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We compare several models for Bear Stearns' credit default swap spreads estimated via a Markov chain
Monte Carlo algorithm. The Bayes Factor selects a CKLS model with GARCH–EPD errors as the best model.
This model best captures the volatility clustering and extreme tail returns of the swaps during the crisis. Prior
to November 2007, only four months ahead of Bear Stearns' collapse though, the swap spreads were
indistinguishable statistically from the risk-free rate.
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1. Introduction

The first major investment bank to fail during the global financial
crisis was Bear Stearns. Bear Stearns was an 85-year old institution
that until the summer of 2007 had never had a losing quarter. Nine
months later, it was gone, absorbed into J.P. Morgan Chase in a
shotgunmarriage. This paper looks at credit default swap (CDS) prices
to see if they shed any light on this story.

The academic literature on credit risk suggests that the bulk of
price discovery is going on in the CDS market. Blanco et al. (2005)
study 27 single name CDS, including 15 financial firms, and find that,
on average, the CDS market contributes 80% of price discovery. They
attribute this to more informed trading in the CDS market. A second
factor is the deep liquidity in the CDS market. In the first half of 2008,
the Bank for International Settlements reported that notional volume
of single name CDS outstanding peaked at $33.4 trillion. There was
another $24 trillion in multi-name instruments.

Prior to the financial crisis, the CDS spreads on investment grade
debt narrowed substantially. The benchmark 5-year investment grade
CDX index from Markit fell from 60 to 20 basis points between 2004
and early 2007.1 For this reason, we first consider the swap spread as a
risk-free rate, using the model of Chan et al. (1992).

As the crisis unfolded though, spreads gradually widened. We find
that the volatility in the series requires adding GARCH errors. As Bear
Stearns flirts with bankruptcy, an exponential power distribution is
needed to capture these statistically improbable events. Wu (2006)

has proposed using a similar model for stock returns and argues that
they better approximate the tail behavior of financial assets.

We begin our analysis in Section 2 by describing the cash flows in a
credit default swap, and then proceed to analyze the Bear Stearns
series. In Section 3, we consider progressively more general models
for the swap spread. We start with the CKLS model, then add GARCH
errors, and finally, add an exponential power distribution to describe
the fat tails that remain after GARCHmodeling. Estimation via Markov
chain Monte Carlo is described in Section 4. In Section 5, we report
results and find that the Bayes Factor selects the general CKLS–
GARCH–EPD model as the best. We test for structural breaks in
Section 6, and confirm that the swap spread is statistically similar to a
risk-free process prior to November 2007. Section 7 concludes.

2. Data

2.1. Credit default swaps

Credit default swaps are derivative securities that pay off in the
case of a credit event by the reference entity, typically a default. The
protection seller agrees to provide any missing cash flows from
the reference obligation to the buyer, including interest and principal.
The protection buyer generally pays an up-front fixed fee and a swap
spread that varies with the market's assessment of the credit risk of
the firm.

After signing the CDS contract, the buyer makes periodic
payments, generally quarterly, to the seller until the maturity of the
CDS or until a credit event occurs. The payment is calculated using the
swap spread. Quoted in basis points (bp), or 0.01%, a spread of 180 bp,
for example, implies that a protection buyer will pay $18,000 per year
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to insure $1 million worth of par value. A higher spread, holding other
factors constant, indicates a greater likelihood of default.

In our setting, Bear Stearns is the reference entity. The reference
obligations are 5-year bonds which represent, according to Jorion and
Zhang (2007), 85% of the CDS market. Although Bear Stearns came
under severe stress, their takeover by J.P. Morgan prevented any
credit events for bond holders. In contrast, the Lehman Brothers CDS
wound up paying $91.375 for every $100 of par value insured
following their October 2008 bankruptcy.

2.2. The story behind Bear Stearns' swap spreads

We use a daily time series of Bear Stearns' 5-year CDS spreads. It
spans from April 2006 to March 2008 which is the month of the
takeover by JP Morgan. There are 501 observations. This data was
purchased from GFI, a major international broker dealer with a strong
presence in the over-the-counter derivative markets.

The CDS spreads are plotted in Fig. 1.
It is straightforward to map the changes in CDS spreads into the

time line of news events in Table 1. These headlines were collected
from the Wall Street Journal, the Financial Times, and Bloomberg.

The swap spreads traded at 30 bp or less until February 2007, just
days before Bear Stearns reported its first ever loss on the High Grade
Structured Credit Strategies Fund (SCSF). This was the less heavily
leveraged of two Bear Stearns' hedge funds with exposure to the
subprimemortgage market. Mizrach (2010) notes that SCSF had gone
40 straight months without a loss, producing a cumulative 50% return.

Surprisingly though, spreads narrowed and fell back below 30 bp
until June 2007 when Bear Stearns had to engineer a $3.2 billion
bailout of its own funds. Spreads crossed 100 bp just before the two
funds filed for bankruptcy in August 2007. Bear Stearns' credit risk
further deteriorated when Warren Spector, head of the fixed income
division and co-president (with Alan Schwartz) resigned on August 6,
2007.

Problems began to spread beyond Bear Stearns at that point. BNP
Paribas suspended redemptions in several of its funds, and this was
soon followed by liquidity injections from both the European Central
Bank (ECB) and the Federal Reserve.

In retrospect, October of 2007 looks like the eye of a hurricane. The
stock market rallied, and the Dow Jones Index reached an all-time
high of 14,164 on October 9, 2007. Bear Stearns' swap spreads fell
back to 70 bp.

Rumors about Bear Stearns' subprime exposure and liquidity
needs persisted though and concerns about the firmwere raised again
in November 2007 when a Wall Street Journal article portrayed James
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Fig. 1. Bear Stearns' 5-year credit default swap (CDS) spreads.

Table 1
News about Bear Stearns companies (BSC).

Date Events

01-Mar-2007 Bear Stearns (BSC) reports first ever loss on the High Grade
Structured Credit Fund

14-Jun-2007 BSC reports a 10% decline in quarterly earnings.
18-Jun-2007 Merrill Lynch seizes collateral from BSC hedge funds.
22-Jun-2007 BSC commits $3.2 billion to High Grade Structured Credit Fund.
17-Jul-2007 BSC tells clients that assets in Enhanced Leverage Fund

are essentially worthless.
01-Aug-2007 BSC hedge funds file for bankruptcy.
06-Aug-2007 Warren Spector, Co-President resigns.
20-Sep-2007 BSC reports 68% drop in quarterly income.
26-Sep-2007 Rumor that Warren Buffet may buy 20% stake in BSC.
22-Oct-2007 BSC announces deal with Citic.
01-Nov-2007 Wall Street Journal article about CEO Cayne accuses him

of smoking marijuana.
14-Nov-2007 CFO Molinaro says BSC will write down $1.62 billion and

take a 4th quarter loss.
28-Nov-2007 BSC lays off another 4% of its staff.
20-Dec-2007 BSC takes $1.9 billion write-down. Cayne says he will skip

his 2007 bonus.
07-Jan-2008 CEO Cayne retires under pressure. Schwartz takes over.
22-Jan-2008 Fed cuts rates 75 bps.
14-Feb-2008 UBS writes down $2 bn in Alt-A which BSC was long

(paired with subprime short).
03-Mar-2008 Thornburg Mortgage fails to meet margin calls.
10-Mar-2008 Rumors of BSC liquidity problems begin to surface.
11-Mar-2008 Goldman Sachs e-mails clients that it will not do derivative

deals with BSC.
14-Mar-2008 BSC announces $30 billion in funding from JP Morgan (JPM),

via the Federal Reserve.
17-Mar-2008 JPM announces acquisition of BSC for $2 a share.
24-Mar-2008 JPM raises bid for BSC to $10 a share.
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Cayne as a distracted, drug-using CEO. Swap spreads did not fall back
below 100 bp from that point on.

The market's fears about Bear Stearns proved justified. The firm
announced its first quarterly loss ever on November 14, 2007 and by
the end of the month, swap spreads crossed 200 bp. Cayne resigned
early in 2008, and despite further monetary injections by the Fed in
February 2008, the upward trend in swap spreads remained intact.

To appreciate the velocity of Bear Stearns' collapse though, you
have to recall that spreads did not reach 300 bp until March 3 when
the second largest independent mortgage originator, Thornburg,
could not meet margin calls. The run on Bear Stearns' remaining
cash then began in earnest. A rumor that Goldman Sachs would no
longer trade with Bear Stearns drove spreads above 600 bp on
Tuesday March 11. By Friday March 14, Bear Stearns needed an
emergency loan from the Fed with J.P. Morgan as conduit. While this
announcement did not stabilize Bear Stearns' stock price, it did finally
start to bring down the CDS spreads.

The takeover did not restore Bear Stearns to completely normal
credit conditions. There were concerns about whether Bear Stearns
would fight the takeover, and eventually, J.P. Morgan agreed to raise
the acquisition price to $10 a share. With that offer in place on March
24, 2008, swap spreads fell back below 150 bp.

2.3. Descriptive statistics

We begin to move to a more formal analysis by providing some
descriptive statistics in Table 2.

The skewness is significantly positive at 2.41, and the kurtosis is
10.77, which is greater than 3, indicating fat tails in the data. The
probability density function of the first difference of CDS spreads is
plotted in Fig. 2.

Compared to the normal distribution, both the left tail and the
right tail of CDS spreads are longer.

3. Models

The short-term interest rate process is a fundamental input into a
variety of asset pricing models. Econometric modeling of the short-
rate remains an active area of research. While Bear Stearns' debt was
hardly risk free, they were rated A+ and had been upgraded by
Standard and Poor's in October 2006. They maintained that rating
until August 2007.

The models we propose will also help understand how the Bear
Stearns' CDS first gradually and then suddenly became much riskier.

3.1. CKLS

The paper by Chan et al. (1992) is the beginning of our search for
an appropriate model. They proposed a differential equation, which
we have discretized, that nests a number of popular models in the
literature,

rt = a + b1rt−1 + rct−1et ;

et = σεt
ð1Þ

where εt is distributed as Normal.

Setting c=1/2, you obtain the important Cox et al. (1985) model.
Setting c=0, which removes the effect from the level of the interest
rate on volatility, you have the Ornstein–Unlenbeck process used by
Vasicek (1977).

3.2. CKLS–GARCH model

In many financial time series, we observe unconditional fat tails
and conditional volatility. Volatility clustering refers to the phenom-
enon that there are periods of high and low variances. That means
large changes of variance tend to be followed by large changes, and
small changes by small changes. Engle (1982) shows conditional
heteroskedasticity may cause the fat tails in the unconditional
distribution and suggests an ARCH model to capture the conditional
heteroskedasticity. Bollerslev (1986) extends the ARCH model to a
GARCH model, which is now the benchmark model for volatility
clustering.

We append the GARCH model to Eq. (1). The CKLS–GARCH model
is given by

rt = a + b1rt−1 + rct−1et
et = σtεt

σ2
t = α0 + ∑

r

j=1
αje

2
t−j + ∑

s

j=1
βjσ

2
t−j

α0 N 0; αj ≥ 0; j = 1; :::; r; βj ≥ 0; j = 1; :::; s:

1≥ ∑
max r;sð Þ

j=1
αj + βj

� �
ð2Þ

where εt follows the normal distribution. Research on CKLS–GARCH
model can be found in Brenner et al. (1996), Koedijk et al. (1997), and
Demirtas (2006). Brenner et al. (1996) show that the CKLS–GARCH
model outperforms the CKLS model in maximum likelihood estima-
tion of the 3-month Treasury bill.

3.3. CKLS–GARCH–EPD model

Many papers examining the time varying volatility in financial
time series have questioned the conditional normality of the GARCH
model. Typically, the standardized GARCH residuals εt /σt are not
normally distributed. Bollerslev (1987), for example, suggests a
conditional t-distribution for εt. Haas et al. (2006) have also utilized
the stable Paretian density.

Table 2
Descriptive statistics for Bear Stearns' 5-year CDS spreads.

Obs. Mean Std. dev. Minimum Maximum Skewness Kurtosis

501 82.57 96.20 19 660 2.41 10.77

Notes: There are 501 observations spanning April 3, 2006 to March 31, 2008.

Fig. 2. Probability density function of CDS spreads.
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In this paper, we propose to capture the outlying volatility shocks
εt using an exponential power distribution (EPD) with the probability
density function (PDF)

f εtð Þ = 1
λ21+1=αΓ 1+1 =αð Þ exp −1

2 j εtλ jα� �
ð3Þ

where λ is a normalizing constant to make the variance of εt equal to
unity:

λ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2=αΓ 1 =αð Þ

Γ 3 =αð Þ

s
:

In Fig. 3, we plot a class of PDFs for the exponential power
distribution. If parameter α=2, the exponential power distribution
will be the Normal distribution. If parameter α=1, it will be the
Laplace distribution, which has fatter tails than Normal distribution.
As α increases from 2 to 3, the PDF will become more platykurtic. As
α decreases from 2 to 1, the PDF will become more leptokurtic. The
exponential power distribution in our model can be used to capture
the jump component in the swap spread. For more information of
the EPD distribution, one can refer to Nelson (1991) and Bali and Wu
(2006).

The kurtosis of εt is defined as follows (see Nadarajah, 2005):

Kurtosis εtð Þ = Γ 1=αð ÞΓ 5=αð Þ
Γ2 3=αð Þ :

The CKLS–GARCH–EPD model is given by

rt = a + b1rt−1 + rct−1et
et = σtεt

σ2
t = α0 + ∑

r

j=1
αje

2
t−j + ∑

s

j=1
βjσ

2
t−j

α0 N 0; αj ≥ 0; j = 1; :::; r; βj ≥ 0; j = 1; :::; s:

1≥ ∑
max r;sð Þ

j=1
αj + βj

� �
ð4Þ

where εt is drawn from Eq. (3).

4. Methodology

We estimate these models by the Bayesian method. Markov chain
Monte Carlo algorithms are used. For example, the posterior PDF of
the CKLS–GARCH–EPD model is given by

p Δ jdatað Þ ∝ p Δð Þ ∏
n

t=1

r−c
t−1σ

−1
t

λ21 + 1=αΓ 1 + 1 =αð Þ exp −1
2
j ε̂t
λ

jα
( )

ð5Þ

where

Δ = fa; b1; c;α0; Γ′;Λ′;αg
Γ = α1;…;αrð Þ′
Λ = β1;…;βsð Þ′

and

ε̂t =
rt−a−b1rt−1

σtr
c
t−1

; t = 1; ⋯;n; ε̂0 = ⋯ = ε̂−q = 0:

As the prior, we set

p Δð Þ = N a;σ2
a

� �
× N b1 ;σ

2
b1

� �
× N α0;σ

2
α0

� �
I α0 N 0ð Þ

× N Γ;σ2
Γ

� �
I Γ N 0ð Þ × N Λ;σ2

Λ

� �
I Λ N 0ð Þ × p cð Þ × p αð Þ

ð6Þ

where “•P” denotes the prior parameters, p(c)=1, p(α)=1, and I(⋅) is
an indicator function. We set all σ2 sufficiently large and all the prior
mean parameters zero. Similarly, we can derive the posterior densities
for other models.

The MCMC algorithms for the CKLS–GARCH–EPD model include
the following blocks (see Li et al. (2009)):

1: draw a; b1½ �; 2: draw α0; 3: draw Γ;
4: draw Λ; 5: draw c; 6: draw α:

The convergence of the MCMC algorithm is judged by the
Kolmogorov–Smirnov tests (KST) that are explained in Goldman
et al. (2008). The robustness of our MCMC algorithm is checked by
changing both priors and initial values, respectively.

5. Results

5.1. CKLS

The CKLS model is estimated in the first column of Table 3.
We calculate the estimated spreads from the CKLS model as

follows:

r̂t = â + b̂1rt−1 ð7Þ

and the standardized residuals are:

ε̂t =
rt−r̂t
rĉt−1 σ̂

: ð8Þ

The Lagrangemultiplier (LM) test with null hypothesis of no ARCH
effects is applied to the standardized residuals. The LM test statistic
is 15.88 with a p-value of 0, which means we can reject the null
hypothesis at the 5% significance level. Hence, we conclude that ARCH
effects exist in the residuals of the CKLS model.Fig. 3. Class of PDFs for the exponential power distribution (EPD).
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5.2. CKLS–GARCH

We add the GARCH terms in Eq. (2) to mitigate the fat tails. The
estimated model is in the second column of Table 3. We get the
estimated spread from the CKLS–GARCH model as follows:

r̂t = â + b̂1rt−1 ð9Þ

and the standardized residuals are:

ε̂t =
rt−r̂t
rĉt−1σ̂t ;

where

σ̂2
t = α̂0 + ∑

r

j=1
α̂j ê

2
t−j + ∑

s

j=1
β̂jσ̂

2
t−j ð10Þ

êt−j = σ̂t−jεt−j: ð11Þ

The LM test statistic calculated for the standardized residuals is
0.31 with a p-value of 58%. That means under 5% significance level we
accept the null hypothesis and conclude that there are no ARCH
effects in the residuals of the CKLS–GARCH model.

The estimates for parameter α1 and parameter β1 are 0.7222
and 0.1673. The sum, α1+β1=0.8895, is well inside the integrated
GARCH boundary.

We perform a Jarque–Bera test of the null hypothesis that the
residuals come from a normal distribution. The p-value for the Jarque–
Bera test is 0, so we conclude that the standardized residuals are not
normally distributed at the 5% significance level.

5.3. CKLS–GARCH–EPD

We allow the GARCH error to follow an EPD and report estimation
results in the third column of Table 3. We get the estimated spread
from the CKLS–GARCH model as follows:

r̂t = â + b̂1rt−1 ð12Þ

and the standardized residuals are:

ε̂t =
rt−r̂t
rĉt−1σ̂t

ð13Þ

σ̂2
t = α̂0 + ∑

r

j=1
α̂j ê

2
t−j + ∑

s

j=1
β̂jσ̂

2
t−j ð14Þ

êt−j = σ̂t−jεt−j: ð15Þ

We calculate the LM test for the standardized residuals. The LM
test statistic is 1.97 with a p-value of 16%, so we can accept the null
hypothesis at the 5% significance level. That is, there are no ARCH
effects in the residuals of the CKLS–GARCH–EPD model.

We perform a Jarque–Bera test of the null hypothesis that the
standardized residuals come from a normal distribution. The p-value
for the Jarque–Bera test is 0, so we conclude the residuals are not
normally distributed at the 5% significance level.

Next, we generate a sample from the EPD with α̂ = 0:2826 and
plot the empirical CDF in Fig. 4.

Compared to the empirical CDF of the standardized residuals, we
can see they are very close to each other. For comparison, we also plot
the CDF of standard normal. We conclude that the standardized
residuals are closer to the EPD than to the normal.

The p-value of sign test for the standardized residuals and the
sample of EPD with α̂ = 0:2826 is 7.39%, higher than 5% significance
level. So we conclude that there is no difference between the
standardized residuals and the sample of EPD with α̂ = 0:2826.

Following Bollerslev (1987), we compare the conditional kurtosis
of EPD with that of the standardized residuals. The conditional
kurtosis of EPD is calculated using the formula in Nadarajah (2005),

Kurtosis εtð Þ =
Γ 1= α̂
� �

Γ 5 = α̂
� �

Γ2 3= α̂
� � :

The estimated conditional kurtosis of EPD is 234, which is very
similar to the sample analogue of ε̂t =σ̂t

� �
2
, K=279. This result is

similar to that of Bollerslev (1987).
The estimates for α1 and β1 are 0.6778 and 0.1744.α1+β1 is 0.8522,

which again lies comfortably inside the integrated GARCH frontier.

5.4. Model selection by Bayes Factor

The Bayes Factor is used as model selection criterion (see
Appendix A). The result shows the CKLS model with GARCH–EPD
error terms provides a better fit. The critical values of log Bayes Factor
are reported in Table 4. For example, for the CKLS–GARCH–EPDmodel
(denoted as M3), the Bayes Factor of M3 over M1 is 3110, which is
greater than 2. That means, the evidence supporting M3 is decisive.

Table 3
Posterior means and t-statistics for the CDS spreads.

Models M1 M2 M3

a 2.7048
(0.97)

1.9928
(0.68)

0.1096
(0.91)

b1 0.8702
(4.82)

0.9169
(6.09)

0.9953
(622.06)

c 0.8469
(6.44)

0.7879
(8.21)

0.4970
(236.67)

α0 0.4852
(1.84)

0.5448
(2.14)

0.5178
(1.84)

α1 – 0.7222
(4.54)

0.6778
(4.19)

β1 – 0.1673
(1.12)

0.1744
(1.46)

α 2
(–)

2
(–)

0.2826
(8.70)

B3* 3110 975 –

Notes:B3 means the value of Bayes Factor forM3 over model *.M1 is the CKLS model in
Eq. (1). M2 is the CKLS–GARCH model in Eq. (2). M3 is the CKLS–GARCH–EPD model in
Eq. (4).

Fig. 4. Empirical CDF of EPD distribution.
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We quantify the evidence of the Bayes Factor by the “energy” of
changing the prior probability of the null hypothesis to a posterior
probability of the null hypothesis. If one is not highly convinced of
model 1 (3% prior probability of the null hypothesis) before analyzing
the data, a Bayes Factor of 3110 surely will. It shifts the posterior
probability to 99% in favor of the null hypothesis. In other words, a
Bayes Factor of 3110 is strong enough to move one from being only 3%
sure of the null hypothesis to being 99% sure.

The same analysis can be applied to compare M3 with M2. The
Bayes Factor ofM3 overM2 is 975, which is greater than 2. That means,
the evidence supporting M3 is decisive. From Table 5 we know Bayes
Factor of 975 is strong enough to move one from being only 3% sure of
the null hypothesis to being 98% sure. As a result, we conclude that
model 3 is better.

For M3, the CKLS model with a GARCH–EPD error process, we
document a significant level effect. The t-statistic of parameter c is
237, which is significant at the 5% level. Also, the t-statistic of param-
eter α1 is 4.19, which supports significant volatility clustering in Bear
Stearns' CDS spreads. Last, the t-statistic of parameter α in EPD is 8.7,
which provides significant evidence of jumps in the CDS spreads.2 And
the value of parameter α is 0.2826, far from 1 (Laplace distribution)
and 2 (Normal distribution). That means, a conditional normal error
distribution assumption is not adequate for CDS spreads.

In summary, the CKLSmodel with a GARCH–EPD error process best
fits the Bear Stearns' CDS spreads. We document significant level
effects, volatility clustering and the jumps in the crisis episode.

6. Structural breaks

To understand better the importance of structural breaks, if any, in
the swaps, we utilize the Zivot and Andrews (1992) test. The null in
Zivot and Andrews is a unit root, and the alternative is an I(0) process
with one structural break. Their procedure searches through the
sample for the minimum t-stat on θ1, the coefficient on the lagged
level in the regression,

Δrt = α0 + α1t + α2D
B
t + θ1rt−1 + ∑J

j=1ϕjΔrt−j + ui;t : ð16Þ

t is a time trend, and Dt
B is a dummy variable that is zero prior to date B

and equal to 1 thereafter. The lags J are included from a maximum of
12 lags using a t-test criterion at the 10% level. Zivot and Andrews
provide asymptotic critical values of−4.80 for a 5% test and−5.34 for
a 1%.

For the swaps, the t-test sets J=12, and the strongest evidence for
a structural break comes on November 1, 2007 when t(θ1)=−3.73.
This is when theWall Street Journal reported on the erratic behavior of
Bear Stearns' CEO Cayne.

We then separate the sample of CDS spreads into two parts using
this date. The estimation results for the subsample (April 3, 2006–

October 31, 2007) are reported in Table 6. The Bayes Factor ofM3 over
M2 is −611.

The data favor the CKLS–GARCH model over CKLS–GARCH–EPD.
The t-statistic of the EPD shape parameter α is 1.23, which is less than
2. That means the EPD shape parameter is not significant at 5%
significance level.

For comparison, we also estimate the model for the 3-month
Treasury bill rate obtained from the Federal Reserve Board. The
estimation results are listed in Table 7.

The Bayes Factor ofM3 overM2 is−221, favoring the CKLS–GARCH
model. The t-statistic of EPD shape parameter α is 1.89, which is again
not significant at the 5% level. These results are similar to those of CDS
spreads.

Hence, we conclude that during period of April 3, 2006–October
31, 2007, investors may have been correct to conclude that Bear
Stearns' swaps were not that much riskier than safe government debt.
Time was to prove them wrong.

7. Conclusion

We compare several models for credit default swap spreads using
a Markov chain Monte Carlo algorithm. The Bayes Factor is used as a

Table 4
Critical values for log Bayes Factor.

log10BF12 Evidence support M1 log10BF21

0 to 0.5 Weak −0.5 to 0
0.5 to 1 Substantial −1 to −0.5
1 to 2 Strong −2 to −1
N2 Decisive b−2

Notes: The values of log Bayes Factor can be negative. For example, if log 10BF12=0.5,
then log 10BF21=−0.5 since log 10BF21=log 10(1/BF12).

2 Potentially discontinuous price movements (jumps) can be accounted for by EPD
distribution assumption. Bali and Wu (2006) use exponential power distribution(EPD)
to capture the jumps in the interest rate. For more researches on jumps, one can refer
to Das (2002), Piazzesi (2005) and Mancini and Reno (2008).

Table 5
Posterior probability of the null hypothesis.

Evidence for
model 3

logBF3* Change in probability of the
null hypothesis(model 3)

From (%) To (%)

Decisive 2 75 86
50 67
3 5

Decisive 3110 75 100*
50 100
3 99

Decisive 975 75 100
50 100
3 98

Notes: The table reports the posterior probability of the null hypothesis after observing
the Bayes Factors with given prior probability. Posterior odds=Bayes Factor×Prior
odds. Posterior probability=odds/(1+odds). For example, the number marked by an
asterisk in Table 5 is calculated as following example. Posterior odds=Bayes
Factor×Prior odds=3110×75% /(1−75%)=9330. Posterior probability=odds/(1+
odds)=9330/(1+9330)=100%.

Table 6
Posterior means and t-statistics for the subsample of CDS spreads.

Models M1 M2 M3

a −0.4115
(−0.14)

6.8433
(1.21)

−7.2984
(−0.51)

b1 −1.1459
(−0.77)

0.7196
(3.01)

−0.6377
(−0.39)

c 1.2782
(8.60)

0.6369
(2.29)

0.5654
(1.15)

α0 0.4811
(1.77)

0.4798
(1.83)

0.4574
(1.58)

α1 – 0.7234
(4.06)

0.6975
(4.18)

β1 – 0.1743
(1.27)

0.1729
(1.30)

α 2
(–)

2
(–)

0.7414
(1.23)

B3* 2690 −611 –

Notes: We analyze the spread models over the period April 3, 2006 to October 31, 2007,
just prior to the structural break identified by the Zivot–Andrews test. B3 means the
value of Bayes Factor for M3 over model *. M1 is the CKLS model in Eq. (1). M2 is the
CKLS–GARCH model in Eq. (2). M3 is the CKLS–GARCH–EPD model in Eq. (4).
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model selection criterion. We find that the CKLS model with GARCH
volatility and exponential power distribution errors provides the best
fit. This establishes that level effects, volatility clustering and jumps
are statistically significant components of CDS spreads.

Our analysis also documents the calm before the storm. As late
as October 2007, when policy makers and industry participants
were assuring us that the subprime crisis was contained, Bear Stearns'
CDS spreads were evolving smoothly like most other investment
grade debt. While Bear Stearns' March 2008 collapse was ultimately
confined through a toxic asset ring-fence and a merger with a larger,
less leveraged institution, events would eventually spin out of control
just six months later.

Acknowledgment

We would like to thank Shiliang Li for assistance with the MCMC
algorithms.

Appendix A. Bayes Factor

Appendix A.1. Bayes Factor, posterior odds ratio and likelihood ratio

Given data Y, we want to compare models M1 and M2, which are
with parameter sets Θ1 and Θ2, respectively. The likelihood function for
model Mi is p(Yi|Θi,Mi).

The marginal likelihood function for model Mi, or the integrated
likelihood or the evidence for model Mi is:

p Y jMið Þ = ∫p Y ;Θi jMið ÞdΘi = ∫p Y jΘi;Mið Þp Θi jMið ÞdΘi:

The last equation is obtained by applying Bayes' theorem.
The posterior probability of model i given data Y, p(Mi|Y), can be

derived by Bayes' theorem,

p Mi jYð Þ = p Mi; Yð Þ
p Yð Þ =

p Y jMið Þp Mið Þ
p Yð Þ :

Hence, the posterior odds ratio for model M1 against model M2 is:

p M1 jYð Þ
p M2 jYð Þ =

p Y jM1ð Þ
p Y jM2ð Þ ×

p M1ð Þ
p M2ð Þ :

i.e.,

posterior odds ratio = Bayes Factor × prior odds ratio:

Solving for the Bayes Factor, you find

p Y jM1ð Þ
p Y jM2ð Þ =

p M1 jYð Þ
p M2 jYð Þ =

p M1ð Þ
p M2ð Þ :

The Bayes Factor differs from the posterior odds ratio by eliminating
the effect of priors.

In general, prior odds ratio is set to be 1. i.e., p(M1)=p(M2)=0.5. In
this case, Bayes Factor equals the posterior odds ratio. That's the reason
why sometimes these two terminologies can be inter-exchangeable.
Further, if these two models are assumed with no parameters, then
there will be no integration with respect to parameters. In this case,
the Bayes Factor is just the likelihood ratio.3

Appendix A.2. Model selection via Bayes Factor

In a model selection problem, we have to choose between M1 and
M2 on the basis of the data Y. In theory, Bayes Factor BF12 is given as
follows:

BF12 =
p Y jM1ð Þ
p Y jM2ð Þ ;

=
∫p Y ;Θ1 jM1ð ÞdΘ1

∫p Y ;Θ2 jM2ð ÞdΘ2

;

=
∫p Y jΘ1;M1ð Þp Θ1 jM1ð ÞdΘ1

∫p Y jΘ2;M2ð Þp Θ2 jM2ð ÞdΘ2

:

where p(Y|Mi) is the marginal likelihood for model i. p(Y|Θi,Mi) is the
likelihood for model i. And Θi is the parameter set in model i.

To calculate the Bayes Factor from the MCMC algorithms, we use
following method (Kass and Raftery (1995), p.779),

BF12 =
∫p Y jΘ1;M1ð Þp Θ1 jM1ð ÞdΘ1

∫p Y jΘ2;M2ð Þp Θ2 jM2ð ÞdΘ2

≈
1
n
∑n

j=1p Y jΘ jð Þ
1 ;M1

� �
1
n
∑n

j=1p Y jΘ jð Þ
2 ;M2

� �

where j is the jth draw of parameter Θ from the MCMC algorithms. n
is the number of the accepted draws in the MCMC algorithms.

The critical regions in Table 4 are from page 777 of Kass and
Raftery (1995). For example, if the value of log 10BF12 falls into the
interval of [0.5,1], we conclude that there is substantial evidence
supporting model 1.

Followed Goodman (1999), we quantify the evidence of Bayes
Factor by the “energy” of changing the prior probability of the null
hypothesis to a posterior probability of the null hypothesis.

For instance, if one is highly convinced of model 1 (75% prior
probability of the null hypothesis) before analyzing the data, a Bayes
Factor of 0.001 will convince that the null hypothesis is not true
(3% posterior probability of the null hypothesis). In other words, to
achieve 5% posterior probability of the null hypothesis with a Bayes
Factor of 0.001, one needs to have an 85% prior probability of the null
hypothesis.

A Bayes Factor of 2 is strong enough to move one from being 75%
sure of the null hypothesis to being 85% sure (see Table 5).
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