Course Syllabus

Professor: Norman Swanson, 301D NJH: 732-932-7432.
Email: nswanson@econ.rutgers.edu
Course Website: http://econweb.rutgers.edu/nswanson/
Teaching Assistant: Yue Li (office hours tba)
Office Hours: Swanson - M 1:30-2:30 (or by appointment)

Course Content

The main focus of this course is on time series econometrics. Throughout the course, we will discuss and review topics including LM, LR, and Wald tests, ARIMA models, and maximum likelihood estimation. We will also cover VAR models, unit roots, cointegration, spurious regression, and Granger causality. Finally, we will discuss other time series topics including forecasting, continuous time financial models, bootstrapping, Monte Carlo methods, and GARCH.

The course outline is meant only as a guide, and topic coverage and length of coverage may vary from the time allotted in the syllabus. After finishing each main topic I will summarize completely what we have learned and what you will be required to know for the test(s). Note that most advanced texts in econometrics cover all or most of the topics in the course, so that you may essentially use texts other than those listed. Finally, note that the course is meant to be self-contained, in the sense that full knowledge of class lecture material is essentially sufficient for testing purposes, and texts need be used only for extra study and clarification.

Disclaimer

Qualified persons with disabilities are encouraged to participate in all programs and activities at this university. If you anticipate needing any type of accommodation in this course or have questions about physical assess, please tell the instructor as soon as possible.
Textbooks


* required text.

Course Grade

Your course grade will be based on the results from 1 in class paper presentation (35%), 1 in class midterm examination (35%), and a final project (30%).
Course Outline

PART I. ARIMA Models (week 1)
(i) AR, MA, and ARMA Models
(ii) Specification, Estimation and Testing
Readings: (H) Chapters 3, 5, (GN) various.

PART II. Testing (week 2/3)
(i) Testing: F-tests, χ² tests and F approximations thereof - LM, LR, and Wald Tests, etc.
(ii) Nonlinearity, Serial Correlation, Heteroskedasticity, ARCH, and Related Tests
Readings: (G) various, (H) Chapter 5, (W) Chapter IV.2, (DM) Chapter 3.6 and various.

PART III. Nonstationarity Versus Stationarity (week 4)
(i) Random Walks and Spurious Regression
(ii) Stochastic and Deterministic Trends - Trend vs. Difference Stationarity
(iv) Unit Root Testing

PART IV. Vector Processes (week 5)
(i) VARs: Estimation and Testing
(ii) VARs: Interpretation - IRFs and FEVDs
(iii) Cointegration - Introduction and Motivation
(iv) Error-Correction Models: Estimation and Testing
Readings: (H) Chapters 10, 11, 18, 19, 20 (DM) Chapter 20, (GN) Chapter 8.

PART V. Introduction to Forecasting (week 6)
(i) Forecasting Time Series
(ii) Model Selection
(iii) Forecast Accuracy Testing
Readings: (GN) all, (H) Chapter 4.

PART VI. Introduction to Monte Carlo Methods (week 7)
(i) Forecasting Time Series
(ii) Model Selection
(iii) Forecast Accuracy Testing
Readings: (GN) all.

PART VII. Introduction to Financial Econometrics (week 8)
(i) Single Factor Models - CIR, Geometric Brownian Motion and Related Models
(ii) Stochastic Volatility and other multi-factor and multi-dimensional Processes
(iii) Estimation (GMM, SGMM, ccf methods) and Specification Testing
Readings: (H) Chapter 14.

PART VIII. Advanced Topics (week 12 & 13)
(i) Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Models
(ii) Bootstrapping Techniques

and Allan Timmerman, Elsevier, Amsterdam.

PART VII. Introduction to Financial Econometrics (week 8)
(i) Single Factor Models - CIR, Geometric Brownian Motion and Related Models
(ii) Stochastic Volatility and other multi-factor and multi-dimensional Processes
(iii) Estimation (GMM, SGMM, ccf methods) and Specification Testing
Readings: (H) Chapter 14.

PART VIII. Advanced Topics (week 12 & 13)
(i) Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Models
(ii) Bootstrapping Techniques
Readings: (GT) all, (H) Chapters 13, 14, 21, (DM) Chapter 16, 21.

PART IX. In class presentations (weeks 9-11 - November 7 & 21)

PART X. In class midterm examination (week 10 - November 14)

PART XI. Additional Topics; as time permits (weeks 14)

(o) Project discussion.

(i) TAR, STAR, LSTAR, and ESTAR Models

(ii) Nonlinear Cointegration

(iii) Neural Network Models

(iv) Panel Data Model: Fixed Effects Models, Random Effects Models, Simultaneity Problems

Readings: to be announced