the OECD Main Economic Indicators database (Database Edition

(ISSN 1608-1234)), where both yearly and quarterly data are available. We report results based on

quarterly data, although results based on yearly data were compiled, and yield qualitatively similar

conclusions. Plots of the raw and adjusted data are given in Figure 1, where quarterly inflation

and de-meaned inflation are depicted in the top graph. Of note is that we remove the mean of the

historical inflation data in order to make the data directly comparable to analogous inflation data

simulated using the DSGE models. The historical output gap data depicted in the bottom graph

is directly comparable with data simulated from the DSGE models.

4 Calibration and Impulse Response Analysis

In this section we discuss calibration of the models and present the results of a preliminary impulse

response analysis of the alternative DSGE models.

With regard to calibration, we follow Gali (2002). Namely, assume log utility of consumption,

so that σ = 1. Also, set the labor wage elasticity as ψ = 1, and set the value of the elasticity

of money demand with respect to the interest rate as η = 1, which is consistent with the interest

rate elasticity found in empirical work and used in other calibration studies (see e.g. Mankiw and

Summers (1986), Stock and Watson (1993)). The Dixit-Stiglitz elasticity of substitution is set

to ǫ = 11, which implies a 10% markup of price over marginal cost; and the consumer discount

factor is set to β = 0.99, which implies an average annual interest rate 4%. We set the labor share

parameter to α = 2/3.

The degree of information and price stickiness, θ, was chosen to be common across all models

and is initially set to θ = 0.75.8 This implies yearly price or information updating. This choice

is common in many theoretical (see e.g. Gali (2002), Gali, Lopez-Salido and Valles (2003), and

Woodford (2003a)) and empirical studies (see e.g. Blinder et. al. (1998), Gali and Gertler (1999),

Khan and Zhu (2002), Korenok (2004), Sbordone (2002), and Smets and Wouters (2003)). In

where λ is a parameter that is usually set to 1600 for quarterly data. Formally, the output gap, yg
t , is defined as

yt − τt. Of note is that the H-P filter was also used to compare historical and artificial (model simulated) data by

Backus, Kehoe and Kydland (1992), Cooley and Hansen (1989), Hansen (1985), and Kydland and Prescott (1982),

among others.
8Our motivation for common value for information and price stickiness comes from the fact that empirical estimates

of information and price stickiness are quite close.
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addition, we subsequently compare models with a lower degree of information and price stickiness,

namely θ = 0.5. The motivation for this lower level of stickiness comes from Bils and Klenow

(2004), who study price stickiness by examining 350 categories of goods and services, constituting

about 70% of consumer spending, and find evidence of more frequent price changes than hitherto

suspected.

Finally, the exogenous processes are calibrated in the following way. For the technology growth

rate, we set the value of the autoregression coefficient, ρa, equal to zero, and the standard deviation

equal to σa = 0.007. The low value of ρa accounts for the low autocorrelation of output growth

and common measures of the output gap. Of further note is that the usual standard deviation

for the technology growth rate is at or below 1% (see e.g. Gali (2002) or Gali et al. (2003)).

The autoregression coefficient of growth in the money supply is set equal to ρm = 0.5, and the

standard deviation is set equal to σm = 0.007; a value which is close to the estimated parameters

for autoregressive processes describing M0 or M1 growth rates in the United States.9

We now turn to a discussion of impulse response functions in the sticky price, sticky price with

indexation and sticky information models. In the discussion, we use our “baseline” calibration,

where all parameters are as given above, and where θi = 0.75. Conclusions from the “baseline”

calibration also apply to our alternative calibration where θi = 0.5, which is motivated and discussed

in Section 6.3.

4.1 Experiment: Response to An Anticipated Disinflation

We can replicate the theoretical experiment of Mankiw and Reis (2002): namely, an announced

and credible shift in the money growth rate. The purpose of their experiment was to illustrate a

problem in sticky price models pointed out by Ball (1994), in that an announced credible disinflation

causes booms rather than recessions, and their purpose was to show that sticky information models

address this problem. We replicate their experiment using the DSGE model specified and calibrated

as discussed above.

Inflation responses to announced (8 quarters in advance) and credible disinflations in sticky

price, sticky information, and sticky price with indexation models are presented in Figure 2. In

the sticky price model, inflation moves in anticipation of demand. It falls in the announcement

9See Mankiw and Reis (2002), Cooley and Hansen (1989), Walsh (1998), and Yun (1996) for further justification

of this calibration.
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period and then slowly decreases to 0 after 9 years. In the sticky price model with indexation there

is no initial fall; inflation decreases smoothly, and reaches 0 after 3.5 years. Furthermore, after

the 4th year, it oscillates around 0. In the sticky information model, inflation does not respond

immediately, and the eventual response is very small, although it accelerates, reaching a peak

during the implementation period. Such behavior does not necessarily mean that agents do not

take into account the announcement. Indeed, we should expect such behavior if agents update

their information sets on average every 4 quarters, and if the announcement is made 8 quarters in

advance. The timing of updates means that at the date of actual policy implementation, half of

the agents have already included the new policy in their information sets.

The response of the output gap to an announced disinflation is presented in the bottom of

Figure 2. In the sticky price model, the anticipated disinflation results in an increase in the output

gap. This increase can be explained by the money demand equation. The output gap increases

because inflation falls between announcement and implementation of the disinflation policy, while

money growth remains constant. This leads to an increase in real money balances and to higher

output, while the natural output level remains constant.10 The output gap also increases in the

sticky price model with indexation. However, the increase is much lower than in the sticky price

model, and the output gap returns to 0 after 2 years. Thereafter, it remains negative for 4 years.

Indeed, the cumulative response in this case is negative. The slower increase, and then decrease,

in the output gap is due to the fact that there is an inflation inertia built into the sticky price

model with indexation model. The fall in inflation is lower than in the sticky price model, and

with constant money growth leads to a lower increase in real money balances and a lower increase

in the output gap. In contrast to the sticky price model, the output gap declines in the sticky

information model from the beginning. Inflation responds very slowly because most of the agents

set prices based on an old information set, in which they did not expect inflation to change. After

the announcement takes place, inflation declines more slowly than money growth, because not all

agents have had the opportunity to introduce the announcement into their information sets. Thus,

real money balances and output fall, while the natural output level remains constant.

In summary, experiment supports Ball’s (1994) argument. However, it should be noted that

implementation of the experiment is somewhat unusual given that we assume a permanent shock

10We do not discuss interest rate effects because the size of the interest rate change is small in our experiment

relative to the change in output.

13



to inflation and a credible announced disinflation.

4.2 Robustness of Experiment Results

Ball (1994) and Mankiw and Reis (2002) conducted an equivalent of the above experiment for

permanent shock anticipated 1 period ahead and 8 periods ahead respectively. Both experiments

resulted in disinflationary boom, i.e. boom after announced, credible decline of money supply. On

the other hand, Mankiw and Reis (2002) show that after transitory unanticipated shock there is

no disinflationary boom. Trabandt (2005) in a different setup finds that both anticipated 8 periods

ahead and unanticipated shocks result in recession. He concludes that previous outcomes were

driven by the fact that both Ball (1994) and Mankiw and Reis (2002) assumed zero semi-elasticity

of money demand with respect to interest rate, parameter η in equation 5. Interest rate semi-

elasticity determines the relative size of interest rate decrease compared to increase in real money

balances after disinflationary shock, thus it determines change in output in equation 5. Finally,

in our experiment we find that permanent anticipated 8 periods ahead negative shock to money

supply growth results in boom, even though η is equal to one.

Here we show why outcomes in all these experiments are different. In particular, we check

robustness of the disinflationary boom to changes in: (i) persistence of the shock (ρm), (ii) antic-

ipation period (k) and (iii) semi-elasticity of money demand with respect to interest rate (η). All

other parameters are at their baseline calibrated values (since values of other parameters influence

the value of the output we focus on ordinal relationships). For each experiment design and para-

meters choice we report maximum of the output gap response to negative money supply shock. We

take positive maximum as indication of disinflationary boom.

Figure 3 reports robustness of disinflationary boom to changes in η, k and ρm. We report results

only for sticky price model.11 There is little dependence of disinflationary boom on persistence

of money supply shock, Graph A. The maximum value of the output gap somewhat increases

as persistence of the process increases from very persistent to permanent. For η = 0 and any

anticipation period, k from 1 to 8 on Graph B, disinflationary boom exists which is in line with Ball

(1994) and Mankiw and Reis (2002) results. While for k = 0 there is no disinflationary boom which

11Results for sticky price model with indexation are very close to the sticky price model results, while results

for sticky information model are trivial, i.e. there are no disinflationary booms for any experiment design or

reparametrization.
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is in line with Mankiw and Reis (2002) and Trabandt (2005) experiments with unanticipated shocks.

For high values of η, Graphs A and B, disinflationary boom occurs independent of anticipation

period or persistence of the shock which is in line with Trabandt (2005) findings. For his choice of

utility function and baseline calibration η = 50 and interest rate effect dominates change in demand

for real money balances. On the other hand, most of the empirical estimates of semi-elasticity are

below or close to 1 as we pointed out in our calibration section.12

Our robustness exercise demonstrates that disinflationary boom is not robust to design of exper-

iment or parameters choice, i.e. if shocks are unanticipated or if semi-elasticity of money demand

with respect to interest rate is very high, negative shock to money demand growth is followed

by recession. Since most of empirical research concentrated on unanticipated shocks and we are

using empirical findings to motivate our calibrations, we consider only this kind of shocks in the

paper (our calibration is in the low-right corner of Graph B). In this we follow Mankiw and Reis

(2002), who comment that they “take a step toward greater realism” when they analyze transitory

monetary shocks.

4.3 Response to a Contractionary Monetary Policy Shock

The left column of Figure 4 reports impulse response functions for inflation (top graph) and the

output gap (bottom graph), given that a contractionary monetary policy shock is imposed in our

baseline calibration of the three DSGE models (recall that the baseline model sets θ = 0.75).

Notice that inflation responds immediately in the sticky price model, with the highest response

in the initial period. Furthermore, notice that the lack of lags in the response to the monetary

policy shock for a model with sticky prices was also pointed out by Mankiw and Reis (2002). The

dynamics of inflation after the initial shock is very persistent for all three models, in contradiction to

the point made by Fuhrer and Moore (1995) that inflation is not persistent in sticky price models.

Furthermore, the response of inflation in the sticky price model with indexation and the sticky

information model displays inflation inertia. The maximum impact of the monetary policy shock

on inflation occurs after 5 quarters for the sticky price model with indexation and after 7 quarters

for the sticky information model. Finally, note that the inflation response is the highest for the

sticky price model with indexation, while for the sticky price model and the sticky information

12With exception of Ireland (2004) estimate of semi-elasticity in general equilibrium framework, which is 7.75 with

standard error 1.75.
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model, the size of the response is comparable.

In all three models the output gap response to a transitory, unanticipated shock is similar.

Namely, the response is negative and hump-shaped, and there is a fast initial response. The

response decreases over the first two quarters and then increases. On further note is that the size

of the responses for the different models is very close, while the speed of recovery is much faster for

the sticky price model with indexation than for the other models.

To summarize, in a more standard setups it appears that disinflation dynamics are much closer

amongst the competing models. In all cases, both inflation and the output gap decrease. However,

the sticky price model with indexation and the sticky information models have more inflation

inertia than the sticky price model. It is worth noting, however, that the decline in inflation in our

calibrated models may also be occurring in the current context because of contractionary technology

shocks. Thus, we next consider an experiment where there is a contractionary technology shock.

4.4 Response to a Contractionary Technology Shock

The left column of Figure 5 reports the impulse response functions for inflation (top graph) and

output (bottom graph), given that a contractionary technology shock is imposed in our baseline

calibration of the three DSGE models.

As in the case of the monetary policy shock, a technology shock leads to an immediate inflation

response, with the highest response in the initial period. The response of inflation in the sticky

price model with indexation and the sticky information models, however, displays inflation inertia.

Furthermore, the size of the response is somewhat lower than the size of response to monetary

policy shock.

The output gap response to a technology shock is similar for all three models. Namely, the

response is negative, with a fast initial response. Unlike the output gap response to a monetary

policy shock, the responses to a technology shock are not hump shaped and the size of response is

lower for all models. On further note is that the size of the responses for the models is very close,

while the speed of recovery is much faster for the sticky price model with indexation than for the

other models.

To summarize, the response to a technology shock is somewhat smaller in size and the output

gap response is not hump shaped. Otherwise, the dynamics of the response of inflation and the

output gap after a contractionary shock to technology is very close to the dynamics of the response
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after contractionary monetary shock.

5 A Distribution Comparison Test for DSGE Models

In this section we briefly discuss the distributional accuracy test discussed in Corradi and Swanson

(2005b) (CS), which shall be used in our subsequent empirical analysis. Of note is that the following

approach to DSGE model evaluation is but one of many approaches currently in use by economists

(see discussion in the introduction for further remarks in this regard).13

Assume that our objective is to compare the joint distribution of the historical data with the

joint distribution of the simulated series. Following CS, and for the sake of simplicity (but without

loss of generality), we limit our attention in the section to the evaluation of the joint empirical

distribution of (actual and model-based) current and previous period output. In principle, if we

have a model driven by k shocks, then we can consider the joint CDF of k variables plus an arbitrary

(but finite) number of lags of each variable.

Consider m DSGE models, and set model 1 as the benchmark model. We require at least

one of the competing models (e.g. model j for j = 2, ...,m) to be nonnested with respect to

the benchmark, a requirement which is satisfied in the current context when model parameters

such as θi, i = 1, 2, 3 are calibrated and are not estimated (when freely estimated all parameters

could be identically zero, leading to nestedness). For the sake of notational ease of expression, let

∆ logXt, t = 1, ..., T denote the actual historical (output) series, and let ∆ logXj,n, j = 1, ...,m

and n = 1, ..., S, denote the output series simulated under model j, where S denotes the length

of the simulated sample. In general, some parameters in the DSGE models may be kept fixed (at

their calibrated values), while others may be estimated.

Along these lines, denote ∆ logXj,n(Θ̂j,T ), n = 1, ..., S, j = 1, ...,m to be a sample of length S

drawn (simulated) from model j and evaluated at the parameters estimated (or calibrated) under

13The test discussed in this section is not meant to be informative about the source of the rejection. In this

sense, our distributional comparisons are weak tests of DSGE theories. Alternative approaches to that taken here

include the study of ARMA models, wherein restrictions implied by the different theories can be imposed, and the

construction of tests of cross-equation restrictions. Much of this is done in the papers cited at the beginning of the

introduction, and key papers along these lines include Cogley and Nason (1995a) and Geweke (1999b). Adaptation

of the distributional approach taken here to the examination of the auto- and cross-correlation functions discussed

earlier, for example, are left to future research.
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model j, using the T available historical observations.14 We assume stationarity in our subsequent

analysis.15 On the other hand, endogenous business cycles models that predict persistent, but

stationary, fluctuations should not be treated in this manner in order to avoid potential problems

associated with overdifferencing. In general, we require both the actual and the simulated series to

be (strictly) stationary and mixing.

For ease of exposition, and in keeping with our focus on current and lagged values of the variable

of interest, let Yt = (log ∆Xt, log ∆Xt−1), Yj,n(Θ̂j,T ) = (∆ logXj,n(Θ̂j,T ),∆ logXj,n−1(Θ̂j,T )). Also,

let F0(u; Θ0) denote the distribution of Yt evaluated at u and Fj(u; Θ
†
j) denote the distribution

of Yj,n(Θ
†
j), where Θ†

j is the probability limit of Θ̂j,T , taken as T → ∞, when parameters are

estimated, and where u ∈ U ⊂ ℜ2, possibly unbounded. Accuracy is measured in terms of square

error. The squared (approximation) error associated with model i, i = 1, ...,m, is measured in

terms of the (weighted) average over U of E

((
Fi(u; Θ

†
i ) − F0(u; Θ0)

)2
)
, where u ∈ U , and U is a

possibly unbounded set on ℜ2. The rule is to choose Model 1 over Model 2 if

∫

U
E

((
F1(u; Θ

†
1) − F0(u; Θ0)

)2
)
φ(u)du <

∫

U
E

((
F2(u; Θ

†
2) − F0(u; Θ0)

)2
)
φ(u)du

where
∫
U φ(u)du = 1 and φ(u) ≥ 0 for all u ∈ U ⊂ ℜ2. For any evaluation point, this measure

defines a norm and it implies a usual goodness of fit measure. The hypotheses of interest are:

H0 : max
j=2,...,m

∫

U
E

((
F0(u; Θ0) − F1(u; Θ

†
1)
)2

−
(
F0(u) − Fj(u; Θ

†
j)
)2
)
φ(u)du ≤ 0

versus

HA : max
j=2,...,m

∫

U
E

((
F0(u; Θ0) − F1(u; Θ

†
1)
)2

−
(
F0(u) − Fj(u; Θ

†
j)
)2
)
φ(u)du > 0.

Thus, under H0, no model can provide a better approximation (in square error sense) to the

distribution of Yt than the approximation provided by model 1. In order to test H0 versus HA, the

14In practical applications, Θ̂j,T is usually a combination of estimated and calibrated parameters. However, in our

empirical analysis, all parameters are calibrated, and hence there is no parameter estimation error.
15In our analysis, we use the H-P filter to induce stationarity on the output gap measure, while inflation is assumed

stationary. Thus, the output gap data that we examine is potentially problematic, as the filter ignores cointegration,

for example. However, it should be noted that there is mixed empirical evidence of the usefulness of imposing

cointegration restrictions when forecasting. Furthermore, we carried out our analysis replacing our output gap with

alternative measures of the output gap, and results were qualitatively the same. Finally, it should be stressed that

an excellent frequency domain based approach to the problem of constructing goodness of fit tests that are invariant

to linear filtering is explored in Cogley and Nason (1995b).
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relevant test statistic is
√
TZT,S , where:

ZT,S = max
j=2,...,m

∫

U
Zj,T,S(u)φ(u)du, (18)

and

Zj,T,S(u) =
1

T

T∑

t=1

(
1{Yt ≤ u} − 1

S

S∑

n=1

1{Y1,n(Θ̂1,T ) ≤ u}
)2

− 1

T

T∑

t=1

(
1{Yt ≤ u} − 1

S

S∑

n=1

1{Yj,n(Θ̂j,T ) ≤ u}
)2

.

From equation (18), it is immediate to see that the computational burden increases with the

dimensionality of U, that is with the number of variables and/or lagged values we are considering.

In fact, we need to approximate the integral by taking an average over a fine grid of U.16 The

limiting distribution of
√
TZT,S is a zero mean Gaussian process with a covariance kernel that

reflects the contribution of parameter estimation error (see appendix for further details), the time

series structure of the data and, for δ > 0, the contribution of simulation error. Bootstrap critical

values for the above test can be obtained in straightforward manner, as outlined in CS, and as

discussed in the appendix.

6 Empirical Results

6.1 Basic Data Analysis (θ = 0.75 - High Degree of Price Stickiness)

In order to form an initial impression of the performance of our alternative models, we first plot

empirical distribution and density functions for simulated and historical inflation and output gap

observations, where all simulation based calculations are based on samples of length 100T (T is the

historical sample size). In a subsequent section (Section 6.3), we consider the case where θ = 0.5,

at which point we compare all models and calibrations using various other statistical measures,

including autocorrelation and cross correlation functions, directional accuracy, and the well known

acceleration phenomenon.

16For example, if U is a two-dimensional subset of ℜ2, and φ is uniform on U, then

ZT,S =
1

N1N2
max

j=2,...,m

N1∑

i=1

N2∑

j=1

Zj,T,S(ui,j).

19



Actual and simulated distributions of inflation and the output gap are plotted in Figure 6 (see

plots for which θ = 0.75). Of note is that for inflation, the sticky price model with indexation

appears “closest” to the historical distribution. For short region, between 0.4 and 0.7 quantiles

the sticky price model is the closest to historical distribution. Clearly, though, none of the models

perform well at mimicking the left tail of the historical distribution, as is apparent upon inspection

of the cumulative distributions beyond the 0.8 quantile given on the vertical axis of the plots.

Interestingly, for the output gap, the sticky price model with indexation is still the “closest” to the

historical distribution. However, in this case none of the simulated distributions are particularly

accurate, as evidenced by the poor fit at both tails of the historical distribution.

As an alternative way to compare historical and simulated distributions, we also plot marginal

densities in Figure 7. In this figure the relevant plots are again the two corresponding to the case

where θ = 0.75. These plots illustrate much more clearly that the sticky price with indexation

model appears to outperform the other models, at least based on this initial measure of accuracy.

Interestingly, inflation values simulated using all models, however, appear to have distributions

with tails that are too thin, while the opposite can be said for the output gap.

6.2 Distributional Accuracy Tests (θ = 0.75 - High Degree of Price Stickiness)

We now turn to a more formal discussion of the results discussed in the previous sub-section. In par-

ticular, we apply the distributional accuracy test discussed above. Results are gathered in Tables 1

- 3. The tables are organized as follows. The first column gives S, the length of the simulation sam-

ple used, and l, the block length used in the construction of test critical values. The second column

of entries reports the numerical values of the test statistic (Z = ZT,S) discussed above, while the

next four columns report 5% and 10% bootstrap critical values based on a bootstrap statistics for

the cases where T/S → δ > 0 (Z∗∗) and T/S → 0 (Z∗), where T denotes the historical sample size.

The last three columns report the Corradi and Swanson (2005a) distributional loss measure asso-

ciated with model i, i = 1, 2, 3, (i.e.
∫
U

1
T

∑T
t=1

(
1{Yt ≤ u} − 1

S

∑S
n=1 1{Yi,n(θ̂1,T ) ≤ u}

)2
φ(u)du)

- see Section 5 for further details. As noted previously, T denotes the historical sample size. For

the case where S = T, we set the block length used in the bootstrap as follows: l1 = 5, l2 = 8,

l3 = 10, l4 = 16 and l5 = 20. For all other cases, where S = aT , say, we set l equal to ‘a’ times the

corresponding value of l when S = T . All statistics are based on grids of 20x20 values for u, dis-

tributed uniformly across the historical data ranges of πt and ygt . Bootstrap empirical distributions
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are constructed using 500 bootstrap replications.

We begin by setting the sticky price model as the benchmark, against which we compare our

two alternative models - the sticky price with indexation model and the sticky information model.

Additionally, tests are constructed using three different joint distributions. Namely (i) inflation

and the output gap, (ii) inflation and lagged inflation, and (iii) output gap and lagged output gap.

In Table 1, results for case (i) are given. Of note is that the benchmark sticky price model is almost

always rejected at conventional 5 and 10% levels, regardless of simulation sample size and bootstrap

block length. This constitutes strong evidence in favor of the alternative models. Interestingly,

upon inspection of Tables 2 and 3, the same result holds (for virtually all sample size/block length

permutations). Thus, for cases (i), (ii), and (iii), the sticky price model appears to be dominated

by the alternative models, in accord with our earlier interpretation of the distributional and density

plots of simulated and historical data. Furthermore, inspection of the last three columns in the

three tables indicates that the CS distributional loss measure is always lowest for the sticky price

with indexation model, suggesting that the sticky price with indexation model is the “best” based

on our point mean square error type distributional loss measure, and is thus likely to be the model

driving the rejections of the test.

In order to shed further light on the issue of whether our test is rejecting because of the dominant

performance of the sticky price with indexation model, we also performed several bi-model tests

(results are available upon request from the authors). In particular, we tested: (i) the sticky price

model against an alternative of the sticky price with indexation model, (ii) the sticky price model

against an alternative of the sticky information model, and (iii) the sticky information model against

an alternative of the sticky price with indexation model. Interestingly, in all cases the null model is

rejected in favor of the alternative model, suggesting an ordering as follows: the sticky price with

indexation model, followed by the sticky information model, followed by the sticky price model. As

we shall shortly see, however, this result is highly dependent upon the level of price stickiness.

6.3 Basic Data Analysis (θ = 0.5 - Low Degree of Price Stickiness)

From comparison of simulated and historical density functions (see above discussion) for the case

where θ = 0.75, it was found that the distributions of simulated inflation for all three models have

thinner tails than in the historical record. Also, the distributions of the simulated output gap for

all three models have thicker tails than in the historical record. It follows that in order to improve
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the fit of the models, the response of inflation to shocks should be larger, and the response of the

output gap should be smaller. Unfortunately, it is not possible to achieve a larger response for

inflation and a smaller response for the output gap by choosing different values for the volatility of

the shocks in the models. On the other hand, a larger response of inflation and a smaller response

of the output gap is expected for a given shock volatility if the level of price stickiness is reduced.

For example, a decrease in price stickiness, allows a larger fraction of agents in the economy to

adjust prices, which in turn produces a larger response of inflation. At the same time, a larger

inflation response coupled with a money growth shock that is the same size as prior to the decrease

in price stickiness leads to a decrease in the response of real money balances and thus output. These

facts, coupled with the results of the study by Bils and Klenow (2004) discussed above, provide

the impetus for our second calibration, where we set θ = 0.5. Of note is that the decrease from

θ = 0.75 (i.e. 12 months between price changes) to θ = 0.5 (i.e. 6 months between price changes)

still results in price stickiness slightly higher than the 4.3 months suggested in Bils and Klenow.

We begin our basic data analysis with a discussion of impulse response functions analogous to

those discussed in Section 4. In particular, compare the right hand side panels in Figures 4 and

5 to the left side panels in the same figures. The following conclusions emerge. First, the size of

the inflation response to both shocks increases when information and price stickiness is reduced.

In fact, for the monetary shock the inflation response is twice as big. Additionally, the size of the

output gap response to both shocks decreases with the largest decrease due to monetary policy

shock. Finally, the decrease in stickiness also leads to a decrease in the length of response.

Next we discuss the simulated distributions and densities, as denoted in the right hand side

panels of Figures 6 and 7. Interestingly, the simulated distributions of inflation for all three models

are much closer to the historical record. However, all three models fail to reproduce the right tail

asymmetry of the historical distribution of inflation. Furthermore, the simulated distributions of

the output gap for all three models are much closer to the historical record. Nevertheless it is again

worth noting that all three models continue to fail to capture the small left tail asymmetry of the

historical distribution of the output gap. Overall, there appears to be little to choose between the

models based on inspection of empirical densities and distributions.

To further elucidate our distributional comparison, note that Table 4 contains quantiles for both

measures of information and price stickiness, for all three models, and for the historical data. In

particular, quantiles for the historical and simulated distributions of inflation are given in Panel A
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and those for the output gap are given in Panel B. Different columns represent different quantiles,

while each row gives results for a different model (the exception is the first row, which contains

results for the historical data). For our higher level of information and price stickiness (i.e. see

Part I of the table), the sticky price model with indexation is the closest to historical inflation for

7 out of 9 quantiles, and to the output gap for 7 quantiles. On the other hand, for lower levels

of stickiness (i.e. see Part II of the table), there is no clear winner among the three models. For

example, note that although the simulated distribution for the sticky price model with indexation

is closest to the historical distribution of inflation for 4 quantiles, the simulated distribution for

the sticky price model is the closest to historical distribution of the output gap for 7 quantiles.

Furthermore, and even more importantly, note that upon comparison of the distributions for high

and low levels of stickiness, it is clear that the simulated distributions for all three models are closer

to the historical record when θ = 0.5.

Contingency tables are reported in Table 5. The table is organized in a manner similar to that

used to present results in Table 4, with the exception that the last row of entries in each panel

of the table reports p-values to the classical χ2 test for independence based on 2x2 contingency

tables (see Swanson and White (1995) for further discussion). Of note is that for our high level

of stickiness, the results in Part I of the table indicate that none of the models are able to mimic

historical behavior. For the low level of stickiness (see Part II of the table), performance does not

improve suggesting that there is little to choose between either the models or the level of stickiness

based on the evaluation of contingency tables.

Table 6 contains auto- and cross-correlations for inflation and the output gap. Entries in the

table correspond to autocorrelations of inflation (corr(πt, πt−1)) and the output gap (corr(yt, yt−1)),

as well as the cross correlation between inflation and the output gap. Corresponding historical

values are: corr(πt, πt−1) = 0.8363, corr(yt, yt−1) = 0.8690, corr(yt, πt) = 0.2582. Values are

computed for different simulation samples of length S = 5T, 10T, 20T, 30T, 50T, 100T, where T is

the historical data sample size. For our high level of stickiness (i.e. θ = 0.75), the sticky price model

with indexation better reproduces historical cross-correlations between inflation and the output

gap, while the sticky price model fares better at reproducing autocorrelation features for inflation

and the output gap. For our lower level of stickiness, the sticky price model better reproduces

autocorrelation features for the output gap and cross-correlation between inflation and the output

gap, while the sticky price model with indexation better reproduces historical autocorrelation of
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inflation.

Finally, we compare the ability of the models to reproduce the so-called acceleration phenom-

enon, which is commonly defined to be the positive relationship between level of economic activity

and changes in the inflation rate.17 Table 7 reports simulated cross correlations between the out-

put gap and changes in inflation, i.e. corr(yt, πt+2 − πt−2). Corresponding historical values are:

corr(yt, πt+2 − πt−2) = 0.4491 and corr(yt, πt+4 − πt−4) = 0.5458. As in the previous table, values

are given for simulation samples of length S = 5T, 10T, 20T, 30T, 50T, 100T, where T is the histor-

ical data sample size. Of note is that results are independent of the level stickiness (compare Parts

I and II of the table). Additionally, note that the sticky price model fails to reproduce the positive

relation between inflation and the output gap. The sticky information model yields values that

are closest to historical values for both measures. Thus, the sticky price model appears inadequate

based upon these measures, sticky information model is preferred based on acceleration measure.

6.4 Distributional Accuracy Tests (θ = 0.5 - Low Degree of Price Stickiness)

The distributional accuracy tests tell a very different story in this case, than when θ = 0.75. In

particular note in Tables 8-10 that the null hypothesis is never rejected. This suggests that when

the degree of price stickiness is decreased, there is little to choose between the three models. Put

differently, notice that the CS distributional accuracy measure for the sticky price with indexation

model is still (often) lower than the comparable values for the other two models (see last three

columns of the tables). However, the numerical values are so close together that, for a statistical

perspective, there is nothing to choose between the models. This result is made more interesting

by the fact that all models are clearly performing better in the case where θ = 0.5, as discussed

above, and as is apparent upon noting that the CS distributional loss measures reported in the

distributional accuracy tables are always lower when θ is reduced from 0.75 to 0.5.

7 Concluding Remarks

In this paper, we compare the theoretical and empirical performance of the sticky price model with

two important alternatives, namely the sticky information model and the sticky price model with

indexation. Based upon empirical observation of distributional fits (relative to the historical record)

17See Stock and Watson (1999), Fuhrer and Moore (1995), and Mankiw and Reis (2002) for further discussion.

24



and based upon examination of various correlation features of simulated and historical inflation and

output gap data, we find evidence that lower levels of price stickiness than hitherto suggested may

be appropriate. Additionally, we find that impulse response functions of the alternative models are

very close, with the important exception that there is no initial delay for inflation in the sticky price

model. This is opposed to the other models, which yield delayed and gradual response of inflation to

monetary policy shock. However, these responses have maximums after only 3 periods, so that the

models are not significantly different from the sticky price model, as noted by the inability of our

distributional accuracy tests to distinguish between the models when the level of price stickiness

is low. Furthermore, the sticky price model is good at reproducing auto- and cross-correlations

for low levels of price stickiness. Overall, we thus conclude that there is mild evidence in favor of

the sticky information and sticky price with indexation models, although further investigation is

needed in order to ascertain whether the newer sticky information and sticky price with indexation

models will continue to dominate sticky price model upon both theoretical and empirical grounds.
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Appendix: Corradi and Swanson Distributional Comparison Test

In this appendix, we discuss the CS distributional accuracy test in somewhat more detail. Recall
that the hypotheses of interest are:

H0 : max
j=2,...,m

∫

U
E

((
F0(u; Θ0) − F1(u; Θ

†
1)
)2

−
(
F0(u) − Fj(u; Θ

†
j)
)2
)
φ(u)du ≤ 0

versus

HA : max
j=2,...,m

∫

U
E

((
F0(u; Θ0) − F1(u; Θ

†
1)
)2

−
(
F0(u) − Fj(u; Θ

†
j)
)2
)
φ(u)du > 0.

If interest focuses on confidence intervals, so that the objective is to “approximate” Pr(u ≤ Yt ≤ u),
then the null and alternative hypotheses can be stated as:

H ′
0 : max

j=2,...,m
E

(((
F1(u; Θ

†
1) − F1(u; Θ

†
1)
)
− (F0(u; Θ0) − F0(u; Θ0))

)2

−
((
Fj(u; Θ

†
k) − Fj(u; Θ

†
k)
)
− (F0(u; Θ0) − F0(u; Θ0))

)2
)
≤ 0.

versus

H ′
A : max

j=2,...,m
E

(((
F1(u; Θ

†
1) − F1(u; Θ

†
1)
)
− (F0(u; Θ0) − F0(u; Θ0))

)2

−
((
Fj(u; Θ

†
k) − Fj(u; Θ

†
k)
)
− (F0(u; Θ0) − F0(u; Θ0))

)2
)
> 0.

The relevant statistic for testing H0 is
√
TZT,S , as discussed above.18 The following assumptions

are used in our first proposition.
Assumption A1: Yt is stationary-ergodic β−mixing processes with size −4, for j = 1, ...,m. 19

Assumption A2: For j = 1, ...,m :
√
T
(
Θ̂j,T − Θ†

j

)
= Aj(Θ

†
j)

1√
T

∑T
t=2 qj(Yt,Θ

†
j) + oP (1), where

1√
T

∑T
t=2 qj(Yt,Θ

†
j) satisfies a central limit theorem and Aj(Θ

†
j) is positive definite.20

Assumption A3: For j = 1, ...,m : (i) ∀Θj ∈ Ξj , with Ξj a compact set in ℜpj and Yj,n(Θj) is
a strictly stationary ergodic β−mixing process with size −4, where pj is the number of estimated
parameters in model j; (ii) Yj,n(Θj) is continuously differentiable in the interior of Ξj , for n =

1, ..., S; (iii) ∇Θj
Yj,n(Θj) is 2r−dominated in Ξj , uniformly in n for r > 2;21 (iv) Fj(u; θ

†
j) is twice

continuously differentiable in u; and (v) for at least one j, Fj(u; Θ
†
j) 6= F1(u; Θ

†
1) for u ∈ Ũ , where

Ũ is a subset of U of non-zero Lebesgue measure.

A2 requires that
√
T
(
θ̂j,T − θ†j

)
is asymptotically normal with a positive definite covariance

matrix. Thus, given the size condition in A1, A2 is satisfied by OLS, NLS, and QMLE, under
mild conditions, such as finite (4 + δ)th moments and unique identifiability. It is satisfied for the
GMM-type estimator of Christiano and Eichenbaum (1992) and the estimator of Bierens (2005).
With regard to A3(i), whenever the production function is a Cobb-Douglas type, and the shock
to technology follows a unit root process in logs, then output follows a unit root process in logs,

18H ′
0 versus H ′

A can be tested in a similar manner (see e.g. Corradi and Swanson (2005a)).
19β−mixing is a memory requirement stronger than α−mixing, but weaker than (uniform) φ−mixing.
20Given the size condition in A1, A2 is satisfied by the LS, NLS, QMLE estimator, under mild conditions, such as

finite (4 + δ)th moments and unique identifiability.
21This means that |∇θj

Yj,n(θj)| ≤ Dj,n, with supn E(D2r
j,n) < ∞ (see e.g. Gallant and White (1988), p.33).
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and the growth rate is stationary. This is not necessarily true in the case of more general CES
production functions.22 A3(ii) need only hold for estimated parameters. When solving RBC
models, we often obtain a (linear) ARMA representations for the variables of interest, in terms of
final (or reduced form) parameters. Therefore, because of linearity, A3(ii) holds straightforwardly
for the final parameters. Hence, if the structural (deep) parameters are smooth functions of the
final parameters, as is often the case A3(ii) is satisfied. A3(iii) is a standard assumption (see e.g.
Duffie and Singleton (1993)), and A3(iv) is always satisfied for linearized solutions of RBC models.
Finally, A3(v) ensures that at least one competing model is nonnested with the benchmark model.
This in turn ensures that the covariance matrix of the statistic is positive semi-definite. Hereafter,

for notational simplicity, let Fj(u) = Fj(u; Θ
†
j).

Proposition 1 (CS (2005b)): Let Assumptions A1-A3 hold. (i) Assume that as T, S → ∞ :
T/S → δ, 0 < δ <∞, then:

max
j=2,...,m

√
T

∫

U

(
Zj,T,S(u) −

(
(F0(u) − F1(u))

2 − (F0(u) − Fj(u))
2
))
φ(u)du (19)

d→ max
j=2,...,m

∫

U
Zj(u)φ(u)du,

where Zj(u) is a zero mean Gaussian process with covariance kernel, Kj(u, u
′), as given in CS

(2005b).
(ii) Assume that as T, S → ∞ : S/T 2 → 0 and T/S → 0, then:

max
j=2,...,m

√
T

∫

U

(
Zj,T,S(u) −

(
(F0(u) − F1(u))

2 − (F0(u) − Fj(u))
2
))
φ(u)du

d→ max
j=2,...,m

∫

U
Z̃j(u)φ(u)du,

where Z̃j(u) is a zero mean Gaussian process with covariance kernel, K̃j(u, u
′), as given in CS

(2005b).

Notice that when T/S → 0, then 1√
S

∑S
n=1

(
1{Yj,n(Θ†

1) ≤ u} − Fj(u)
)
pr→ 0, uniformly in u, and

so the covariance kernel of the limiting distribution does not reflect the contribution of the error
term due to the fact we replace the “true” distribution of the simulated series with its empirical
counterpart; in other words, in this case, the simulation error vanishes. Also, notice that we
require S to grow at a rate slower than T 2; such a condition is used in order to show the stochastic
equicontinuity of the statistic.

From Proposition 1, we see that when all competing models provide an approximation to the true
joint distribution that is as accurate (in terms of square error) as that provided by the benchmark,
then the limiting distribution is a zero mean Gaussian process with a covariance kernel that reflects
the contribution of parameter estimation error, the time series structure of the data and, for δ > 0,
the contribution of simulation error. This is the case where

∫

U

(
(F0(u) − F1(u))

2 − (F0(u) − Fj(u))
2
)
φ(u)du = 0, for all j.

It follows that in this case, the limiting distribution of

max
j=2,...,m

√
T

∫

U

(
Zj,T,S(u) −

(
(F0(u) − F1(u))

2 − (F0(u) − Fj(u))
2
))
φ(u)du

22It remains to establish whether or not A3(i) can be relaxed to weak stationarity. Given this fact, and given that

strict stationarity is not generally ensured, results of the test should be viewed with caution.
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is the same as that of
√
TZT,S , and so the critical values of the limiting distribution on the RHS

of equation (19) provide valid asymptotic critical values for
√
TZT,S . On the other hand, when

∫
U

(
(F0(u) − F1(u))

2 − (F0(u) − Fj(u))
2
)
φ(u)du < 0 for some j, so that at least one alternative

model is less accurate than the benchmark, then these critical values provide upper bounds for
critical values for

√
TZT,S . Also, when all competing models are less accurate than the benchmark

model, then the statistic diverges to minus infinity.

Finally, under the alternative,
∫
U

(
(F0(u) − F1(u))

2 − (F0(u) − Fj(u))
2
)
φ(u)du > 0 for some j,

so that
√
TZT,S diverges to infinity. Therefore, the test has correct asymptotic size if all models

are equally good, is conservative when some model is strictly dominated by the benchmark, and
has unit power under the alternative. Note that the above testing procedure can in principle be
modified to allow for the evaluation of predictive densities under rolling and/or recursive estimation
strategies (see e.g. Corradi and Swanson (2005d,e)).

Bootstrap critical values for the above test can be obtained in straightforward manner, as
outlined in CS. Namely, one can rely on an empirical process version of the block bootstrap that
properly captures the contribution of parameter estimation error, simulation error, when present,
and the time series structure of the data to the covariance kernel given in Proposition 1.

Begin by resampling b blocks of length l, bl = T − 1, from the actual sample. Let Y ∗
t =

(log ∆X∗
t , log ∆X∗

t−1) be the resampled series, such that Y ∗
2 , ..., Y

∗
l+1, Y

∗
l+2, ..., Y

∗
T−l+2, ..., Y

∗
T is equal

to YI1+1, ..., YI1+l, YI2+1, ..., YIb+1, ..., YIb+l, where Ii, i = 1, ..., b are independent, discrete uniform
on 1, ..., T − l + 1, that is Ii = i, i = 1, ..., T − l with probability 1/(T − l). We use the resampled

series Y ∗
t to compute the bootstrap estimator Θ̂∗

j,T for j = 1, ...,m.

We now use Θ̂∗
j,T to simulate samples under model j, j = 1, ...,m; let Yj,n(Θ̂

∗
j,T ), n = 2, ..., S

be the series simulated under model j. At this point, we need to distinguish between the case of
δ = 0, vanishing simulation error and δ > 0, nonvanishing simulation error. In the former case,
we do not need to resample the simulated series, as there is no need of mimicking the contribution
of simulation error to the covariance kernel. On the other hand, in the latter case, we do need
to resample the simulated series. More precisely, we draw b̃ blocks of length l̃, with b̃l̃ = S − 1,
let Y ∗

j,n(Θ̂
∗
j,T ), j = 1, ...,m, n = 2, ..., S denote the resample series under model j. Notice that

Y ∗
j,2(Θ̂

∗
j,T ), ..., Y ∗

j,l+1(Θ̂
∗
j,T ), ..., Y ∗

j,S(Θ̂∗
j,T ) is equal to Y

j,Ĩ1
(Θ̂∗

j,T ), ..., Y
j,Ĩ1+l

(Θ̂∗
j,T ), ..., Y

j,Ĩ
b̃
+l

(Θ̂∗
j,T ), where

Ĩi, i = 1, ..., b̃ are independent discrete uniform on 1, ..., S− l̃. Notice that, for each of the m models,
and for each bootstrap replication, we draw b̃ discrete uniform Ĩi on 1, ..., S− l̃, draws are indepen-
dent across models, we have just suppressed the dependence of Ĩi on j, for notational simplicity.

We consider two different bootstrap analogs of ZT,S , the first of which is valid when T/S → δ > 0
and the second of which is valid when T/S → 0. Notice that in the second version, simulation error

vanishes so that Y ∗
j,n(Θ̂

∗
j,T ) in the first statistic is replaced with Yj,n(θ̂

∗
j,T ), j = 1, ...,m. Define:

Z∗∗
T,S = max

j=2,...,m

∫

U
Z∗∗
j,T,S(u)φ(u)du,
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where

Z∗∗
j,T,S(u) =

1

T

T∑

t=1



(

1{Y ∗
t ≤ u} − 1

S

S∑

n=1

1{Y ∗
1,n(Θ̂

∗
1,T ) ≤ u}

)2

−
(

1{Yt ≤ u} − 1

S

S∑

n=1

1{Y1,n(Θ̂1,T ) ≤ u}
)2



− 1

T

T∑

t=1



(

1{Y ∗
t ≤ u} − 1

S

S∑

n=1

1{Y ∗
j,n(Θ̂

∗
j,T ) ≤ u}

)2

−
(

1{Yt ≤ u} − 1

S

S∑

n=1

1{Yj,n(Θ̂j,T ) ≤ u}
)2



and

Z∗
T,S = max

j=2,...,m

∫

U
Z∗
j,T,S(u)φ(u)du,

where

Z∗
j,T,S(u) =

1

T

T∑

t=1



(

1{Y ∗
t ≤ u} − 1

S

S∑

n=1

1{Y1,n(Θ̂
∗
1,T ) ≤ u}

)2

−
(

1{Yt ≤ u} − 1

S

S∑

n=1

1{Y1,n(Θ̂1,T ) ≤ u}
)2



− 1

T

T∑

t=1



(

1{Y ∗
t ≤ u} − 1

S

S∑

n=1

1{Yj,n(Θ̂∗
j,T ) ≤ u}

)2

−
(

1{Yt ≤ u} − 1

S

S∑

n=1

1{Yj,n(Θ̂j,T ) ≤ u}
)2

 .

CS (2005b) prove the first order validity of critical values constructed using the above bootstrap
statistics; and they suggest proceeding in the following manner. For any bootstrap replication,

compute the bootstrap statistic,
√
TZ∗∗

T,S

(√
TZ∗

T,S

)
. Perform B bootstrap replications (B large)

and compute the quantiles of the empirical distribution of the B bootstrap statistics. Reject H0 if√
TZT,S is greater than the (1−α)th-quantile. Otherwise, do not reject. Now, for all samples except

a set with probability measure approaching zero,
√
TZT,S has the same limiting distribution as the

corresponding bootstrapped statistic, when
∫
U

(
(F0(u) − F1(u))

2 − (F0(u) − Fj(u))
2
)
φ(u)du = 0

for all j = 2, ...,m. In this case, the above approach ensures that the test has asymptotic size equal
to α. On the other hand, when one (or more) competing models is (are) strictly dominated by the
benchmark, the approach ensures that the test has an asymptotic size between 0 and α. Finally,
under the alternative, ZT,S diverges to (plus) infinity, while the corresponding bootstrap statistic
has a well defined limiting distribution. This ensures unit asymptotic power.
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Table 1: Distributional Accuracy Tests Based on the Comparison of Historical and
Simulated πt and ygt : Price and Information Stickiness (θ = 0.75)

S, l Z Crit. val. (Z∗∗) Crit. val. (Z∗) CS Distributional Loss

5% 10% 5% 10% sp spi si

5T,l1 0.1525 0.1543 0.0707 0.0744 0.0359 1.3623 1.2097 1.2926
5T,l2 0.1525 0.1797 0.1209 0.1047 0.0462 1.3623 1.2097 1.2926
5T,l3 0.1525 0.1610 0.0950 0.0997 0.0393 1.3623 1.2097 1.2926
5T,l4 0.1525 0.1644 0.0913 0.0978 0.0469 1.3623 1.2097 1.2926
5T,l5 0.1525 0.1659 0.0946 0.1036 0.0479 1.3623 1.2097 1.2926

10T,l1 0.0995 0.1343 0.0941 0.0798 0.0462 1.3041 1.2046 1.2914
10T,l2 0.0995 0.1352 0.0929 0.0939 0.0530 1.3041 1.2046 1.2914
10T,l3 0.0995 0.1345 0.0820 0.0860 0.0550 1.3041 1.2046 1.2914
10T,l4 0.0995 0.1385 0.0986 0.0824 0.0558 1.3041 1.2046 1.2914
10T,l5 0.0995 0.1541 0.1082 0.0908 0.0533 1.3041 1.2046 1.2914
20T,l1 0.0855 0.0969 0.0722 0.0788 0.0548 1.2884 1.2030 1.3046
20T,l2 0.0855 0.1112 0.0776 0.0763 0.0555 1.2884 1.2030 1.3046
20T,l3 0.0855 0.1087 0.0807 0.0778 0.0573 1.2884 1.2030 1.3046
20T,l4 0.0855 0.1034 0.0775 0.0747 0.0550 1.2884 1.2030 1.3046
20T,l5 0.0855 0.0967 0.0722 0.0715 0.0563 1.2884 1.2030 1.3046
30T,l1 0.0753 0.0646 0.0478 0.0489 0.0300 1.2775 1.2022 1.2805
30T,l2 0.0753 0.0765 0.0481 0.0486 0.0343 1.2775 1.2022 1.2805
30T,l3 0.0753 0.0761 0.0479 0.0481 0.0353 1.2775 1.2022 1.2805
30T,l4 0.0753 0.0705 0.0476 0.0479 0.0341 1.2775 1.2022 1.2805
30T,l5 0.0753 0.0694 0.0472 0.0489 0.0356 1.2775 1.2022 1.2805
50T,l1 0.0578 0.0590 0.0434 0.0425 0.0295 1.2675 1.2097 1.2699
50T,l2 0.0578 0.0603 0.0481 0.0413 0.0283 1.2675 1.2097 1.2699
50T,l3 0.0578 0.0618 0.0458 0.0451 0.0295 1.2675 1.2097 1.2699
50T,l4 0.0578 0.0666 0.0456 0.0377 0.0294 1.2675 1.2097 1.2699
50T,l5 0.0578 0.0582 0.0423 0.0413 0.0296 1.2675 1.2097 1.2699

100T,l1 0.0346 0.0565 0.0437 0.0422 0.0343 1.2558 1.2212 1.2698
100T,l2 0.0346 0.0564 0.0466 0.0419 0.0366 1.2558 1.2212 1.2698
100T,l3 0.0346 0.0586 0.0446 0.0446 0.0360 1.2558 1.2212 1.2698
100T,l4 0.0346 0.0592 0.0454 0.0472 0.0358 1.2558 1.2212 1.2698
100T,l5 0.0346 0.0539 0.0455 0.0440 0.0367 1.2558 1.2212 1.2698

Notes: Joint distributions of inflation and the output gap are compared using the simulation based test statistic dis-

cussed above. The historical data period is 1964:1-2003:4. The second column of entries reports the numerical values

of the test statistic, while the next four columns report 5% and 10% bootstrap critical values based on a bootstrap

statistics for the cases where T/S → δ > 0 (Z∗∗) and T/S → 0 (Z∗), where T denotes the historical sample size and

S the length of the simulated sample. The last three columns of entries in the table report the Corradi and Swanson

(2005b) distributional loss measure associated with model i, which is an estimate of E
((

Fi(u; θ†
i ) − F0(u; θ0)

)2)
.

Namely, we report CS =
∫

U

1
T

∑T

t=1

(
1{Yt ≤ u} − 1

S

∑S

n=1
1{Yi,n(θ̂1,T ) ≤ u}

)2

φ(u)du (see above for complete de-

tails). The CS distributional loss measure is calculated for the sticky price (sp), sticky price with indexation (spi)

and sticky information (si) models. For the case where S = T we set the block length used in the bootstrap as

follows: l1 = 5, l2 = 8, l3 = 10, l4 = 16 and l5 = 20. For all other cases, where S = aT , we set li equal to ‘a’ times

the corresponding value of li when S = T . All statistics are based on use of grids of 20x20 values for u distributed

uniformly across the historical data ranges of πt and yg
t . Bootstrap empirical distributions are constructed using 500

bootstrap replications. Further details are given above.
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Table 2: Distributional Accuracy Tests Based on the Comparison of Historical and
Simulated πt and πt−1: Price and Information Stickiness (θ = 0.75)

S, l Z Crit. val. (Z∗∗) Crit. val. (Z∗) CS Distributional Loss

5% 10% 5% 10% sp spi si

5T,l1 -0.0017 0.3594 0.3039 0.2483 0.1981 1.2928 1.2944 1.3318
5T,l2 -0.0017 0.3686 0.2854 0.2377 0.2030 1.2928 1.2944 1.3318
5T,l3 -0.0017 0.4120 0.3212 0.2553 0.2093 1.2928 1.2944 1.3318
5T,l4 -0.0017 0.4723 0.3303 0.2936 0.2114 1.2928 1.2944 1.3318
5T,l5 -0.0017 0.4645 0.3136 0.3109 0.2276 1.2928 1.2944 1.3318

10T,l1 0.0209 0.2016 0.1606 0.1613 0.1324 1.3056 1.2847 1.3187
10T,l2 0.0209 0.2168 0.1704 0.1590 0.1341 1.3056 1.2847 1.3187
10T,l3 0.0209 0.2163 0.1669 0.1700 0.1334 1.3056 1.2847 1.3187
10T,l4 0.0209 0.2635 0.1830 0.1837 0.1366 1.3056 1.2847 1.3187
10T,l5 0.0209 0.2691 0.1968 0.1755 0.1357 1.3056 1.2847 1.3187
20T,l1 0.0370 0.1380 0.1124 0.0977 0.0792 1.3134 1.2764 1.3088
20T,l2 0.0370 0.1486 0.1087 0.1000 0.0830 1.3134 1.2764 1.3088
20T,l3 0.0370 0.1499 0.1186 0.0980 0.0830 1.3134 1.2764 1.3088
20T,l4 0.0370 0.1584 0.1197 0.1085 0.0847 1.3134 1.2764 1.3088
20T,l5 0.0370 0.1643 0.1203 0.1194 0.0855 1.3134 1.2764 1.3088
30T,l1 0.0400 0.1059 0.0821 0.0772 0.0601 1.3210 1.2810 1.3107
30T,l2 0.0400 0.1086 0.0838 0.0785 0.0656 1.3210 1.2810 1.3107
30T,l3 0.0400 0.1093 0.0874 0.0832 0.0607 1.3210 1.2810 1.3107
30T,l4 0.0400 0.1238 0.0961 0.0827 0.0671 1.3210 1.2810 1.3107
30T,l5 0.0400 0.1275 0.0974 0.0856 0.0717 1.3210 1.2810 1.3107
50T,l1 0.0460 0.0847 0.0618 0.0573 0.0466 1.3233 1.2773 1.3149
50T,l2 0.0460 0.0862 0.0665 0.0573 0.0485 1.3233 1.2773 1.3149
50T,l3 0.0460 0.0830 0.0663 0.0586 0.0476 1.3233 1.2773 1.3149
50T,l4 0.0460 0.0887 0.0689 0.0636 0.0485 1.3233 1.2773 1.3149
50T,l5 0.0460 0.1045 0.0772 0.0649 0.0495 1.3233 1.2773 1.3149

100T,l1 0.0581 0.0451 0.0344 0.0330 0.0228 1.3281 1.2700 1.3076
100T,l2 0.0581 0.0491 0.0373 0.0329 0.0231 1.3281 1.2700 1.3076
100T,l3 0.0581 0.0506 0.0360 0.0311 0.0247 1.3281 1.2700 1.3076
100T,l4 0.0581 0.0520 0.0405 0.0326 0.0236 1.3281 1.2700 1.3076
100T,l5 0.0581 0.0573 0.0393 0.0361 0.0222 1.3281 1.2700 1.3076

Notes: See notes to Table 1.
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Table 3: Distributional Accuracy Tests Based on the Comparison of Historical and
Simulated ygt and ygt−1: Price and Information Stickiness (θ = 0.75)

S, l Z Crit. val. (Z∗∗) Crit. val. (Z∗) CS Distributional Loss

5% 10% 5% 10% sp spi si

5T,l1 0.2261 -0.0212 -0.0648 -0.0722 -0.1025 1.4334 1.2073 1.2577
5T,l2 0.2261 -0.0065 -0.0511 -0.0613 -0.0959 1.4334 1.2073 1.2577
5T,l3 0.2261 0.0177 -0.0469 -0.0685 -0.0939 1.4334 1.2073 1.2577
5T,l4 0.2261 -0.0029 -0.0436 -0.0787 -0.1069 1.4334 1.2073 1.2577
5T,l5 0.2261 -0.0165 -0.0593 -0.0857 -0.1101 1.4334 1.2073 1.2577

10T,l1 0.1551 0.0269 0.0043 0.0050 -0.0126 1.3509 1.1958 1.2940
10T,l2 0.1551 0.0431 0.0121 0.0022 -0.0093 1.3509 1.1958 1.2940
10T,l3 0.1551 0.0363 0.0050 0.0014 -0.0130 1.3509 1.1958 1.2940
10T,l4 0.1551 0.0375 0.0135 0.0017 -0.0134 1.3509 1.1958 1.2940
10T,l5 0.1551 0.0392 0.0057 -0.0026 -0.0196 1.3509 1.1958 1.2940
20T,l1 0.1259 0.0474 0.0296 0.0292 0.0179 1.3250 1.1991 1.3123
20T,l2 0.1259 0.0572 0.0331 0.0340 0.0190 1.3250 1.1991 1.3123
20T,l3 0.1259 0.0574 0.0405 0.0356 0.0195 1.3250 1.1991 1.3123
20T,l4 0.1259 0.0526 0.0285 0.0298 0.0178 1.3250 1.1991 1.3123
20T,l5 0.1259 0.0494 0.0277 0.0252 0.0117 1.3250 1.1991 1.3123
30T,l1 0.1044 0.0677 0.0520 0.0445 0.0369 1.2990 1.1946 1.3092
30T,l2 0.1044 0.0595 0.0491 0.0495 0.0356 1.2990 1.1946 1.3092
30T,l3 0.1044 0.0699 0.0497 0.0468 0.0370 1.2990 1.1946 1.3092
30T,l4 0.1044 0.0560 0.0450 0.0457 0.0356 1.2990 1.1946 1.3092
30T,l5 0.1044 0.0540 0.0403 0.0408 0.0346 1.2990 1.1946 1.3092
50T,l1 0.0708 0.0501 0.0412 0.0428 0.0326 1.2802 1.2094 1.2926
50T,l2 0.0708 0.0565 0.0450 0.0450 0.0327 1.2802 1.2094 1.2926
50T,l3 0.0708 0.0586 0.0423 0.0425 0.0339 1.2802 1.2094 1.2926
50T,l4 0.0708 0.0497 0.0387 0.0395 0.0301 1.2802 1.2094 1.2926
50T,l5 0.0708 0.0433 0.0383 0.0354 0.0292 1.2802 1.2094 1.2926

100T,l1 0.0340 0.0646 0.0555 0.0546 0.0489 1.2620 1.2279 1.2963
100T,l2 0.0340 0.0641 0.0542 0.0580 0.0494 1.2620 1.2279 1.2963
100T,l3 0.0340 0.0625 0.0544 0.0565 0.0502 1.2620 1.2279 1.2963
100T,l4 0.0340 0.0622 0.0559 0.0544 0.0491 1.2620 1.2279 1.2963
100T,l5 0.0340 0.0621 0.0531 0.0509 0.0474 1.2620 1.2279 1.2963

Notes: See notes to Table 1.
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Table 4: Historical and Simulated Distribution Quantiles for Inflation and the Output
Gap

I. Information and Price Stickiness θ = 0.75

A. Inflation

10% 20% 30% 40% 50% 60% 70% 80% 90%

data -0.0064 -0.0047 -0.0031 -0.0022 -0.0014 -0.0004 0.0017 0.0055 0.0118
sp -0.0043 -0.0028 -0.0017 -0.0007 0.0001 0.0010 0.0019 0.0031 0.0046
spi -0.0066 -0.0044 -0.0028 -0.0014 0.0000 0.0013 0.0027 0.0042 0.0063
si -0.0050 -0.0033 -0.0020 -0.0009 0.0000 0.0010 0.0021 0.0033 0.0050

B. 0utput Gap

10% 20% 30% 40% 50% 60% 70% 80% 90%

data -0.0167 -0.0104 -0.0072 -0.0034 0.0008 0.0047 0.0089 0.0125 0.0184
sp -0.0381 -0.0244 -0.0149 -0.0065 0.0009 0.0085 0.0170 0.0275 0.0406
spi -0.0349 -0.0232 -0.0147 -0.0071 -0.0003 0.0063 0.0137 0.0229 0.0343
si -0.0407 -0.0271 -0.0167 -0.0076 0.0002 0.0085 0.0167 0.0270 0.0409

II. Information and Price Stickiness θ = 0.5

A. Inflation

10% 20% 30% 40% 50% 60% 70% 80% 90%

data -0.0064 -0.0047 -0.0031 -0.0022 -0.0014 -0.0004 0.0017 0.0055 0.0118
sp -0.0067 -0.0043 -0.0026 -0.0012 0.0001 0.0015 0.0029 0.0046 0.0070
spi -0.0086 -0.0057 -0.0036 -0.0017 0.0000 0.0016 0.0033 0.0055 0.0083
si -0.0076 -0.0050 -0.0031 -0.0015 0.0000 0.0015 0.0031 0.0051 0.0077

B. 0utput Gap

10% 20% 30% 40% 50% 60% 70% 80% 90%

data -0.0167 -0.0104 -0.0072 -0.0034 0.0008 0.0047 0.0089 0.0125 0.0184
sp -0.0203 -0.0131 -0.0081 -0.0036 0.0003 0.0045 0.0089 0.0143 0.0214
spi -0.0222 -0.0146 -0.0092 -0.0045 -0.0003 0.0041 0.0088 0.0142 0.0219
si -0.0221 -0.0146 -0.0091 -0.0044 0.0000 0.0042 0.0090 0.0145 0.0221

Notes: Distribution quantiles are given for historical and simulated inflation and output gap. Simulated data are

based on the sticky price (sp), sticky price with indexation (spi) and sticky information (si) models. Historical data

are for the period 1964:1-2003:4. The simulation sample size is 100T, where T is the historical data sample size.
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Table 5: Directional Accuracy of Simulated Inflation and the Output Gap Paths

I. Information and Price Stickiness θ = 0.75

A. Inflation

(πt, πt−1) data sp spi si

(down, down) 0.2025 0.2453 0.2518 0.2553
(up, down) 0.3038 0.2547 0.2512 0.2470
(down, up) 0.3038 0.2547 0.2482 0.2447
(up, up) 0.1899 0.2453 0.2488 0.2530
p-value 0.0068 0.0185 0.8868 0.0341

B. Output Gap

(y
g

t
, y

g

t−1
) data sp spi si

(down, down) 0.3228 0.2653 0.2483 0.2508
(up, down) 0.2215 0.2341 0.2537 0.2464
(down, up) 0.2152 0.2340 0.2510 0.2485
(up, up) 0.2405 0.2666 0.2470 0.2543
p-value 0.1293 0.0000 0.2297 0.2006

C. Inflation and Output Gap

(y
g

t
, πt) data sp spi si

(down, down) 0.2579 0.4589 0.3599 0.3848
(up, down) 0.2516 0.0411 0.1431 0.1174
(down, up) 0.2830 0.0404 0.1421 0.1123
(up, up) 0.2075 0.4596 0.3548 0.3854
p-value 0.3708 0.0000 0.0000 0.0000

II. Information and Price Stickiness θ = 0.5

A. Inflation

(πt, πt−1) data sp spi si

(down, down) 0.2025 0.2402 0.2477 0.2562
(up, down) 0.3038 0.2601 0.2513 0.2475
(down, up) 0.3038 0.2600 0.2525 0.2441
(up, up) 0.1899 0.2397 0.2484 0.2522
p-value 0.0068 0.0000 0.3270 0.0341

B. Output Gap

(y
g

t
, y

g

t−1
) data sp spi si

(down, down) 0.3228 0.2509 0.2486 0.2483
(up, down) 0.2215 0.2475 0.2543 0.2470
(down, up) 0.2152 0.2474 0.2497 0.2500
(up, up) 0.2405 0.2542 0.2473 0.2547
p-value 0.1293 0.1952 0.3052 0.4598

C. Inflation and Output Gap

(y
g

t
, πt) data sp spi si

(down, down) 0.2579 0.4642 0.3780 0.3523
(up, down) 0.2516 0.0361 0.1211 0.1514
(down, up) 0.2830 0.0341 0.1249 0.1430
(up, up) 0.2075 0.4656 0.3760 0.3533
p-value 0.3708 0.0000 0.0000 0.0000

Notes: Contingency tables are given for historical and simulated inflation (πt) and the output gap (yg
t ) variables.

Simulated data are based on the sticky price (sp), sticky price with indexation (spi) and sticky information (si) models.

Historical data are for the period 1964:1-2003:4. The simulation sample size is 100T, where T is the historical data

sample size. P-values reported in the last row of each panel in the table correspond to the χ2 test of independence.

The statistic has a χ2 limiting distribution with 1 degree of freedom.
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Table 6: Autocorrelation and Cross Correlation: Inflation and the Output Gap

I. Information and Price Stickiness θ = 0.75

S corr(πt, πt−1) corr(yg
t , yg

t−1) corr(yg
t , πt)

sp spi si sp spi si sp spi si

5T 0.8470 0.9027 0.9543 0.8841 0.7294 0.8579 0.9151 0.8379 0.9424
10T 0.8473 0.9146 0.9518 0.8826 0.7517 0.8611 0.9142 0.8411 0.9447
20T 0.8348 0.9199 0.9502 0.8721 0.7524 0.8598 0.9073 0.8432 0.9435
30T 0.8286 0.9172 0.9452 0.8662 0.7474 0.8451 0.9040 0.8417 0.9379
50T 0.8316 0.9158 0.9423 0.8691 0.7514 0.8387 0.9055 0.8419 0.9355

100T 0.8322 0.9176 0.9412 0.8695 0.7571 0.8366 0.9063 0.8437 0.9346

II. Information and Price Stickiness θ = 0.5

S corr(πt, πt−1) corr(yg
t , yg

t−1) corr(yg
t , πt)

sp spi si sp spi si sp spi si

5T 0.6584 0.7507 0.7475 0.7094 0.4958 0.5600 0.8075 0.8701 0.9442
10T 0.6468 0.7730 0.7602 0.6932 0.5065 0.5701 0.7972 0.8679 0.9437
20T 0.6467 0.7793 0.7585 0.6942 0.5095 0.5723 0.7974 0.8686 0.9459
30T 0.6403 0.7742 0.7435 0.6871 0.5075 0.5465 0.7945 0.8696 0.9425
50T 0.6415 0.7771 0.7397 0.6889 0.5088 0.5366 0.7945 0.8698 0.9405

100T 0.6457 0.7822 0.7368 0.6932 0.5141 0.5362 0.7977 0.8710 0.9412

Notes: Entries in the table correspond to autocorrelations of inflation (corr(πt, πt−1)) and the output gap

(corr(yg
t , yg

t−1)), as well as the cross correlation between inflation and the output gap. Simulated data are based

on the sticky price (sp), sticky price with indexation (spi) and sticky information (si) models. Historical data are for

the period 1964:1-2003:4. Values are given for simulation samples of S = 5T, 10T, 20T, 30T, 50T, 100T, where T is

the historical data sample size. Corresponding historical values are: corr(πt, πt−1) = 0.8363, corr(yg
t , yg

t−1) = 0.8690,

corr(yg
t , πt) = 0.2582.
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Table 7: Correlation Between Output Gap and Change in Inflation: Acceleration Phe-
nomena

I. Information and Price Stickiness θ = 0.75

S corr(yg
t , πt+2 − πt−2) corr(yg

t , πt+4 − πt−4)
sp spi si sp spi si

5T 0.1226 0.7854 0.4971 0.0765 0.7257 0.4466
10T 0.1213 0.7706 0.4984 0.0658 0.7132 0.4488
20T 0.1272 0.7600 0.5091 0.0743 0.7018 0.4599
30T 0.1323 0.7651 0.5292 0.0817 0.7068 0.4763
50T 0.1295 0.7693 0.5391 0.0776 0.7122 0.4851

100T 0.1302 0.7666 0.5450 0.0786 0.7103 0.4905

II. Information and Price Stickiness θ = 0.5

S corr(yg
t , πt+2 − πt−2) corr(yg

t , πt+4 − πt−4)
sp spi si sp spi si

5T 0.2044 0.7984 0.5966 0.1075 0.6552 0.4382
10T 0.2108 0.7844 0.5894 0.0975 0.6436 0.4317
20T 0.2085 0.7813 0.5964 0.1040 0.6431 0.4331
30T 0.2132 0.7852 0.6097 0.1138 0.6467 0.4368
50T 0.2118 0.7832 0.6110 0.1105 0.6417 0.4351

100T 0.2111 0.7803 0.6164 0.1107 0.6374 0.4419

Notes: See notes to Table 3. Corresponding historical values are: corr(yg
t , πt+2 − πt−2) = 0.4491, corr(yg

t , πt+4 −

πt−4) = 0.5458.
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Table 8: Distributional Accuracy Tests Based on the Comparison of Historical and
Simulated πt and ygt : Price and Information Stickiness (θ = 0.5)

S, l Z Crit. val. (Z∗∗) Crit. val. (Z∗) CS Distributional Loss

5% 10% 5% 10% sp spi si

5T,l1 0.0309 0.0670 0.0428 0.0523 0.0336 1.1865 1.1556 1.1583
5T,l2 0.0309 0.0776 0.0482 0.0574 0.0309 1.1865 1.1556 1.1583
5T,l3 0.0309 0.0872 0.0589 0.0613 0.0323 1.1865 1.1556 1.1583
5T,l4 0.0309 0.0928 0.0575 0.0601 0.0372 1.1865 1.1556 1.1583
5T,l5 0.0309 0.1023 0.0654 0.0661 0.0408 1.1865 1.1556 1.1583

10T,l1 0.0124 0.0723 0.0451 0.0482 0.0289 1.1669 1.1545 1.1586
10T,l2 0.0124 0.0727 0.0512 0.0520 0.0349 1.1669 1.1545 1.1586
10T,l3 0.0124 0.0800 0.0537 0.0527 0.0346 1.1669 1.1545 1.1586
10T,l4 0.0124 0.0805 0.0585 0.0521 0.0383 1.1669 1.1545 1.1586
10T,l5 0.0124 0.0836 0.0610 0.0562 0.0386 1.1669 1.1545 1.1586
20T,l1 0.0127 0.0427 0.0297 0.0355 0.0239 1.1658 1.1531 1.1620
20T,l2 0.0127 0.0506 0.0404 0.0395 0.0269 1.1658 1.1531 1.1620
20T,l3 0.0127 0.0563 0.0374 0.0391 0.0272 1.1658 1.1531 1.1620
20T,l4 0.0127 0.0601 0.0429 0.0455 0.0338 1.1658 1.1531 1.1620
20T,l5 0.0127 0.0622 0.0436 0.0457 0.0343 1.1658 1.1531 1.1620
30T,l1 0.0119 0.0367 0.0267 0.0276 0.0201 1.1642 1.1523 1.1590
30T,l2 0.0119 0.0419 0.0293 0.0300 0.0212 1.1642 1.1523 1.1590
30T,l3 0.0119 0.0421 0.0321 0.0305 0.0217 1.1642 1.1523 1.1590
30T,l4 0.0119 0.0485 0.0346 0.0363 0.0269 1.1642 1.1523 1.1590
30T,l5 0.0119 0.0502 0.0329 0.0399 0.0262 1.1642 1.1523 1.1590
50T,l1 0.0083 0.0307 0.0213 0.0251 0.0182 1.1618 1.1535 1.1576
50T,l2 0.0083 0.0359 0.0229 0.0274 0.0203 1.1618 1.1535 1.1576
50T,l3 0.0083 0.0380 0.0252 0.0288 0.0209 1.1618 1.1535 1.1576
50T,l4 0.0083 0.0422 0.0301 0.0348 0.0233 1.1618 1.1535 1.1576
50T,l5 0.0083 0.0473 0.0302 0.0339 0.0240 1.1618 1.1535 1.1576

100T,l1 0.0000 0.0303 0.0235 0.0265 0.0220 1.1579 1.1585 1.1579
100T,l2 0.0000 0.0357 0.0278 0.0292 0.0247 1.1579 1.1585 1.1579
100T,l3 0.0000 0.0372 0.0288 0.0312 0.0262 1.1579 1.1585 1.1579
100T,l4 0.0000 0.0403 0.0294 0.0345 0.0303 1.1579 1.1585 1.1579
100T,l5 0.0000 0.0426 0.0327 0.0372 0.0292 1.1579 1.1585 1.1579

Notes: See notes to Table 1.
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Table 9: Distributional Accuracy Tests Based on the Comparison of Historical and
Simulated πt and πt−1: Price and Information Stickiness (θ = 0.5)

S, l Z Crit. val. (Z∗∗) Crit. val. (Z∗) CS Distributional Loss

5% 10% 5% 10% sp spi si

5T,l1 -0.0105 0.1598 0.1156 0.1005 0.0769 1.2548 1.2653 1.2676
5T,l2 -0.0105 0.1858 0.1303 0.1056 0.0782 1.2548 1.2653 1.2676
5T,l3 -0.0105 0.2096 0.1372 0.1164 0.0898 1.2548 1.2653 1.2676
5T,l4 -0.0105 0.2065 0.1477 0.1288 0.0921 1.2548 1.2653 1.2676
5T,l5 -0.0105 0.2209 0.1536 0.1464 0.1009 1.2548 1.2653 1.2676

10T,l1 -0.0008 0.1077 0.0750 0.0666 0.0460 1.2631 1.2639 1.2713
10T,l2 -0.0008 0.1037 0.0816 0.0763 0.0515 1.2631 1.2639 1.2713
10T,l3 -0.0008 0.1106 0.0885 0.0766 0.0559 1.2631 1.2639 1.2713
10T,l4 -0.0008 0.1380 0.0932 0.0910 0.0602 1.2631 1.2639 1.2713
10T,l5 -0.0008 0.1589 0.1080 0.1008 0.0745 1.2631 1.2639 1.2713
20T,l1 -0.0038 0.0581 0.0452 0.0425 0.0270 1.2608 1.2646 1.2660
20T,l2 -0.0038 0.0773 0.0502 0.0488 0.0332 1.2608 1.2646 1.2660
20T,l3 -0.0038 0.0888 0.0578 0.0518 0.0353 1.2608 1.2646 1.2660
20T,l4 -0.0038 0.0883 0.0593 0.0664 0.0402 1.2608 1.2646 1.2660
20T,l5 -0.0038 0.1036 0.0750 0.0730 0.0476 1.2608 1.2646 1.2660
30T,l1 -0.0016 0.0409 0.0275 0.0286 0.0156 1.2657 1.2673 1.2673
30T,l2 -0.0016 0.0634 0.0391 0.0382 0.0239 1.2657 1.2673 1.2673
30T,l3 -0.0016 0.0659 0.0369 0.0418 0.0300 1.2657 1.2673 1.2673
30T,l4 -0.0016 0.0767 0.0509 0.0483 0.0336 1.2657 1.2673 1.2673
30T,l5 -0.0016 0.0830 0.0587 0.0564 0.0418 1.2657 1.2673 1.2673
50T,l1 0.0006 0.0319 0.0212 0.0208 0.0102 1.2656 1.2650 1.2668
50T,l2 0.0006 0.0403 0.0272 0.0322 0.0172 1.2656 1.2650 1.2668
50T,l3 0.0006 0.0476 0.0268 0.0342 0.0194 1.2656 1.2650 1.2668
50T,l4 0.0006 0.0560 0.0352 0.0423 0.0253 1.2656 1.2650 1.2668
50T,l5 0.0006 0.0584 0.0435 0.0448 0.0284 1.2656 1.2650 1.2668

100T,l1 0.0067 0.0146 0.0061 0.0123 0.0035 1.2687 1.2653 1.2620
100T,l2 0.0067 0.0295 0.0119 0.0219 0.0064 1.2687 1.2653 1.2620
100T,l3 0.0067 0.0253 0.0130 0.0235 0.0110 1.2687 1.2653 1.2620
100T,l4 0.0067 0.0360 0.0197 0.0304 0.0163 1.2687 1.2653 1.2620
100T,l5 0.0067 0.0465 0.0261 0.0440 0.0226 1.2687 1.2653 1.2620

Notes: See notes to Table 1.
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Table 10: Distributional Accuracy Tests Based on the Comparison of Historical and
Simulated ygt and ygt−1: Price and Information Stickiness (θ = 0.5)

S, l Z Crit. val. (Z∗∗) Crit. val. (Z∗) CS Distributional Loss

5% 10% 5% 10% sp spi si

5T,l1 0.0200 0.0598 0.0462 0.0430 0.0351 1.1362 1.1224 1.1162
5T,l2 0.0200 0.0682 0.0511 0.0508 0.0375 1.1362 1.1224 1.1162
5T,l3 0.0200 0.0681 0.0498 0.0488 0.0395 1.1362 1.1224 1.1162
5T,l4 0.0200 0.0706 0.0535 0.0443 0.0350 1.1362 1.1224 1.1162
5T,l5 0.0200 0.0691 0.0507 0.0420 0.0339 1.1362 1.1224 1.1162

10T,l1 0.0026 0.0618 0.0492 0.0470 0.0371 1.1195 1.1169 1.1177
10T,l2 0.0026 0.0618 0.0509 0.0486 0.0404 1.1195 1.1169 1.1177
10T,l3 0.0026 0.0567 0.0445 0.0491 0.0375 1.1195 1.1169 1.1177
10T,l4 0.0026 0.0545 0.0462 0.0450 0.0367 1.1195 1.1169 1.1177
10T,l5 0.0026 0.0557 0.0435 0.0433 0.0373 1.1195 1.1169 1.1177
20T,l1 0.0027 0.0478 0.0395 0.0375 0.0320 1.1193 1.1165 1.1191
20T,l2 0.0027 0.0475 0.0394 0.0398 0.0336 1.1193 1.1165 1.1191
20T,l3 0.0027 0.0499 0.0405 0.0410 0.0333 1.1193 1.1165 1.1191
20T,l4 0.0027 0.0478 0.0392 0.0381 0.0330 1.1193 1.1165 1.1191
20T,l5 0.0027 0.0450 0.0380 0.0359 0.0318 1.1193 1.1165 1.1191
30T,l1 0.0005 0.0404 0.0351 0.0354 0.0306 1.1168 1.1162 1.1189
30T,l2 0.0005 0.0438 0.0362 0.0368 0.0317 1.1168 1.1162 1.1189
30T,l3 0.0005 0.0449 0.0362 0.0374 0.0327 1.1168 1.1162 1.1189
30T,l4 0.0005 0.0434 0.0366 0.0369 0.0314 1.1168 1.1162 1.1189
30T,l5 0.0005 0.0396 0.0356 0.0345 0.0300 1.1168 1.1162 1.1189
50T,l1 -0.0014 0.0393 0.0344 0.0339 0.0304 1.1154 1.1168 1.1180
50T,l2 -0.0014 0.0422 0.0352 0.0364 0.0317 1.1154 1.1168 1.1180
50T,l3 -0.0014 0.0417 0.0356 0.0367 0.0329 1.1154 1.1168 1.1180
50T,l4 -0.0014 0.0401 0.0339 0.0347 0.0310 1.1154 1.1168 1.1180
50T,l5 -0.0014 0.0375 0.0334 0.0333 0.0311 1.1154 1.1168 1.1180

100T,l1 -0.0040 0.0375 0.0344 0.0340 0.0318 1.1140 1.1185 1.1180
100T,l2 -0.0040 0.0375 0.0343 0.0356 0.0325 1.1140 1.1185 1.1180
100T,l3 -0.0040 0.0403 0.0353 0.0361 0.0325 1.1140 1.1185 1.1180
100T,l4 -0.0040 0.0390 0.0342 0.0348 0.0316 1.1140 1.1185 1.1180
100T,l5 -0.0040 0.0379 0.0331 0.0335 0.0315 1.1140 1.1185 1.1180

Notes: See notes to Table 1.
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Figure 1: Historical Inflation and the Output Gap
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Notes: Historical data are for the period 1964:1 - 2003:4. Adjusted data correspond to the data simulated using the

three alternative models, and are thus “de-meaned”. The output gap is constructed using H-P filter.
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Figure 2: Response to Anticipated Permanent Money Supply Shock
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Notes: The size of the shock is equal to 0.025.
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Figure 3: Maximum Response of the Output Gap to Anticipated Money Supply Shock:
Sticky Price Model
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B. Change in η and Anticipation Period
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Notes: Graph A represent how maximum of the output gap response to anticipated money supply shock changes as

interest rate semi-elasticity of money demand, η, and persistence of money shock, ρm, change. Graph B represents

how maximum response of the output gap changes as η and anticipation period, k, change. All other parameter

values at our baseline calibration. For example the maximum of the response to anticipated 8 quarters ahead (k = 8)

permanent shock (ρm = 1) with other parameters at baseline values (e.g. η = 1), Figure 2, is in the upper left corner

of the Graph A.
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Figure 4: Impulse Response to Contractionary Money Supply Shocks
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Notes: The size of the shock is equal to one standard deviation, σm = 0.007
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Figure 5: Impulse Response to Contractionary Technology Shocks
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Notes: The size of the shock is equal to one standard deviation, σa = 0.007.
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Figure 6: Historical and Simulated Empirical Distributions of Inflation and the Output
Gap
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Notes: See notes to Table 4. Plots of distributions corresponding to those used in the statistical comparison of the

sticky price, sticky price with indexation, and sticky information models are given for πt and yg
t .
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Figure 7: Historical and Simulated Empirical Densities of Inflation and the Output Gap
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Notes: See notes to Figure 6.

50


