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1 Summary of Results

¥ Financial assets are typically modelled as diffusion

processes: hedging strategies, pricing of bonds, deriv-

ative assets, etc.

¥ Simulation based framework for constructing con-

ditional distributions for multi factor diffusion models.

¥ Functional form of conditional distribution unknown.

¥ KS type specification tests with patametric rate.

¥ Empirical process version of block bootstrap.

¥ Model selection prediction type tests, misspecified

models allowed for.

¥ Allow for jumps, multiple factors under null.

¥ Recursive bootstrap, recentering, and results on re-
cursive SGMM and NPQML estimators.



¥ VT = supu×v∈U×V |VT (u, v)|

VT (u, v) =
1

(T − τ)1/2
·

T−τX
t=1

⎛⎝1
S

SX
s=1

1

(
X
bθT,N,h
s,t+τ ≤ u

)
− 1{Xt+τ ≤ u}

⎞⎠ 1 {Xt ≤ v} ,

where U and V are compact sets on the real line.

¥

Dk,P,N(u) =
1

P 1/2

T−τX
t=R⎛⎜⎝

⎡⎣ 1
N

NX
i=1

1

(
X
bϑ1,t,N,h
1,t+τ,i (Xt) ≤ u

)
−1{Xt+τ ≤ u}

⎤⎦2

−
⎡⎣ 1
N

NX
i=1

1

(
X
bϑk,t,N,h
k,t+τ,i (Xt) ≤ u

)
−1{Xt+τ ≤ u}

⎤⎦2
⎞⎟⎠ ,

or

DMax
k,P,N(u) = max

k=2,...,m
Dk,P,N(u)



2 Introduction and Overview

¥ There has been much focus on testing for correct

specification of diffusions, particularly since the key

paper by Äıt-Sahalia (1996), who compares marginal

density implied by joint specification of drift and vari-

ance with nonparametric density.

¥ Compare empirical (marginal or joint) distribution

with corresponding distribution implied by the model

(Corradi and Swanson (2005))

¥ No power against alternatives with same marginal

(or joint). Need to test for correct specification of

transition function.

¥ If transition density known in closed form, can use

the probability integral trasform approach of Diebold,

Gunther and Tai (1998), Kolmogorov test of Bai (2003),

Cross-spectrum approach of Hong (2001), Hong and



Li (2005), Comparison of empirical and model based

characteristic functions Hong and Chen (2005).

¥ Often the transition density of a diffusion is not

known in closed form. Compare conditional density

of simulated and historical data (Altissimo and Mele,

(2005)), compare conditional distributions of simu-

lated and historical data (current papers). Approxi-

mation of closed form of transition density via Her-

mite polynomial (Äıt-Sahalia (2002) and Äıt-Sahalia,

Fan and Peng (2005)).

¥ Models are approximations of reality and are likely

to be misspecified.

¥ In contrast to specification testing, in several cir-

cumstances such as risk management and value at risk

assessment, interest may lie in predictive densities and

predictive intervals.



¥¥Summary of Some Related Papers:

* probability integral transform approach: Diebold,

Gunther and Tay (1998)

* cross spectrum approach: Hong (2001), Hong

and Li (2005), Hong, Li and Zhao (2004)

* martingalization/Kolmogorov test approach: Bai

(2003)

* normality transformation approach: Bontemps

and Meddahi (2005,2006) and Duan (2004)

* CDF approach: Corradi and Swanson (2005)

* DSGE models: Corradi and Swanson (2007)

* unknown transition density approach: Altissimo

and Mele (2002, 2005), and Thompson (2004)

* closed form transition density approximation

approach: Äıt-Sahalia (1999, 2002)



¥¥ Objectives:

* methodology that can be used for:

Part (i) in-sample specification testing based

on conditional distributions and confidence intervals;

and

Part (ii) out-of-sample model selection based

on predictive densities and confidence intervals

* applicable to multi-factor and multi-dimensional

diffusion processes

* simulation and bootstrap critical value con-

struction that is computationally simple

* functional form of conditional distributions as-

sumed unkown; drawing on notion that all models are

approximations of reality and likely to be misspecified



¥ Part (i): Simulation based conditional Kolmogorov

type test of correct specification for cases where form

of conditional density is unkown, given parameter es-

timation error.

* power against larger class of alternatives than

Äıt-Sahalia (1996) and Corradi and Swanson (2005)

* first order asymptotically valid bootstrap criti-

cal values

¥ Part (ii): Simulation based test for comparison of

multiple possibly misspecified diffusion processes via

examination of predictive performance.

* accuracy defined in terms of distributional gen-

eralization of mean square forecast error

* empirical evidence supports the presence of jumps

in asset prices - need to allow for jump components

in returns



* while there is some debate on whether short-

term rates evolve as one-factor or stochastic volatility

models, there is widespread consensus that stock re-

turns are better modeled as stochastic volatility processes;

hence need to allow for unobservable factors

* prediction approach requires using recursively

estimated parameters and simulating P − τ processes

of length τ, using observed values τ periods ago as

initial values

* for stochastic volatility models, initial values of

volatility not observed - hence start the process over

large number of random volatilities and average over

them

* with empirical predictive as well as historical

data distributions, consider pairwise (DM type tests),

and multiple model (White reality check) type tests

* limiting distribution of statistics reflect contri-

bution of recursively estimated parameters



* appropriate recentering for bootstrap estima-

tors and statistics - establish first order validity of the

bootstrap statistics

* as by-product, establish consistency and as-

ymptotic normality of non-parametric simulated MLE

(Fermanian and Salanie 2004, Kristensen and Shin

2006), and of (exactly identified) simulated GMM in

a recursive setting under misspecification; and estab-

lish first order validity of their bootstrap counterparts



¥¥¥ Supplementary Discussion on Specification Test-

ing

¥ There are many tests for the null of correct spec-

ification of a given model (problem of sequential KS

testing).

¥¥ Probability Integral Transform - Rosenblatt (1952)

and Diebold, Gunther and Tay (1998).

¥ Zt−1 = (yt−1 , ..., yt−v ,Xt , ...,Xt−w ) , v,w

finite, Xt vector valued

¥ F (yt |Zt−1 , θ0 ) =
R yt−∞ ft (y|Zt−1 , θ0 )dy, is

an iid uniform RV on [0, 1]



¥¥ DGT: difference between the empirical distribu-

tion of Ft (yt |Zt−1 ,cθT ) and the 45◦ − degree

line

¥

H0 : Pr (yt ≤ y|=t−1 , θ0 ) = Ft (y|=t−1 , θ0 ),
HA : the negation of H0,

¥ Compare Ft (y|=t−1 , θ0 ) with CDF of uniform
RV on [0, 1] ; differentiability; nonstationarity; Zt−1
contains all useful info in =t−1;

¥ use cUt = F (yt |Zt−1 ,cθT )
bVT (r) = 1

T 1/2
P³

1{ bUt≤ r}− r
´

V1T =sup r∈[0,1] | bV1T (r)|



¥ Many related tests have power against violations

of uniformity, but not independence (see e.g. Bai

(2003), Diebold, Hahn and Tay (1999), Hong (2001)

and Hong and Li (2003) for Kolmogorov-Smirnov ver-

sions of this which compare distributions against uni-

formity).

¥ A crucial feature of most specification (and pre-

dictive accuracy) tests is the following:

Assume correct specification under the null hypoth-

esis; so that actually look at the difference between

the empirical distribution of Ft(yt|=t−1, bθT ) and the
45◦−degree line (i.e. the CDF of a uniform on [0,1])

as a measure of “goodness of fit”. But how to define

=t−1 (the information set containing all “relevant”
past information).



¥¥ Kolmogorov-Smirnov and Related Statistics

¥ Empirical Distribution Function - a natural estima-

tor for F which is unbiased, consistent, and asymp-

totically normal

¥ FT (y) = T−1 PT
t=1 1{yt ≤ y}

¥ Cramer - von Mises Discrepancy Measure [Cramer

(1938, 1946), von Mises (1947)]:

¥ T
R
(FT −F )2 dF

¥ Kolmogorov - Smirnov Discrepancy Measure [Kol-

mogorov (1933), Smirnov (1939)]:

¥ T 1/2||FT−F ||∞= supxT
1/2|FT (y)− F (y)|



¥ Glivenko-Cantelli uniform convergence [Glivenko

(1933), Cantelli (1933)]:

¥ ||FT −F ||∞ →a.s. 0

¥ Donsker uniform or functional CLT (iid data) [Donsker

(1952)]:

¥ T 1/2(FT−F ) converges to a Gaussian process,

and in particular to a Brownian bridge limit process

¥ Modified Kolmogorov-Smirnov Statistic

¥ T 1/2||FT−Fbθ||∞
¥ Convergence in distribution to the supremum of

a Gaussian process - limit distribution may depend

on the model F , the estimator cθ , and even the
parameter value θ



¥¥ The Kulback-Leibler Information Criterion [White

(1982), Vuong (1989), Giacomini (2002), Kitamura

(2002)]:

¥ Choose model which minimizes KLIC; choose model

1 over 2 if

E(log f1 (Y t |Zt , θ
†
1 )− log f2 (Y t |Zt , θ

†
2 )) > 0.

¥ The KLIC has been recently employed for the eval-

uation of DSGE models (see e.g. Schorfheide (2000),

Fernandez-Villaverde and Rubio-Ramirez (2004), and

Chang, Gomes and Schorfheide (2002)).

¥ Our measures of distributional accuracy are in-

tended as complements to the KLIC, although evalu-

ation of conditional confidence intervals may be diffi-

cult to address using the KLIC, and we shall also use

a probability mass weighting function.



¥¥ Information Sets and Critical Values

¥ Limit distribution of KS tests affected by dynamic

misspecification. Critical values derived under cor-

rect specification given =t−1 are not in general valid
in the case of correct specification given a subset of

=t−1 . Many authors use Zt−1, and assume that

Zt−1 ≡ =t−1.

¥ Assume interested in testing whether yt |yt−1 is

N(α†1 yt−1 , σ1 )

¥ Suppose =t−1 includes yt−1 and yt−2 : true
cond model is

yt |=t−1 = yt |yt−1 , yt−2 = N(α1 yt−1 +α2 yt−2 , σ2 )



¥ Then, α
†
1 differs from α1 and correct spec-

ification holds wrt information in yt−1 ; but there
is dynamic misspecification with respect to yt−1 ,
yt−2.

¥ Even without taking account of PEE, CVs obtained

assuming correct dynamic specification are invalid.

¥ Stated differently, tests that are designed to have

power against both uniformity and independence vio-

lations (i.e. tests that assume correct dynamic speci-

fication under H0 ) will reject; an inference which is

incorrect, at least in the sense that the “normality”

assumption is not false (uniformity still holds, but

independence does not -> rejection of model)



¥¥ Comparison of Many Models [White (2000), Cor-

radi and Swanson (2003)]:

¥ Need mean square error and other measures of

distributional discrepancy

¥ Issues of sequential test bias, allowance for mis-

specification, alternative methods to construct CVs

are all relevant



¥ Many (possibly) misspecified conditional distribu-

tions,

F 1 (u|Zt , θ
†
1 ), ..., Fm (u|Zt , θ

†
m ),

and true conditional distribution,

F0 (u|Zt , θ0 ) = Pr(Y t+1 ≤ u|Zt )

¥ One accuracy measure; average over u ∈ U , or use

interval based on ulow, uup of the following moment:

¥ E
µ³

Fj (u|Zt+1 , θ
†
i )− F 0 (u|Zt+1 , θ0 )

´2¶



3 Setup & Simulation Methods

¥ Consider m jump diffusions for Xt, k = 1, ...,m:

Xt =
Z t

0
bk(X(s), θ

†
k)ds− λkt

Z
Y
yφk(y)dy

+
Z t

0
σk(X(s), θ

†
k)dW (s) +

JtX
j=1

yk,j

dX(t) =
³
bk(X(t), θ

†
k)− λkμy,k

´
dt

+σk(X(t), θ
†
k)dW (t) +

Z
Y
yp(dy, dt),

p(dy, dt) a random Poisson measure giving point mass

at y if a jump occurs in the interval dt.

¥ Jt a Poisson process with state-independent fi-

nite intensity parameter λk; yk,j the state indepen-

dent jump size - iid with marginal density φk.



¥ Jt, yk,j independent of the driving Brownian mo-

tion,Wt. Also, μy,k =
R
Y yφk(y)dy denotes the mean

jump size under model k. The case of no jumps is that

of Jt = 0 for all t, and λk = 0.

¥ Let ϑk = (θk, λk, μy,k)

¥ Correct specification test (no jumps):

dX(t) = b0(X(t), θ0)dt+ σ0(X(t), θ0)dW (t)

bk(·, ·) = b0(·, ·) and σk(·, ·) = σ0(·, ·)

¥ Our target: Fτ
0 (u|Xt, ϑ0) = Pr(Xt+τ ≤ u|Xt, ϑ0)

¥ ( i.e. want to estimate the probability that Xt+τ ≤
u given that today we observe Xt)



¥ For prediction type tests, accuracy measure:

E
µ³
Fτ
1 (u|Xt, ϑ

†
1)− Fτ

0 (u|Xt, ϑ0)
´2¶

≤ E
µ³
Fτ
k (u|Xt, ϑ

†
k)− Fτ

0 (u|Xt, ϑ0)
´2¶

¥ Replace Fτ
0 (u|Xt, ϑ0) with 1 {Xt+τ ≤ u} (unbi-

ased, consistent, asymptotically normal - Donsker).

¥ Replace Fτ
k (u|Xt, ϑ

†
k) with 1

(
X
ϑ
†
k

k,t+τ(Xt) ≤ u

)
,

where X
ϑ
†
k

k,t+τ is the process simulated under model k

and initiated τ periods before at Xt. Also, as ϑ
†
k is

unknown should be replaced with an estimator (con-

sistent for Fτ
k in general, and for Fτ

0 under correct

specification).



¥ Using a Milstein scheme, simulate paths of length

N :

X
ϑk
qh −X

ϑk
(q−1)h = bk(X

θk
(q−1)h, θk)h+ σk(X

θk
(q−1)h, θk)�qh

−1
2
σk(X

θk
(q−1)h, θk)

0σk(X
θk
(q−1)h, θk)h

+
1

2
σk(X

θk
(q−1)h, θk)

0σk(X
θk
(q−1)h, θk)�

2
qh

−λkμy,kh+
JkX
j=1

yk1
n
(q − 1)h ≤ Uj ≤ qh

o

�qh
iid∼ N(0, h), q = 1, . . . , Q, with Qh = N. Use

X1,...Xt, t = R, ..., R+P −1 and Xϑk
k,j,h j = 1, ..., N

to obtain an estimator bϑk,t,N,h.



¥ We can now use bϑk,t,N,h to simulate paths un-

der model k. To begin, generate X
bϑk,t,N,h
k,t+τ,i (Xt), i =

1, ..., N , for t = R, ..., P +R− τ using at each repli-

cation i, the same set of randomly drawn errors and

the same draws for number of jumps, jump times and

jumps size, across t. Thus, only starting values used

to initialize simulations change. Overall we simulate

(P−τ)×N paths of length τ.(The effect of the start-

ing value approaches zero at an exponential rate, as

τ →∞.)

¥ Construct the empirical distribution of the simu-

lated data, 1N
PN
i=1 1

(
X
bϑk,t,N,h
k,t+τ,i (Xt) ≤ u

)
.

¥ Under mild regularity conditions get consistency

1

N

NX
i=1

1

(
X
bϑk,t,N,h
k,t+τ,i (Xt) ≤ u

)
pr→ Fτ

k (u|Xt, ϑ
†
k)

for t = R, ..., T − τ



¥ Assumptions: X(t), t ∈ <+, is a strictly station-
ary, geometric ergodic β−mixing diffusion, moments
on jump component, smoothness of drift and variance.

For any fixed h and ϑk ∈ Θk, X
ϑk
qh is geometrically

ergodic and strictly stationary, smoothness and dom-

ination condition for X
ϑk
qh uniformly on Θk. Also, as

P,R,N →∞ and h→ 0, up to an oP (1) term

1

P 1/2

T−1X
t=R

³bϑk,t,N,h − ϑ
†
k

´
= A

†
k

1

P 1/2

T−1X
t=R

ψk,t,N,h

³
ϑ
†
k

´
1

P 1/2
PT−1
t=R ψk,t,N,h

³
ϑ
†
k

´
d→ N

³
0, V †k

´
.



4 Specification Testing

¥

H0 : F (u|Xt, θ
†) = F0(u|Xt, θ0), for all u, a.s.

HA : Pr
³
F (u|Xt, θ

†)− F0(u|Xt, θ0) 6= 0
´
> 0, for

some u, with non-zero Lebesgue measure.

¥ Null coincides with correct specification of the con-

ditional distribution, and is implied by correct specifi-

cation of drift and variance terms used in simulating

the paths.



¥ Test statistic:

VT = sup
u×v∈U×V

|VT (u, v)|

VT (u, v) =
1

(T − τ)1/2
·

T−τX
t=1

⎛⎝1
S

SX
s=1

1

(
X
bθT,N,h
s,t+τ ≤ u

)
− 1{Xt+τ ≤ u}

⎞⎠ 1 {Xt ≤ v} ,

where U and V are compact sets on the real line.

Theorem: Let Assumptions A and B hold. Assume

that T,N, S → ∞. Then, if h → 0, T/N → 0,

T/S → 0, T 2/S → ∞, Nh → 0, and h2T → 0, the

following result holds under H0 :

VT
d→ sup

u×v∈U×V
|Z(u, v)|,

where Z(u, v) is a Gaussian process with covariance

kernel K(u, u0, v, v0).



¥ Critical Values:

Step 1: At each replication, draw b blocks (with re-
placement) of length l, where bl = T . Thus, each
block is equal toXi+1, ...,Xi+l, for some i = 0, ..., T−
l+1, with probability 1/(T − l+1). More formally, let
Ik, k = 1, ..., b be iid discrete uniform random vari-
ables on [0, 1, ..., T − l+ 1]. Then, the resampled se-
ries, X∗t is such that X∗1 ,X∗2 , ...,X∗l , X∗l+1, ...,X∗T =
XI1+1,XI1+2, ...,XI1+l, XI2, ...,XIb+l

, and so a re-
sampled series consists of b blocks that are discrete
iid uniform random variables, conditional on the sam-
ple. Use these data to construct bθ∗T,N,h. (note, e.g.
as N/T → ∞, GMM and SGMM are asymptotically
equivalent).

Step 2: Using the same set of random errors used
in the construction of the actual statistic, construct

X
bθ∗T,N,h
s,t+τ,∗, s = 1, ..., S, and t = 1, ..., T − τ . Note that

we do not resample the simulated series (as S/T →
∞, simulation error is asymptotically negligible). In-
stead, simply simulate the series using bootstrap esti-
mators and using bootstrapped values as starting val-
ues.



Step 3: Construct the following bootstrap statistic,

which is the bootstrap counterpart of VT :

V ∗T = sup
u×v∈U×V

|V ∗T (u, v)| ,

where

V ∗T (u, v) =
1

(T − τ)1/2
·

T−τX
t=1

⎛⎝1
S

SX
s=1

1

(
X
bθ∗T,N,h
s,t+τ,∗ ≤ u

)
− 1{X∗t+τ ≤ u}

⎞⎠ 1 {X∗t ≤ v}

− 1

(T − τ)1/2
·

T−τX
t=1

⎛⎝1
S

SX
s=1

1

(
X
bθT,N,h
s,t+τ ≤ u

)
− 1{Xt+τ ≤ u}

⎞⎠ 1 {Xt ≤ v}

Step 4: Repeat Steps 1-3 B times, and generate the

empirical distribution of the B bootstrap statistics.



Theorem: Let Assumptions A and B hold. Assume

that T,N, S → ∞. Then, if h → 0, T/N → 0,

T/S → 0, T 2/S → ∞, Nh → 0, h2T → 0, l → ∞,

and l2/T → 0, the following result holds:

P

"
ω : sup

x∈<
|P ∗ (V ∗T (ω) ≤ x)− P ((VT −E(VT )) ≤ x)| > ε

#

→ 0,

where P ∗ denotes the probability law of the resampled
series, conditional on the sample.



¥ Extension: Stochastic Volatility Models

¥ Use a generalized Milstein scheme rather than

simple approximation scheme.

¥

Step 1: Simulate a path of length N using the scheme

and estimate θ by SGMM. Also, retrieve V
bθT,N,h
kh , for

k = 1/h, ..., N/h, and hence obtain V
bθT,N,h
j,h , j =

1, ..., N (i.e. we sample the simulated volatility at

the same frequency as the data).



Step 2: Simulate S×N paths of length τ, setting the

initial value for the observable state variable to be Xt.

As we do not observe data on volatility, use the val-

ues simulated in the previous step as the initial value

for the volatility process (i.e. as initial values for un-

observable state variable, use V
bθT,N,h
j,h , j = 1, ..., N).

Also, keep the simulated randomness (i.e. �1,kh, �2,kh,R (k+1)h
kh

³R s
kh dW1,τ

´
dW2,s) constant across j (i.e. con-

stant across the different starting values for the unob-

servable and observable state variable). DefineX
bθT,N,h
j,s,t+τ

to be the simulated τ−step ahead value for the return
series at replication s, and using initial values Xt and

V
bθT,N,h
j,h .

Step 3: As an estimator of F (u|Xt, θ
†), construct

1
NS

PN
j=1

PS
s=1 1

(
X
bθT,N,h
j,s,t+τ ≤ u

)
. Note that, by av-

eraging over the initial value of the volatility process,

we have integrated out its effect.



Step 4: Construct the statistic of interest:

SVT = sup
u×v∈U×V

|SVT (u, v)| ,

where

SVT (u, v) =
1

(T − τ)1/2
·

T−τX
t=1

⎛⎝ 1

NS

NX
j=1

SX
s=1

1

(
X
bθT,N,h
j,s,t+τ ≤ u

)

−1{Xt+τ ≤ u}) 1 {Xt ≤ v}

¥ All above results generalize to this setting.



¥ Critical Values:

Resample as above (no need to resample V θ
h,j). Then

form bootstrap statistic:

SV ∗T = sup
u×v∈U×V

|SV ∗T (u, v)| ,

SV ∗T (u, v) =
1

(T − τ)1/2
·
T−τX
t=1

[(
1

NS

NX
j=1

SX
s=1

1

(
X
bθ∗i,T,N,h
j,s,t+τ,∗ ≤ u

)

−1{X∗t+τ ≤ u}
´
1 {X∗t ≤ v}]

−[( 1
NS

NX
j=1

SX
s=1

1

(
X
bθi,T,N,h
j,s,t+τ ≤ u

)
−1{Xt+τ ≤ u}) 1 {Xt ≤ v}],

where X
bθ∗i,T,N,h
j,s,t+τ,∗ is the simulated value at simulation

s, constructed using bθ∗i,T,N,h and using as initial value

X∗t and V
bθ∗i,T,N,h
j,h .



5 Predictive Density Tests

¥ For notational simplicity, set u1 = −∞, u2 = u.

¥

H0 : EX

³
Fτ
1 (u|Xt, ϑ

†
1)(u)− Fτ

0 (u|Xt)
´2

−EX

³
Fτ
k (u|Xt, ϑ

†
k)− Fτ

0 (u|Xt)
´2
= 0

or

H0 : max
k=2,...,m

µ
EX

³
Fτ
1 (u|Xt, ϑ

†
1)− Fτ

0 (u|Xt)
´2

−EX

³
Fτ
k (u|Xt, ϑ

†
k)− Fτ

0 (u|Xt)
´2¶ ≤ 0

versus HA : negation of H0.



¥ Test statistics:

Dk,P,N(u) =
1

P 1/2

T−τX
t=R⎛⎜⎝

⎡⎣ 1
N

NX
i=1

1

(
X
bϑ1,t,N,h
1,t+τ,i (Xt) ≤ u

)
−1{Xt+τ ≤ u}

⎤⎦2

−
⎡⎣ 1
N

NX
i=1

1

(
X
bϑk,t,N,h
k,t+τ,i (Xt) ≤ u

)
−1{Xt+τ ≤ u}

⎤⎦2
⎞⎟⎠ ,

or

DMax
k,P,N(u) = max

k=2,...,m
Dk,P,N(u)

Theorem: Let Assumptions A1-A4 hold. Also as-
sume that models 1 and k are nonnested. If as P,R,N →
∞, h→ 0, P/N → 0, h2P → 0, and P/R→ π, 0 <

π <∞, then under H0, Dk,P,N(u)
d→ N(0,Wk(u)),

and under HA,
¯̄̄
Dk,P,N(u)

¯̄̄
diverges at rate P 1/2.

Theorem: Let Assumptions A1-A4 hold. Also as-
sume that models 1 and k are nonnested. If as P,R,N →



∞, h → 0, P/N → 0, h2P → 0, and P/R → π,
0 < π <∞, then:

maxk=2,..,m
³
Dk,P,N(u)− (μ1(u)− μk(u))

´
d→ maxk=2,...,m Zk(u1, u2),

μj(u) = E

⎛⎜⎜⎝
⎛⎜⎝F

X
ϑ
†
1
1,t+τ(Xt)

(u)− F0(u|Xt)

⎞⎟⎠
2
⎞⎟⎟⎠ ,

where (Z1(u), ..., Zm(u)) is am−dimensional Gaussian
vector with covariance matrix with kk element given
by Wk(u).

¥ The covariance matrix Wk(u) reflects the contri-
bution of recursive parameter estimation error, cap-
tured by 1

P 1/2
PT
t=R

³bϑk,t,N,h − ϑ
†
k

´
. Hence, the lim-

iting distribution is not nuisance parameter free and
we need to rely on bootstrap critical values.

¥ Need bootstrap procedure able to mimic the limit-
ing distribution of 1

P 1/2
PT
t=R

³bϑk,t,N,h − ϑ
†
k

´
.



¥ Critical Values:

¥ In the recursive case, observations at the beginning
of the sample are used more frequently than obser-

vations at the end of the sample. This introduces

a location bias to the usual block bootstrap. Also,

the bias term varies across samples and can be either

positive or negative.

¥ Corradi and Swanson (2007): {boostrapm−estimators
for recursive schemes} address the issue of bootstrap-
ping SGMM estimators in a recursive setting.

¥ Resample b blocks of length l from the full sample,

with lb = T. For any given τ, we need to jointly re-

sample Xt,Xt+1, ...,Xt+τ . More precisely, let Z
t,τ =

(Xt,Xt+1, ...,Xt+τ), t = 1, ..., T − τ, we resample b

overlapping blocks of length l from Zt,τ . This yields

Zt,∗ = (X∗t ,X∗t+1, ...,X∗t+τ), t = 1, ..., T − τ. Use

these data to construct bθ∗k,t,N,h.



¥ Assume that 1
P 1/2

PT
t=R

³bϑ∗k,t,N,h − bϑk,t,N,h

´
has

the same limiting distribution as 1
P 1/2

PT
t=R

³bϑk,t,N,h − ϑ
†
k

´
,

conditional on sample.

¥ Note that we used recentering around sample mean
calculated over full sample. This ensures that

E∗
³
G∗k,t,N,h(

bθk,t,N,h)
´
= O(l/T ) (e.g. bootstrap

moment conditions used in SGMM have zero mean,

up to negligble terms).

¥ As N/R,N/P →∞, do not need to resample sim-

ulated series. Simulation error asymptotically negligi-

ble.

¥ LetX
bθk,t,N,h
k,t+τ,i(Xt) = XN

k,t+τ ,X
bθ∗k,t,N,h
k,t+τ,i(X

∗
t ) = X

∗,N
k,t+τ ,



X
bθk,t,N,h
k,t+τ,i(Xj) = XN

k,j+τ .

D∗k,P,N(u) =
1

P 1/2

T−τX
t=R

{([ 1
N

NX
i=1

1
n
X
∗,N
1,t+τ ≤ u

o
−1{X∗t+τ ≤ u}

i2
−[ 1

T

TX
j=1

[
1

N

NX
i=1

1
n
XN
1,j+τ ≤ u

o
− 1{Xj+τ ≤ u}]2])

−([ 1
N

NX
i=1

1
n
X
∗,N
k,t+τ ≤ u

o
−1{X∗t+τ ≤ u}

i2
−[ 1

T

TX
j=1

[
1

N

NX
i=1

1
n
XN
k,j+τ ≤ u

o
− 1{Xj+τ ≤ u}]2])}

¥ Note that each bootstrap term is recentered around
the (full) sample mean.

¥ This is necessary as the bootstrap statistic is con-

structed using the last P resampled observations, which

in turn have been resampled from the full sample.



¥ If P/R→ 0, then we do not need to mimic parame-

ter estimation error, and so could simply use bθk,t,N,h

instead of bθ∗k,t,N,h, but we still need to recenter any

bootstrap term around the (full) sample mean.

Theorem: Let Assumptions A1-A5 hold. Also as-

sume that models 1 and k are nonnested. If as P,R,N →
∞, h→ 0, P/N → 0, h2P → 0, l→∞, l/T 1/4→ 0,

and P/R→ π, 0 < π <∞, then:

P
µ
ω : supv∈<(

¯̄̄̄
P ∗T

µ
maxk=2,...,mD∗(·)(u) ≤ v

¶

−P
³
maxk=2,...,m

³
D(·)(u)− [μ1(u)− μk(u)]

´
≤ v

´¯̄̄
> ε

´
→ 0

¥ Boot CV provides test with correct asymptotic size
for least favorable case under H0; μ1(u) − μk(u) =

0, for all k. CVs upper bounds whenever μ1(u) −
μk(u) < 0, for some k.



¥ Extension: Stochastic Volatility Models:

¥ Estimation when the volatility process is not ob-

servable.

¥ Constructing and evaluating predictive densities when
the volatility process is not observable.

¥ In the one-dimensional case, the diffusion process

X(t) can be expressed as a function of the driving

Brownian motionW (t). In the multidimensional case,

X(t) is function of (Wv(t),
R t
0Wv(s)dWw(s), v, w =

1, ...p (Pardoux and Talay (1985)), unless the co-

variance matrix is commutative. Typical stochastic

volatility with leverage are not commutative. In this

case one has to approximate stochastic integral when

simulating the return path, see Kloeden and Platen

(1999).

¥ SGMM does not require conditioning on observ-

ables, thus SGMM for SV models carries through as



in one factor case, matching moments of observables.

Problem with exact identification harder here.

¥ NPSQMLE. For each θk ∈ Θk, simulate N × S ×
T draws for volatility, V

θk
s , s = 1, ..., S, ..., S × T,

using the volatility equation under model k. Then, we

generate S × T paths of length one for the return

process, using observables and V
θk
s as initial values.

Basically, for any initial value Xt we simulate N × S

paths of length one, using V
θk
s , tS ≤ s < (t + 1)S.

Define,

efk,N,S,h (Xt|Xt−1, θk)

=
1

S

St−1X
s=S(t−1)

1

NξN

NX
j0=1

K

⎛⎜⎝Xθk
t,j0(Xt−1, V

θk
s−1)−Xt

ξN

⎞⎟⎠ .

Finally, define for t ≥ R,

eθk,t,N,S,h = arg min
θk∈Θk

1

t

tX
l=2

log efk,N,S,h
¡
Xl|Xl−1, θk

¢
×τN

³ efk,N,S,h
¡
Xl|Xl−1, θk

¢´



¥ Simulate (P −τ)×S×N paths of lenght τ setting

the initial values for the observable state variable equal

to the initial value Xt, t = R+ 1, ..., R+ P − τ and

for each Xt, using the S different starting values for

volatility (i.e. V
bθk,t,N,h
j , j = 1, ..., S). For any initial

value Xt and V
bθk,t,N,h
j , t = R + 1, ..., R + P − τ

and j = 1, ..., S we generate N independent paths of

length τ.

¥We keep the simulated randomness constant across
the different starting values for the unobservable and

observable state variables.

Call X
bθk,t,N,h
k,t+τ,i,j(Xt, V

bθk,t,N,h
j ). the τ−step ahead, sim-

ulated (under model k), value for the return series, at

replication i, i = 1, ..., N using initial values Xt and

V
bθk,t,N,h
j .

¥ As an estimator of F
X
θ
†
k

k,t+τ
(Xt,V

bθk,t,N,h
j

)

(u), construct:



1
NS

PS
j=1

PN
i=1 1

(
X
bθk,t,N,h
k,t+τ,i,j(Xt, V

bθk,t,N,h
k,t,j ) ≤ u

)

¥ By averaging across different starting values for

volatility, while simulated randomness is kept constant

across different starting values for observable and un-

observable, we integrate out the effect of initial volatil-

ity.

DVk,P,S,N(u1, u2) =
1

P 1/2
×

T−τX
t=R

⎛⎝⎛⎝ 1

NS

SX
j=1

NX
i=1

1

(
X
bθ1,t,N,h
1,t+τ,i,j(Xt, V

bθ1,t,N,h
1,j ) ≤ u

)

−1{Xt+τ ≤ u})2

−
⎛⎝ 1

NS

SX
j=1

NX
i=1

1

(
X
bθk,t,N,h
k,t+τ,i,j(Xt, V

bθk,t,N,h
k,j ) ≤ u

)

−1{Xt+τ ≤ u})2
´

Statement in Theorems above apply to DVk,P,S,N(u)

and to its bootstrap counterpart.



6 SGMM and NPSQMLE

¥ Bootstrap SGMM:bϑ∗k,t,N,h = arg min
θk∈Θk

G∗k,t,N,h(ϑk)
0 bΩ∗k,tG∗k,t,N,h(ϑk)

where

G∗k,t,N,h(ϑk)

=
1

t

tX
j=1

⎛⎜⎝
⎛⎜⎝gk(X∗j )− 1

T

TX
j0=1

gk(Xj0)

⎞⎟⎠
−
⎛⎝ 1
N

NX
j=1

gk(X
ϑk
j,h)−

1

N

NX
j=1

gk(X
bϑk,t,N,h
j,h )

⎞⎠⎞⎠

¥ This recentering ensures thatE∗
³
G∗k,t,N,h(

bϑk,t,N,h)
´
=

O(l/T ) (i.e. bootstrap moments conditions have zero
mean, up to negligble term).

As N/R,N/P → ∞, do not need to resample simu-
lated series. Simulation error asymptotically negligi-
ble.



¥ Under mild regularity conditions,

1
P 1/2

PT
t=R

³bϑ∗k,t,N,h − bϑk,t,N,h

´
has the same limiting

distribution as

1
P 1/2

PT
t=R

³bϑk,t,N,h − ϑ
†
k

´
, conditional on sample.

¥ Bootstrap NPSQMLE:

For each simulation replication, generate N × (T −1)
paths of length one, using as starting valuesX∗1 , ...,X∗T−1;
and so obtaining X

ϑk
k,t,j(X

∗
t−1), for t = 2, ..., T − 1,

j = 1, ..., N. Let

ef∗k,N,h

³
X∗t |X∗t−1, ϑk

´
=

1

NξN

NX
j=1

K

⎛⎜⎝Xϑk
t,j,h(X

∗
t−1)−X∗t
ξN

⎞⎟⎠ ,



Define for t = R, ..., R+ P − 1

eϑ∗k,t,N,h = arg max
ϑk∈Θk

1

t

tX
l=2

³
log efk,N,h

³
X∗l |X∗l−1, ϑk

´
×τN

³ efk,N,h

³
X∗l |X∗l−1, ϑk

´´
−ϑ0k

⎛⎝ 1
T

TX
l0=2

∇ϑk
efk,N,h

³
Xl0|Xl0−1, eϑk,t,N,h

´
efk,N,h

³
Xs0|Xt−s0, eϑk,t,N,h

´
×τN

³ efk,N,h

³
Xl0|Xl0−1, eϑk,t,N,h

´´
+τ 0N

³ efk,N,h

³
Xl0|Xl0−1, eϑk,t,N,h

´´
×∇ϑk

efk,N,h

³
Xl0|Xl0−1, eϑk,t,N,h

´
log efk,N,h

³
Xl0|Xl0−1, eϑk,t,N,h

´´´
where τ 0N(·) denotes the derivative with respect to
its argument. Note that each term in the simulated

likelihood is recentered around the (full) sample mean

of the score, evaluated at eϑk,t,N,h. This ensure that

the bootstrap score, conditional on the sample, has

mean zero.



¥ The recentering term requires the knowledge of

∇θk
efk,N,h

³
Xl0|Xl0−1, eϑk,t,N,h

´
, which is not known

in closed form. Nevertheless, it can be computed nu-

merically, simply taking the numerical derivative of

the simulated likelihood.

¥ Under analogous conditions as used above,

1
P 1/2

PT
t=R

³eϑ∗k,t,N,h − bϑk,t,N,h

´
has the same limiting

distribution as

1
P 1/2

PT
t=R

³eϑk,t,N,h − ϑ
‡
k

´
, conditional on sample.



7 Monte Carlo and Empirical Re-

sults

¥ Monte Carlo using the following specification test

statistic

VT (v) =
1

(T − τ)1/2
·
T−τX
t=1

⎛⎝1
S

SX
s=1

1

(
ulow ≤ X

bθT,N,h
s,t+τ ≤ uup

)

− 1{ulow ≤ Xt+τ ≤ uup}) 1 {Xt ≤ v}



¥ Also, constructDMax
k,P,N(u1, u2) andDVMax

k,P,S,N(u1, u2)

in empirical excercises. In our tables, we also re-

port the so-called “predictive density” mean square

forecast errors (PDMSFE) terms in these statistics,

which are constructed using the following formulae:

1

P

T−τX
t=R

(
1

NS

SX
j=1

NX
i=1

1

(
u1 ≤ X

bθ1,t,N,S,h
1,t+τ,i,j (Xt, V

bθ1,t,N,S,h
1,j ) ≤ u2

)

−1{u1 ≤ Xt+τ ≤ u2})2

and

1

P

T−τX
t=R

(
1

N

NX
i=1

1

(
u1 ≤ X

bϑ1,t,N,h
1,t+τ,i (Xt) ≤ u2

)

−1{u1 ≤ Xt+τ ≤ u2})2,



CIR: dX(t) = κ1 (α1 −X(t)) dt+ γ1X
1/2(t)dW1(t),

where κ1 > 0, γ1 > 0 and 2κ1α1 ≥ γ21,

SV: dX(t) = κ2 (α2 −X(t)) dt+V 1/2(t)dW1(t), and

dV (t) = κ3 (α3 − V (t)) dt+γ2V
1/2(t)dW2 (t) , where

W1 (t) andW2 (t) are independent Brownian motions,

and where κ2 > 0, κ3 > 0, γ2 > 0, and 2κ3α3 ≥ γ22.

SVJ: dX(t) = κ4 (α4 −X(t)) dt + V 1/2(t)dW1(t) +

Judqu − Jddqd, and dV (t) = κ5 (α5 − V (t)) dt +

γ3V
1/2(t)dW2 (t) , where Wr (t) and Wv (t) are in-

dependent Brownian motions, and where κ4 > 0,

κ5 > 0, γ3 > 0, and 2κ5α5 ≥ γ23. Further qu and qd
are Poisson processes with jump intensity λu and λd,

and are independent of the Brownian motions W1 (t)

and W2 (t) . Jump sizes are iid and are controlled by

jump magnitudes ζu, ζd > 0, which are drawn from

exponential distributions, with densities: f (Ju) =
1
ζu
exp

³
−Ju
ζu

´
and f (Jd) =

1
ζd
exp

³
−Jd
ζd

´
. Here, λu is

the probability of a jump up, Pr (dqu (t) = 1) = λu,



and jump up size is controlled by Ju; while λd and Jd
control jump down intensity and size.

¥ Specification test experiments calibrated using one-
month Eurodollar deposit rate for the periods January

6, 1971 - April 8, 2005 (1,789 weekly observations)

and January 3, 1990 - April 8, 2005 (798 observa-

tions). Model selection empirics carried out using two

samples of weekly data, one from January 6, 1989 -

December 31, 1998 (526 observations) and one from

January 8, 1999 - April 30, 2008 (491 observations),

chosen arbitrarily. The variable that we model is the

effective (or market) federal funds rate (i.e. the inter-

bank interest rate), measured at the close.



8 Concluding Remarks

¥ Simulation based procedures convenient and easy

to apply.

¥ Block bootstrap generalizes nicely to such cases as

those considered here.

¥ Results useful for in-sample specification tests as

well as in out-of-sample contexts with recursively es-

timated parameters.

¥ Identification remains an issue.



Table 1: Predictive Density Model Selection Test Results

Sample period January 6, 1989 - December 31, 1998

(CIR model is the benchmark, bootstrap block length=5)

τ u1, u2 DMax
k,P,S,N(u1, u2) PDMSFECIR PDMSFESV PDMSFESV J 10% CV

1 X ± 0.5σX 2.82927∗ 5.66205 3.62009 2.83278 1.65848

X ± σX 1.31996 1.58636 0.3691 0.2664 1.64695

2 X ± 0.5σX 1.57134∗ 4.13194 2.62781 2.56061 0.85015

X ± σX 0.53925 0.85434 0.34105 0.31509 0.8354

3 X ± 0.5σX 0.80223∗ 4.26257 3.87959 3.46034 0.20535

X ± σX 1.19189∗ 1.82012 0.93572 0.62823 0.40461

4 X ± 0.5σX 1.23058∗ 4.32896 3.82788 3.09838 0.28591

X ± σX 0.48079∗ 1.02194 0.76792 0.54115 0.28204

5 X ± 0.5σX -0.00077 3.71976 3.72053 3.97788 0.2032

X ± σX 0.18502 1.09725 1.01962 0.91223 0.2164

6 X ± 0.5σX 1.52213∗ 4.949 3.83724 3.42687 0.08187

X ± σX 0.58406∗ 1.63659 1.05253 1.18955 0.12362

12 X ± 0.5σX 0.56293∗ 4.58393 4.37846 4.021 0.03085

X ± σX 0.41295∗ 1.30048 1.5585 0.88753 0.01912

1



(∗) Notes: Numerical entries in the table are test statistics, predicitve density type

PDMSFEs (see Section 7 for further discussion), and associated bootstrap critical val-

ues, constructed using intervals given in the second column of the table, and for predictive

horizons, τ =1, 2, 3, 4, 5, 6, 12. Starred entries denote rejection of the null hypothesis that

the CIR model yields predictive densities at least as accurate as the competitor SV and

SVJ models. Weekly data are used in all estimations, and the sample period across which

predictive densities are constructed is T/2, where T is the sample size. Predictive densities

are constructed using simulations of length S = 10T . Empirical bootstrap distributions are

constructed using 100 bootstrap replications, and critical values are reported for the 95th,

90th, 85th, and 80th percentiles of the bootstrap distribution. X and σX are the mean and

variance of an initial sample of data used in the first in-sample estimation, prior to the con-

struction of the first predictive density (i.e. using T/2 observations). Finally, the predictive

density type “mean square forecast errors” (MSFEs) reported in the fourth through sixth

columns of the table are defined above, and reported entries are multiplied by P 1/2, where

P = T/2 is the ex ante prediction period.

2



Table 2: Predictive Density Model Selection Test Results

Sample period January 6, 1989 - December 31, 1998

(CIR model is the benchmark, bootstrap block length=10)

τ u1, u2 DMax
k,P,S,N(u1, u2) PDMSFECIR PDMSFESV PDMSFESV J 10% CV

1 X ± 0.5σX 2.82927∗ 5.66205 3.62009 2.83278 1.87189

X ± σX 1.31996 1.58636 0.3691 0.2664 1.94914

2 X ± 0.5σX 1.57134∗ 4.13194 2.62781 2.56061 1.12574

X ± σX 0.53925 0.85434 0.34105 0.31509 1.12383

3 X ± 0.5σX 0.80223∗ 4.26257 3.87959 3.46034 0.26336

X ± σX 1.19189∗ 1.82012 0.93572 0.62823 0.61716

4 X ± 0.5σX 1.23058∗ 4.32896 3.82788 3.09838 0.31387

X ± σX 0.48079∗ 1.02194 0.76792 0.54115 0.45501

5 X ± 0.5σX -0.00077 3.71976 3.72053 3.97788 0.18285

X ± σX 0.18502 1.09725 1.01962 0.91223 0.29925

6 X ± 0.5σX 1.52213∗ 4.949 3.83724 3.42687 0.10103

X ± σX 0.58406∗ 1.63659 1.05253 1.18955 0.14107

12 X ± 0.5σX 0.56293∗ 4.58393 4.37846 4.021 0.04347

X ± σX 0.41295∗ 1.30048 1.5585 0.88753 0.03183

(∗) Notes: see Table 1
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Table 3: Predictive Density Model Selection Test Results

Sample period January 8, 1999 - April 30, 2008

(CIR model is the benchmark, bootstrap block length=5)

τ u1, u2 DMax
k,P,S,N(u1, u2) PDMSFECIR PDMSFESV PDMSFESV J 10% CV

1 X ± 0.5σX 3.36528∗ 3.93191 0.56663 2.35979 2.31001

X ± σX 0.39113 0.39172 0.00059 0.13535 1.99902

2 X ± 0.5σX 1.8218∗ 2.32377 0.50197 2.04596 1.71781

X ± σX 0.59514 0.60979 0.01464 0.26331 2.09447

3 X ± 0.5σX 1.2709 1.86856 0.59766 2.29788 1.33248

X ± σX 0.97425 1.04645 0.0722 0.46272 1.77604

4 X ± 0.5σX 1.33461∗ 1.86611 0.5315 2.50816 1.03895

X ± σX 0.59446 0.78217 0.18771 0.23341 1.31151

5 X ± 0.5σX 1.55731∗ 1.92318 0.36586 2.3208 0.72157

X ± σX 0.62454∗ 0.92698 0.30244 0.42899 0.91251

6 X ± 0.5σX 1.07981 1.5355 0.45569 2.23224 0.81358

X ± σX 1.0877∗ 1.3928 0.39654 0.3051 0.88946

12 X ± 0.5σX 1.06647∗ 1.72738 0.66091 2.59892 0.7709

X ± σX 0.74472∗ 0.9282 0.43853 0.18348 0.73613

(∗) Notes: see Table 1
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Table 4: Predictive Density Model Selection Test Results

Sample period January 8, 1999 - April 30, 2008

(CIR model is the benchmark, bootstrap block length=10)

τ u1, u2 DMax
k,P,S,N(u1, u2) PDMSFECIR PDMSFESV PDMSFESV J 10% CV

1 X ± 0.5σX 3.36528∗ 3.93191 0.56663 2.35979 2.79456

X ± σX 0.39113 0.39172 0.00059 0.13535 2.30575

2 X ± 0.5σX 1.8218 2.32377 0.50197 2.04596 2.41921

X ± σX 0.59514 0.60979 0.01464 0.26331 2.67829

3 X ± 0.5σX 1.2709 1.86856 0.59766 2.29788 2.25422

X ± σX 0.97425 1.04645 0.0722 0.46272 2.8359

4 X ± 0.5σX 1.33461 1.86611 0.5315 2.50816 1.91697

X ± σX 0.59446 0.78217 0.18771 0.23341 2.56512

5 X ± 0.5σX 1.55731 1.92318 0.36586 2.3208 1.80572

X ± σX 0.62454 0.92698 0.30244 0.42899 2.30651

6 X ± 0.5σX 1.07981 1.5355 0.45569 2.23224 1.64939

X ± σX 1.0877 1.3928 0.39654 0.3051 2.08945

12 X ± 0.5σX 1.06647∗ 1.72738 0.66091 2.59892 1.00359

X ± σX 0.74472 0.9282 0.43853 0.18348 0.98574

(∗) Notes: see Table 1
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Table 1: Specification Test Rejection Frequencies for the One
Factor Model - Empirical Size(∗)

Data Generated using the CIR (0.15, 0.05, 0.10) Model
τ (u, u) S,l

10T,10 20T,10 10T,20 20T,20 10T,50 20T,50

Panel A: T = 400
1 X ± 0.5σX 0.1559 0.2383 0.177 0.1503 0.2191 0.2831

X ± σX 0.1559 0.2211 0.1638 0.1539 0.2105 0.1611
2 X ± 0.5σX 0.1796 0.2534 0.2303 0.2827 0.1492 0.1441

X ± σX 0.1459 0.2009 0.1854 0.2256 0.1040 0.1468
4 X ± 0.5σX 0.1826 0.1963 0.1849 0.1341 0.1560 0.2107

X ± σX 0.1933 0.1545 0.1868 0.1658 0.1158 0.1484
12 X ± 0.5σX 0.2142 0.2697 0.2372 0.283 0.3113 0.2443

X ± σX 0.1374 0.1804 0.2836 0.2439 0.2666 0.1949

Panel B: T = 800
1 X ± 0.5σX 0.1149 0.1266 0.1267 0.1197 0.1260 0.1177

X ± σX 0.1313 0.1199 0.1203 0.1291 0.1110 0.1513
2 X ± 0.5σX 0.1332 0.1058 0.1151 0.1291 0.1313 0.1110

X ± σX 0.1462 0.1068 0.1217 0.1383 0.1388 0.1078
4 X ± 0.5σX 0.1089 0.1327 0.1193 0.1227 0.1274 0.1016

X ± σX 0.1222 0.1056 0.1231 0.1071 0.1275 0.1210
12 X ± 0.5σX 0.1373 0.1409 0.132 0.1154 0.1028 0.1225

X ± σX 0.1269 0.1369 0.134 0.1091 0.1032 0.1067

1



Data Generated using the CIR (0.30, 0.05, 0.10) Model
τ (u, u) S,l

10T,10 20T,10 10T,20 20T,20 10T,50 20T,50

Panel A: T = 400
1 X ± 0.5σX 0.1804 0.2433 0.1747 0.1523 0.2382 0.2848

X ± σX 0.1744 0.2204 0.1868 0.1649 0.2325 0.1781
2 X ± 0.5σX 0.1715 0.2772 0.2502 0.2887 0.1509 0.1577

X ± σX 0.1654 0.2084 0.2077 0.2391 0.1381 0.1714
4 X ± 0.5σX 0.1971 0.2010 0.1725 0.1562 0.1455 0.2260

X ± σX 0.2085 0.1609 0.1998 0.1770 0.1316 0.1692
12 X ± 0.5σX 0.2199 0.2681 0.2626 0.2988 0.3112 0.2617

X ± σX 0.1588 0.1869 0.2881 0.2478 0.2824 0.1994

Panel B: T = 800
1 X ± 0.5σX 0.1205 0.1291 0.1382 0.1203 0.1412 0.1106

X ± σX 0.1291 0.1199 0.1253 0.1447 0.1133 0.1417
2 X ± 0.5σX 0.1354 0.1118 0.1198 0.1265 0.1390 0.1180

X ± σX 0.1397 0.1248 0.1139 0.1313 0.1443 0.1168
4 X ± 0.5σX 0.1161 0.1251 0.1298 0.1313 0.1289 0.1259

X ± σX 0.1363 0.1108 0.1324 0.1230 0.1189 0.1206
12 X ± 0.5σX 0.1355 0.1421 0.1297 0.1246 0.1180 0.1254

X ± σX 0.1373 0.1474 0.1283 0.1130 0.1148 0.1348
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Data Generated using the CIR (0.50, 0.05, 0.10) Model
τ (u, u) S,l

10T,10 20T,10 10T,20 20T,20 10T,50 20T,50

Panel A: T = 400
1 X ± 0.5σX 0.2011 0.247 0.1886 0.1633 0.244 0.2842

X ± σX 0.1908 0.2383 0.1944 0.1814 0.2403 0.1756
2 X ± 0.5σX 0.1904 0.2783 0.2492 0.2978 0.1452 0.1666

X ± σX 0.1781 0.219 0.2175 0.261 0.1547 0.181
4 X ± 0.5σX 0.2141 0.2109 0.1868 0.1783 0.1563 0.2221

X ± σX 0.2204 0.1593 0.2075 0.2005 0.1523 0.1977
12 X ± 0.5σX 0.2257 0.2766 0.2767 0.3171 0.3345 0.2653

X ± σX 0.162 0.1917 0.3012 0.2662 0.2962 0.2035

Panel B: T = 800
1 X ± 0.5σX 0.1261 0.1368 0.1615 0.1324 0.1568 0.1215

X ± σX 0.118 0.1248 0.1381 0.1469 0.1225 0.1682
2 X ± 0.5σX 0.1437 0.1378 0.1231 0.1483 0.1608 0.1209

X ± σX 0.1625 0.1429 0.1124 0.1553 0.1585 0.1202
4 X ± 0.5σX 0.1319 0.1248 0.1451 0.1525 0.1388 0.1541

X ± σX 0.1428 0.1263 0.1517 0.1317 0.1364 0.1167
12 X ± 0.5σX 0.1406 0.1432 0.128 0.1202 0.145 0.1293

X ± σX 0.1399 0.1688 0.1409 0.1216 0.1305 0.1294
(∗) Notes: Entries in the table are empirical rejection frequencies for tests
constructed using intervals given in the second column of the table, and
for τ =1, 2, 4, 12. (S, l) combinations used in test construction are given
in the second row of the table, so that simulation periods considered are
S = (10T, 20T ) and block lengths considered are l = (10, 20, 50), where T
is the sample size, and T =400, 800. Empirical bootstrap distributions are
constructed using 100 bootstrap replications, and critical values are set equal
to the 90th percentile of the bootstrap distribution. Finally, X and σX are
the mean and variance of an initial sample of data. All results are based on
500 Monte Carlo simulations. See Section 6.1 for further details.
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Table 2: Specification Test Rejection Frequencies For the Two
Factor Models - Empirical Size(∗)

Data Generated using the SV Model
τ (u, u) S,l

10T,10 20T,10 10T,20 20T,20 10T,50 20T,50

Panel A: T = 400
1 X ± 0.5σX 0.2995 0.1698 0.1752 0.1765 0.3532 0.2132

X ± σX 0.2266 0.2467 0.2585 0.1550 0.1506 0.2040
2 X ± 0.5σX 0.2141 0.2856 0.2328 0.2814 0.1912 0.3257

X ± σX 0.1396 0.2107 0.2219 0.2264 0.1597 0.2196
4 X ± 0.5σX 0.2074 0.1941 0.2803 0.1313 0.2057 0.1475

X ± σX 0.1770 0.1117 0.2266 0.1205 0.1550 0.1974
12 X ± 0.5σX 0.1910 0.2917 0.2056 0.2317 0.2435 0.2680

X ± σX 0.1355 0.1497 0.1748 0.1990 0.2117 0.1168

Panel B: T = 800
1 X ± 0.5σX 0.1405 0.1584 0.1299 0.1366 0.1491 0.1409

X ± σX 0.1282 0.1140 0.1271 0.1430 0.1208 0.1192
2 X ± 0.5σX 0.1048 0.1493 0.1169 0.1228 0.1203 0.1107

X ± σX 0.1167 0.1548 0.1159 0.1275 0.1112 0.1165
4 X ± 0.5σX 0.1035 0.1183 0.1312 0.1416 0.1055 0.1276

X ± σX 0.1173 0.1269 0.1329 0.1196 0.1123 0.1017
12 X ± 0.5σX 0.1207 0.1324 0.1043 0.1584 0.1033 0.1104

X ± σX 0.1178 0.1071 0.1258 0.1058 0.1121 0.1277
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Data Generated using the SVJ Model
τ (u, u) S,l

10T,10 20T,10 10T,20 20T,20 10T,50 20T,50

Panel A: T = 400
1 X ± 0.5σX 0.2768 0.2686 0.2340 0.2114 0.3675 0.1569

X ± σX 0.1939 0.1626 0.2192 0.2439 0.2342 0.1355
2 X ± 0.5σX 0.2112 0.3244 0.2442 0.1924 0.1727 0.2838

X ± σX 0.1456 0.2375 0.2978 0.1346 0.1572 0.2124
4 X ± 0.5σX 0.2078 0.2898 0.1467 0.2099 0.1929 0.1839

X ± σX 0.2927 0.1512 0.1189 0.1381 0.2961 0.1453
12 X ± 0.5σX 0.2102 0.1667 0.1881 0.1228 0.2757 0.3071

X ± σX 0.2029 0.1459 0.3656 0.1784 0.2463 0.2439

Panel B: T = 800
1 X ± 0.5σX 0.1533 0.1328 0.1433 0.1280 0.1320 0.1099

X ± σX 0.1068 0.1214 0.1397 0.1151 0.1228 0.1363
2 X ± 0.5σX 0.1263 0.1259 0.1191 0.1389 0.1350 0.1187

X ± σX 0.1179 0.1122 0.1134 0.1164 0.1115 0.1183
4 X ± 0.5σX 0.1403 0.1541 0.1595 0.1262 0.1597 0.1394

X ± σX 0.1178 0.1248 0.1185 0.1152 0.1131 0.1130
12 X ± 0.5σX 0.1248 0.1042 0.1249 0.1432 0.1110 0.1515

X ± σX 0.1187 0.1120 0.1135 0.1188 0.1187 0.1062
(∗) Notes: See notes to Table 1.
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Table 3: Specification Test Rejection Frequencies - Empirical
Power(∗)

Data Generated using the CIR Model
τ (u, u) S,l

10T,10 20T,10 10T,20 20T,20 10T,50 20T,50

Panel A: T = 400

1 X ± 0.5σX 0.3784 0.3425 0.4643 0.4662 0.4323 0.4582
X ± σX 0.2547 0.2786 0.3222 0.3444 0.3443 0.3287

2 X ± 0.5σX 0.3782 0.3766 0.4483 0.4486 0.4568 0.4643
X ± σX 0.2361 0.2786 0.3444 0.3328 0.3584 0.3587

4 X ± 0.5σX 0.3482 0.3727 0.4429 0.4584 0.4580 0.4267
X ± σX 0.2345 0.2621 0.3189 0.3484 0.3169 0.3525

12 X ± 0.5σX 0.3747 0.3681 0.4644 0.4381 0.4248 0.4583
X ± σX 0.2580 0.2485 0.3282 0.3161 0.3480 0.3681

Panel B: T = 800
1 X ± 0.5σX 0.8544 0.9261 0.8225 0.8442 0.8023 0.9285

X ± σX 0.7125 0.7342 0.8727 0.8164 0.9404 0.8166
2 X ± 0.5σX 0.8067 0.8164 0.8864 0.9348 0.8185 0.9028

X ± σX 0.8382 0.7667 0.9200 0.9360 0.9465 0.9188
4 X ± 0.5σX 0.8567 0.8884 0.8181 0.8969 0.9168 0.9062

X ± σX 0.8329 0.7768 0.9367 0.8840 0.8383 0.9183
12 X ± 0.5σX 0.8744 0.9328 0.9442 0.9024 0.8924 0.8481

X ± σX 0.7244 0.7223 0.9383 0.8163 0.8167 0.8143
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Data Generated using the SV Model
τ (u, u) S,l

10T,10 20T,10 10T,20 20T,20 10T,50 20T,50

Panel A: T = 400
1 X ± 0.5σX 0.5611 0.5613 0.5534 0.5491 0.5299 0.5421

X ± σX 0.4589 0.4355 0.4248 0.5007 0.4461 0.4546
2 X ± 0.5σX 0.4555 0.5396 0.5204 0.5200 0.5374 0.4363

X ± σX 0.4528 0.3486 0.4202 0.4361 0.4018 0.4062
4 X ± 0.5σX 0.5423 0.5666 0.4707 0.4851 0.5085 0.5612

X ± σX 0.4217 0.4226 0.4445 0.4301 0.4279 0.4461
12 X ± 0.5σX 0.4561 0.4485 0.4364 0.4820 0.4307 0.4534

X ± σX 0.3781 0.3431 0.3937 0.3537 0.3348 0.3719

Panel B: T = 800
1 X ± 0.5σX 0.6483 0.6885 0.6272 0.6962 0.6708 0.6362

X ± σX 0.5309 0.5728 0.5139 0.5457 0.5859 0.6005
2 X ± 0.5σX 0.6324 0.6021 0.5930 0.6038 0.6048 0.6194

X ± σX 0.5057 0.5169 0.5258 0.5160 0.5466 0.5580
4 X ± 0.5σX 0.5931 0.6143 0.6098 0.5909 0.6539 0.6115

X ± σX 0.5039 0.5286 0.5508 0.5651 0.5783 0.5569
12 X ± 0.5σX 0.6598 0.6104 0.6242 0.6319 0.636 0.6936

X ± σX 0.5614 0.5385 0.5725 0.5995 0.5891 0.6061
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Data Generated using the SVJ Model
τ (u, u) S,l

10T,10 20T,10 10T,20 20T,20 10T,50 20T,50

Panel A: T = 400
1 X ± 0.5σX 0.4581 0.5514 0.4988 0.4942 0.4867 0.4901

X ± σX 0.4261 0.4358 0.4080 0.4035 0.3553 0.3857
2 X ± 0.5σX 0.4724 0.4724 0.5173 0.5236 0.5477 0.5030

X ± σX 0.3650 0.3461 0.4072 0.4182 0.4020 0.4189
4 X ± 0.5σX 0.5364 0.5659 0.5599 0.5442 0.4206 0.5604

X ± σX 0.3912 0.3470 0.3945 0.4259 0.3202 0.4005
12 X ± 0.5σX 0.4327 0.4406 0.5387 0.4920 0.4657 0.5130

X ± σX 0.4192 0.3343 0.4005 0.3420 0.4492 0.4466

Panel B: T = 800
1 X ± 0.5σX 0.6053 0.7094 0.7019 0.6936 0.5708 0.5944

X ± σX 0.5566 0.6406 0.5721 0.6083 0.5351 0.5765
2 X ± 0.5σX 0.6029 0.6983 0.6716 0.6260 0.5841 0.6327

X ± σX 0.5511 0.5362 0.5762 0.5471 0.4741 0.5956
4 X ± 0.5σX 0.6176 0.6980 0.6109 0.6919 0.6546 0.6748

X ± σX 0.4757 0.5663 0.5254 0.5675 0.4627 0.5117
12 X ± 0.5σX 0.6964 0.6304 0.5953 0.6155 0.7165 0.7053

X ± σX 0.5657 0.5960 0.4882 0.5848 0.6158 0.6036
(∗) Notes: See notes to Table 1.
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Table 4: Empirical Illustration - Specification Testing Using 1 and
2-Factor Models(∗)

Specification Test Results - CIR Model
(u, u) S = 10T S = 20T S = 30T

VT 10% CV VT 10% CV VT 10% CV

Panel A: l = 25
1 X ± 0.5σX 0.5274*** 0.3545 0.5046*** 0.3980 0.4923** 0.4768

X ± σX 0.4289*** 0.3178 0.4524*** 0.3568 0.4655*** 0.3635
2 X ± 0.5σX 0.6824*** 0.4911 0.6973*** 0.5509 0.6075** 0.5134

X ± σX 0.4897* 0.5182 0.4601 0.5040 0.4985** 0.3560
4 X ± 0.5σX 0.8662** 0.8491 0.8813** 0.7962 0.8726** 0.6247

X ± σX 0.8539* 0.9389 0.8153* 0.9330 0.8595** 0.8581
12 X ± 0.5σX 1.1631* 1.3009 1.2236* 1.2932 1.2432** 1.1562

X ± σX 1.0429 2.0222 1.0731 2.0401 1.0387 2.0335

Panel B: l = 50
1 X ± 0.5σX 0.5274*** 0.3523 0.5046*** 0.4440 0.4923* 0.5749

X ± σX 0.4289** 0.3325 0.4524*** 0.3584 0.4655*** 0.297
2 X ± 0.5σX 0.6824*** 0.4915 0.6973*** 0.5141 0.6075** 0.4683

X ± σX 0.4897* 0.5594 0.4601** 0.4574 0.4985** 0.3960
4 X ± 0.5σX 0.8662* 0.9498 0.8813** 0.7367 0.8726** 0.5917

X ± σX 0.8539* 0.9371 0.8153* 0.9404 0.8595** 0.8055
12 X ± 0.5σX 1.1631* 1.3256 1.2236* 1.2570 1.2432* 1.2776

X ± σX 1.0429 2.0165 1.0731 2.0157 1.0387 2.0071
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Specification Test Results - SV Model
τ (u, u) S = 10T S = 20T S = 30T

VT 10% CV VT 10% CV VT 10% CV

Panel A: l = 25
1 X ± 0.5σX 0.9841*** 0.9031 0.9453*** 0.7986 0.9112** 0.8328

X ± σX 0.6870 0.7254 0.7276 0.7674 0.7775** 0.7608
2 X ± 0.5σX 0.4113 1.4900 1.0265 1.4124 0.9641 1.4808

X ± σX 0.3682 1.2243 0.8390 1.4938 0.8295 1.5048
4 X ± 0.5σX 1.2840 2.6109 1.0835 2.5397 1.6839 2.5685

X ± σX 1.0472 2.2745 1.0110 2.2695 1.1328 2.3104
12 X ± 0.5σX 1.7687 5.2832 1.7135 5.3526 2.6901 5.345

X ± σX 1.7017 5.6522 1.4404 5.6279 1.7675 5.6733

Panel B: l = 50
1 X ± 0.5σX 0.9841*** 0.8988 0.9453** 0.8093 0.9112** 0.7988

X ± σX 0.6870** 0.6597 0.7276 0.7903 0.7775* 0.8269
2 X ± 0.5σX 0.4113 1.4466 1.0265 1.3969 0.9641 1.4365

X ± σX 0.3682 1.4673 0.8390 1.4975 0.8295 1.3444
4 X ± 0.5σX 1.2840 2.5657 1.0835 2.6108 1.6839 2.4884

X ± σX 1.0472 2.2299 1.0110 2.3095 1.1328 2.3672
12 X ± 0.5σX 1.7687 5.2820 1.7135 5.3347 2.6901 5.4429

X ± σX 1.7017 5.6487 1.4404 5.6249 1.7675 5.6787
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Specification Test Results - SV J Model
τ (u, u) S = 10T S = 20T S = 30T

VT 10% CV VT 10% CV VT 10% CV

Panel A: l = 25
1 X ± 0.5σX 1.1319 2.1957 1.1787 2.1342 1.1655 2.1594

X ± σX 1.2272* 1.3031 1.0220 1.1669 0.9906 1.2893
2 X ± 0.5σX 0.9615* 1.1334 1.0150* 1.0677 1.0528* 1.0903

X ± σX 1.2571 1.4096 1.1491 1.4264 1.1562 1.5162
4 X ± 0.5σX 1.5012* 1.6856 1.3255 1.6501 1.3545* 1.5410

X ± σX 0.9901* 1.0507 1.0180* 1.0400 0.6941 0.9318
12 X ± 0.5σX 2.4237* 3.0640 2.3428* 2.9880 2.3622* 3.0997

X ± σX 1.4522 2.1684 1.4766 2.1625 1.4668 2.1360

Panel B: l = 50
1 X ± 0.5σX 1.1319 2.1109 1.1787 2.0323 1.1655 2.0733

X ± σX 1.2272* 1.2574 1.0220* 1.2657 0.9906 1.2276
2 X ± 0.5σX 0.9615* 1.1571 1.0150* 1.0640 1.0528** 1.0296

X ± σX 1.2571 1.3863 1.1491 1.4236 1.1562 1.5230
4 X ± 0.5σX 1.5012* 1.6471 1.3255 1.5650 1.3545* 1.5775

X ± σX 0.9901 1.0296 1.0180** 0.9835 0.6941 0.8466
12 X ± 0.5σX 2.4237* 3.0895 2.3428* 3.0086 2.3622* 2.9668

X ± σX 1.4522 2.2239 1.4766 2.1317 1.4668 2.2222
(∗) Notes: See notes to Table 1. Tabulated entries are test statistics and
5%, 10% and 20% level critical values. Test intervals are given in the second
column of the table, for τ =1, 2, 4, 12. All tests are carried out using histor-
ical one-month Eurodollar deposit rate data for the period January 1971 -
September 2005, measured at a weekly frequency. Single, double, and triple
starred entries denote rejection at the 20%,10%, and 5% levels, respectively.
Additionally, X and σX are the mean and standard deviation of the historical
data. See Section 6.2 for complete details.
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1 Overview

¥ There is a clear need, when forming macroeco-

nomic policies and when managing financial risk in

the insurance and banking industries, to examine pre-

dictive confidence intervals or entire predictive condi-

tional distributions.

¥ In this chapter focus is on specification testing

of and model selection amongst predictive densities,

with brief discussion of estimation



¥¥¥ Specification Testing

¥¥ Probability Integral Transform - Rosenblatt (1952)

and Diebold, Gunther and Tay (1998)

¥ Zt−1 = (yt−1 , ..., yt−v ,Xt , ...,Xt−w ) , v,w

finite, Xt vector valued

¥ F (yt |Zt−1 , θ0 ) =
R yt−∞ ft (y|Zt−1 , θ0 )dy, is

an iid uniform RV on [0, 1]

¥ Tests with power against departures from unifor-

mity and independence (see e.g. Bai (2003) for KS

version of this comparing against uniformity)



¥¥ Kolmogorov-Smirnov and Related Statistics

¥ Empirical Distribution Function - a natural estima-

tor for F which is unbiased, consistent, and asymp-

totically normal

¥ FT (y) = T−1 PT
t=1 1{yt ≤ y}

¥ Cramer - von Mises Discrepancy Measure [Cramer

(1938, 1946), von Mises (1947)]:

¥ T
R
(FT −F )2 dF

¥ Kolmorov - Smirnov Discrepancy Measure [Kol-

mogorov (1933), Smirnov (1939)]:

¥ T 1/2||FT−F ||∞= supxT
1/2|FT (y)− F (y)|



¥ Glivenko-Cantelli uniform convergence [Glivenko

(1933), Cantelli (1933)]:

¥ ||FT −F ||∞ →a.s. 0

¥ Donsker uniform or functional CLT (iid data) [Donsker

(1952)]:

¥ T 1/2(FT−F ) converges to a Gaussian process,

and in particular to a Brownian bridge limit process

¥ Modified Kolmogorov-Smirnov Statistic

¥ T 1/2||FT−Fbθ||∞
¥ Convergence in distribution to the supremum of

a Gaussian process - limit distribution may depend

on the model F , the estimator cθ , and even the
parameter value θ



¥ Hence the use of the bootstrap for CVs: time series

data versus iid ; data dependence

¥ In economics and finance, data dependence sug-

gests that conditional models may be more useful than

unconditional models, and hence the use of condi-

tional distributions as predictive densities

¥¥ The Kulback-Leibler Information Criterion [White

(1982), Vuong (1989), Giacomini (2002), Kitamura

(2002)]:

¥ Choose model which minimizes KLIC; choose model

1 over 2 if

E(log f1 (Y t |Zt , θ
†
1 )− log f2 (Y t |Zt , θ

†
2 )) > 0.



¥¥¥ Model Selection

¥¥ Information Sets and Critical Values

¥ Limit distribution of KS tests affected by dynamic

misspecification. Critical values derived under cor-

rect specification given =t−1 are not in general valid
in the case of correct specification given a subset of

=t−1 . Many authors use Zt−1, and assume that

Zt−1 ≡ =t−1.

¥ Assume interested in testing whether yt |yt−1 is

N(α†1 yt−1 , σ1 )

¥ Suppose =t−1 includes yt−1 and yt−2 : true
cond model is

yt |=t−1 = yt |yt−1 , yt−2 = N(α1 yt−1 +α2 yt−2 , σ2 )



¥ Then, α
†
1 differs from α1 and correct spec-

ification holds wrt information in yt−1 ; but there
is dynamic misspecification with respect to yt−1 ,
yt−2.

¥ Even without taking account of PEE, CVs obtained

assuming correct dynamic specification are invalid.

¥ Stated differently, tests that are designed to have

power against both uniformity and independence vio-

lations (i.e. tests that assume correct dynamic speci-

fication under H0 ) will reject; an inference which is

incorrect, at least in the sense that the “normality”

assumption is not false (uniformity still holds, but

independence does not -> rejection of model)



¥¥ Selecting from Amongst Many Models [White

(2000), Corradi and Swanson (2003)]:

¥ Need mean square error and other measures of

distributional discrepancy

¥ Issues of sequential test bias, allowance for mis-

specification, alternative methods to construct CVs

are all relevant



¥ Many (possibly) misspecified conditional distribu-

tions,

F 1 (u|Zt , θ
†
1 ), ..., Fm (u|Zt , θ

†
m ),

and true conditional distribution,

F0 (u|Zt , θ0 ) = Pr(Y t+1 ≤ u|Zt )

¥ One accuracy measure; average over u ∈ U , or

use interval based on ulow, uup

¥ E
µ³

Fi (u|Zt+1 , θ
†
i )− F 0 (u|Zt+1 , θ0 )

´2¶



2 Specification Testing

¥¥¥ Probability Integral Transform KS Type Tests

¥¥ DGT: PIT: difference between the empirical dis-

tribution of Ft (yt |Zt−1 ,cθT ) and the 45◦ − de-

gree line

¥

H0 : Pr (yt ≤ y|=t−1 , θ0 ) = Ft (y|=t−1 , θ0 ),
HA : the negation of H0,

¥ Compare Ft (y|=t−1 , θ0 ) with CDF of uniform
RV on [0, 1] ; differentiability; nonstationarity; Zt−1
contains all useful info in =t−1;

¥ cUt = F (yt |Zt−1 ,cθT )



¥¥ Bai (2003): bVT (r) = 1
T 1/2

P³
1{ bUt≤ r}− r

´
¥ use martingalization of Khmaladze to account for

PEE

¥ Theorem 2.1 (from Corollary 1 in Bai (2003)): Let

BAI1-BAI4 hold, then under H0,

sup
r∈[0,1]

dWT (r)
d→ sup

r∈[0,1]
W (r),

where W (r) is a standard Brownian motion. There-

fore, the limiting distribution is nuisance parameter

free and critical values can be tabulated.

¥ Suppose Pr(yt ≤ y|=t−1 , θ0 ) 6= Pr(yt ≤ y|Zt−1 , θ† ).
Then CVs not valid. However, if F (yt |Zt−1 , θ† )
correctly specified for Pr(yt ≤ y|Zt−1 , θ† ), unifor-
mity still holds => no guarantee statistic diverges.

Thus, test does not have unit asymptotic power against

violations of independence.



¥¥ Hong and Li (2003):

¥

cφ = (n− j)−1
nX

τ=j+1

Kh (u1 ,
cUτ )Kh (u2 ,

cUτ−j ),

where

Kh (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h−1 (x−yh )/

R 1
−(x/h) k(u)du if x ∈ [0, h)

h−1 (x−yh ) if x ∈ [h, 1− h)

h−1 (x−yh )/
R (1−x)/h
−1 k(u)du, if x ∈ [0, h)

¥ h is bandwidth parameter. As an example, one

might use,

k(u) =
15

16
(1− u2 )2 1{|u| ≤ 1}.

Also, define

dM (j) =
Z 1
0

Z 1
0

³cφ (u1 , u2 )− 1´2 du1 du2



and

cQ (j) =
³
(n− j)dM (j)−A0h

´
/V

1/2
0 ,

with

A0h = ((h
−1−2)

Z 1
−1

k2(u)du+ 2
Z 1
0

Z b

−1
kb(u)dudb)

2−1,

kb (·) = k(·)/
Z b

−1
k(v)dv,

and

V 0 = 2

⎛⎝Z 1
−1

ÃZ 1
−1

k(u+ v)k(v)dv

!2
du

⎞⎠2

¥ Theorem 2.2 (from Theorem 1 in Hong and Li

(2003): Let HL1-HL4 hold. If h = cT−δ, δ ∈ (0, 1/5),
then under H0 , for any j > 0, j = o(T 1−δ(5−2/v) ),cQ (j)

d→ N(0, 1)



¥¥ Corradi and Swanson (2003a): parametric rate,

no bandwidth parameter, easy to construct, but uses

bootstrap

¥ Bai’s martingale transformation argument does not

apply to the case in which the score is not a martingale

difference process (i.e. dyn miss not allowed for with

his test).

¥ V 1T =sup r∈[0,1] |V 1T (r)|

¥ V1T (r) =
1

T 1/2
PT
t=1

³
1{ bUt≤ r}− r

´
¥ Theorem 2.3 (from Theorem 1 in Corradi and

Swanson (2003a)): Let CS1, CS2(i)—(ii) and CS3 hold.

Then: (i) Under H0, V 1T ⇒ sup r∈[0,1] |V 1 (r)|,
where V is a zero mean Gaussian process with co-

variance kernel K1 (r, r
0 ) .

¥ a related test not based on PIT, but directly on

KS:



¥ Compare empirical joint distribution of yt, Z
t−1

with product of dist of yt |Zt and empirical CDF of

Zt−1 .

¥ Joint:

dHT (u, v) =
1
T

PT
t=1 1{yt ≤ u}1{Zt−1 < v}

and semi-empirical/semi-parametric analog of

F (u, v, θ0 ),

cFT (u, v,
cθT ) = 1

T

PT
t=1 F (u|Zt−1 ,bθT )1{Zt−1 < v}

¥
V 2T = sup

u×v∈U×V
|V 2T (u, v)|,

where U and V are compact subsets of < and

<d, respectively, and



¥
V2T (u, v) =

1

T 1/2

TX
t=1

³
(1{yt≤ u}− F (u|Zt−1,bθT ))1{Zt−1≤ v}

´

¥ Theorem 2.4 (from Theorem 2 in Corradi and

Swanson (2003a)): Let CS1, CS2(iii)—(iv) and CS3

hold. Then:

(i) Under H0, V 2T ⇒ sup u×v∈U×V |Z(u, v)|, where
Z is a zero mean Gaussian process with covariance

kernel K2 (u, v, u
0 , v0 );

(ii) Under HA, there exists an ε > 0 such that

lim T→∞Pr( 1
T 1/2

V 2T > ε) = 1.

¥ No iid bootstrap; parametric bootstrap only un-

der correct dynamic specification: crucial to properly

mimic long run variance of statistic



¥ cUt = F (yt |Zt−1 ,cθT ), cU∗t = F (y∗t |Zt−1 ,cθ∗T )
¥ V ∗1T (r) =

1
T 1/2

PT
t=1

³
1{ bU∗t ≤ r}− 1{ bUt≤ r}

´
¥

V ∗2T (u, v) =

1

T 1/2

TX
t=1

((1{y∗t≤ u}−F (u|Z∗,t−1,bθ∗T ))1{Z∗,t−1≤ v}

−(1{yt≤ u}− F (u|Zt−1,bθT ))1{Zt−1≤ v})



¥ In summary, V ∗1T (ω) (resp. V ∗2T (ω)) has

a well defined limiting distribution, conditional on the

sample, that coincides with that of V 1T (resp. V 2T ),

under H0 . Thus, for any bootstrap replication, com-

pute the bootstrapped statistic, V ∗1T (resp. V ∗2T ).
Perform B bootstrap replications ( B large) and

compute the percentiles of the empirical distribution

of the B bootstrapped statistics. Reject H0 if V 1T
( V 2T ) is greater than the (1− α)th -percentile.

Otherwise, do not reject H0. This approach ensures

that the test has asymptotic size equal to α . Under

the alternative, V 1T ( V 2T ) diverges to infinity,

while the corresponding bootstrap statistic has a well

defined limiting distribution. This ensures unit asymp-

totic power.

¥¥ In sample model evaluation - PEE contribution

summarized by limiting distribution of T 1/2
³bθT−θ†´

¥ Recursive and rolling estimation schemes - PEE

contribution summarized by the limiting distribution

of 1
P 1/2

PT−1
t=R

³bθt−θ†´



¥ Bai; Hong and Li; limit distributions of appropri-

ate statistics same. Corradi and Swanson, covariance

kernel structure changes.

¥ V 1T , V 2T tests: split and full sample bootstrap

statistics available - for example:

¥

cθ∗t =arg min
θi ∈Θi

1

t

tX
j=1

q(y∗j , Z∗,j−1 , θ), R ≤ t ≤ T − 1

Further, define: Ψ∗R,P=

1

P 1/2

T−1X
t=R

³bθ∗t − bθt´+
⎛⎝− 1

T

TX
t=1

O2θiq(yt, Z
t−1, bθT−1)

⎞⎠−1

× 1

P 1/2

P−1X
j=1

aR,j(Oθq(yR+j, ZR+j−1, bθT−1)
− 1
P

PX
j=1

Oθq(yR+j, ZR+j−1, bθT−1)),



where aR,j=
1

R+j+
1

R+j+1+...+
1

R+P−1.

If as P,R→∞, P/R→ π = 0, then both terms

on the RHS above approach zero and so Ψ∗R,P
pr→ 0.

This is not surprising, as in this case parameter esti-

mation error vanishes and so Ψ∗R,P properly mimics

something going to zero in probability. Therefore, if

π = 0, there is no need at all to use a correction term

when constructing the bootstrap statistic.

¥ Theorem 3.6 (from Theorem 1 in Corradi and

Swanson (2003b): Let CS1 and CS3 hold. Also, as-

sume that as P,R→∞, P/R→ π, 0 < π <∞,

and that as l1, l2→∞, l2
P 1/4

→ 0 and l1
R1/4

→0. Then,

P (ω : sup
v∈<((i)

|P ∗R,P
³
Ψ∗R,P≤ v

´

−P ( 1

P 1/2

T−1X
t=R

³bθi,t−θ†i´≤ v)|> ε)→ 0

¥ add PEE adjustment terms to boot statistics



3 Model Selection

¥ Choose a model which provides the best (loss func-

tion specific) out of sample predictions, from amongst

a set of potentially misspecified models, and not just

from amongst models that may only be dynamically

misspecified, as is the case with some of the tests

discussed above.

¥¥¥ Point forecast comparison

¥ Nested versus non-nested models? Differentiabil-

ity?

¥
H0 : E(g(u0,t )− g(u1t )) = 0

HA : E(g(u0,t )− g(u1t )) 6= 0



¥¥ Non-nested Models:

¥ DMP=
1

P 1/2
1bσP PT−1

t=R

³
g(bu0,t+1)− g(bu1,t+1)´

¥ Proposition 4.1 (from Theorem 4.1 in West (1996)):

Let W1-W2 hold. Also, assume that g is contin-

uously differentiable, then, if as P →∞, lp →∞
and lP /P 1/4 → 0, then as P, R→∞, under

H0, DMP
d→ N(0, 1) and under HA,

Pr
³
P−1/2 |DMP | > ε

´
→ 1, for any ε > 0.

¥ Note that when the two models are nested, so that

u0,t = u1,t under H0 , both the numerator of the

DMP statistic and cσP approach zero in probability

at the same rate, if P/R→ 0 , so that the DMP

statistic no longer has a normal limiting distribution

under the null.



¥¥ Nested Models: (Granger causality)

yt =
qX

j=1

βj yt−j +�t

and unrestricted model is

yt =
qX

j=1

βj yt−j +
kX

j=1

αj xt−j +ut

¥

ENC − T = (P − 1)1/2 ς

(P−1PT−1
t=R (ct+1 −ς ))1/2

,

¥ where ct+1 =b�t+1 ( b�t+1 −cut+1 ) ,
ς= P−1PT−1

t=R ct+1, and where b�t+1 and cut+1 are
residuals from the LS estimation.

¥ One sided test; Assumes larger model dynamically

correctly specified (i.e. mds).



¥ Convergence to functional of standard Brownian

motion or N(0,1) if PEE vanishes.

¥ To allow for dynamic misspecification and/or con-

ditional heteroskedasticity, use two sided Bierens type

test:

¥ CCS: mP = P−1/2PT−1
t=R b�t+1 Xt, appropri-

ately scaled

¥ Version of this test also available for testing against

generic alternatives

¥
MP =

Z
Γ
mP (γ)

2 φ(γ)dγ,

and

mP (γ) =
1

P 1/2

T−1X
t=R

g0 (b�t+1)w(Zt , γ),



¥¥ Multiple Models: Data Snooping Methods

¥ Data mining and sequential test bias?

¥ Reality Check:

¥
SP= max

k=2,...,m
SP (1, k),

where

SP (1, k) =
1

P 1/2

T−1X
t=R

³
g(bu1,t+1)− g(buk,t+1)´ , k = 2, ...,m

The hypotheses are formulated as

H0 : max
k=2,...,m

E(g(u1,t+1)− g(gk,t+1)) ≤ 0

HA : max
k=2,...,m

E(g(u1,t+1)− g(uk,t+1)) > 0,

¥ Convergence to the max of a m-1 dimensional

Gaussian process with complicated covariance kernel.



¥ Critical values obtained using stationary bootstrap,

block bootstrap, Hansen modified CVs, subsampling

methods, false discovery rate approach.

¥¥¥ Density (distribution) comparison

¥¥ The KLIC

¥ A well known measure of distributional accuracy

is the Kullback-Leibler Information Criterion (KLIC),

according to which we choose the model which mini-

mizes the KLIC (see e.g. White (1982), Vuong (1989),

Giacomini (2002), and Kitamura (2002)). In particu-

lar, choose model 1 over model 2, if

E(log f1 (Y t |Zt , θ
†
1 )− log f2 (Y t |Zt , θ

†
2 )) > 0.

¥ For the iid case, Vuong (1989) suggests a like-

lihood ratio test for choosing the conditional density

model that is closer to the “true” conditional den-

sity in terms of the KLIC. Giacomini (2002) suggests



a weighted version of the Vuong likelihood ratio test

for the case of dependent observations, while Kita-

mura (2002) employs a KLIC based approach to se-

lect among misspecified conditional models that sat-

isfy given moment conditions.

¥ Of note is that White (1982) shows that quasi

maximum likelihood estimators minimize the KLIC,

under mild conditions.

¥ Furthermore, the KLIC approach has recently been

employed for the evaluation of dynamic stochastic

general equilibrium models (see e.g. Schorfheide (2000),

Fernandez-Villaverde and Rubio-Ramirez (2004), and

Chan, Gomes and Schorfheide (2002)). For example,

Fernandez-Villaverde and Rubio-Ramirez (2004) show

that the KLIC-best model is also the model with the

highest posterior probability.



¥¥ Evaluation of Predictive Density Based on OOS

Distributional MSE

H0
0 : max

k=2,...,m
E ( Υ1 − Υ0)

2 − ( Υi − Υ0)
2
´
≤ 0

versus

H0
A : max

k=2,...,m
E ( Υ1 − Υ0)

2 − ( Υi − Υ0)
2 > 0

where Υi =
³
Fi (uup |Zt , θ

†
i )− Fi (ulow |Zt , θ

†
i )
´
,

i = 1, ...,m

and Υ0 =
³
F 0 (uup|Zt , θ0 )− F 0 (ulow|Zt , θ0 )

´



¥

ZP,j= max
k=2,...,m

Z
U
ZP,u,j(1, k)φ(u)du, j = 1, 2

and

ZP,u,2(1, k) =
1

P 1/2

T−1X
t=R

(
³
1{yt+1≤ u}− F 1(u|Zt,bθ1,t)´2

−
³
1{yt+1≤ u}− Fk(u|Zt,bθk,t)´2),

¥ Limit distribution is max of functional of zero mean

Gaussian process. Can use bootstrap for CVs.

¥

μ21 (u)− μ2k (u)

= E
µ³

F 1 (u|Zt , θ
†
1 )− F 0 (u|Zt , θ0 )

´2¶
−E

µ³
Fk (u|Zt , θ

†
k )− F 0 (u|Zt , θ0 )

´2¶
.



¥ When all competing models provide an approxi-

mation to the true conditional distribution that is as

(mean square) accurate as that provided by the bench-

mark (i.e. when
R
U

³
μ21(u)− μ2k(u)

´
φ(u)du = 0,∀k),

then the limiting distribution is a zero mean Gaussian

process with a covariance kernel which is not nui-

sance parameter free. Additionally, when all competi-

tor models are worse than the benchmark, the statis-

tic diverges to minus infinity at rate P 1/2. Finally,

when only some competitor models are worse than

the benchmark, the limiting distribution provides a

conservative test, as ZP will always be smaller than

maxk
R
U

³
ZP,u(1, k)− P 1/2

³
μ21(u)− μ2k(u)

´´
φ(u)du

asymptotically. Of course, when HA holds, the sta-

tistic diverges to plus infinity at rate P 1/2.



4 Concluding Remarks

¥ Large number of available tests and procedures.

¥ Many approaches to specification and selection

are specialized to nested/nonested models; limit re-

sults hinge on PEE assumptions, differentiability, and

assumptions concerning misspecification (either dy-

namic or general).

¥ Predictive density is one of the relatively uncharted

areas, and recent theoretical advances in bootstrap

theory and other limit theory results are allowing for

much new work.

¥ End ¤
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