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Chapter 1

Martingales, Markov Chains and
the AR(1)

1.1 Martingales, Supermartingales and MDS

A discrete-time stochastic process fxtg is said to be a martingale if, for any t:

E (jxtj) <1 and E (xt+1jxt; xt�1; :::) = xt

that is, if the expectation of xt conditional on all past values is equal to the last observation.

Remark 1 A random walk (RW) is a martingale. To see why consider the RW:

xt+1 = xt + "t where "t iid
�
0; �2

�
then notice:

E (xt+1jxt; xt�1; :::) = Et (xt + "t)

= xt

A stochastic process fxtg is a supermartingale if

E (xt+1jxt; xt�1; :::) � xt

Proposition 2 A concave (convex) function of a martingale is a supermartingale (submartin-
gale)

Proof. Let fxtg be a martingale and f (�) a concave function. Then notice that Et (xt+1) = xt
and by Jensen�s inequality f concave implies:

Et (f (xt+1)) � f (Et (xt+1))

= f (xt)

A stochastich process fxtg is called a martingale di¤erence sequence (MDS) if its expectation
conditional on past values of another stochastic series is zero, that is:

E (xt+1jyt; yt�1; :::) = 0
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Remark 3 If fxtg is a martingale, then the stochastic process fytg de�ned as yt � xt+1 � xt
for every t is a MDS. To see this note:

Et (yt) = Et (xt+1 � xt)
= Et (xt+1)� xt
= 0

hence its name MDS.

A generalization of the Lingeberg-Levy CLT for can be obtained by replacing "iid" in e.g.
for MDS:

Theorem 4 (CLT for MDS) If fxtg is a martingale di¤erence process with �nite second mo-
ment E (xtx0t) = � then:

p
T �x =

1p
T

TX
t=1

xt
d�! N (0;�)

1.2 Markov chains

A stochastic process fxtg has the Markov property if Pr (xt+1jxt; xt�1; :::) = Pr (xt+1jxt). A
speci�c process satisfying the Markov property is aMarkov chain which in turn is a triplet of
objects

n
[ei]

S
i=1 ;P; �0

o
where:

� ei = (0; 0; :::0; 1; 0; :::0)
0 is a n � 1 vector with 1 as its ith element and zeros elsewhere.

That is, ei says that "the state of nature is i".

� P is a transition probability matrix with typical element Pij = Pr (xt+1 = ej jxt = ei) so
that

PS
j=1 Pij = 1. Notice that this implies xt+1 2 e � RS where e =(e1; e2; :::; eS).

� �0 is the probability of being at state i in period 0.

We easily make k-step forecasts of a Markov chain. For instance, if k = 1:

Pr (xt+2 = ej jxt = ei) =
SX
h=1

PihPhj = P
(2)
ij

ahere P (2)ij is the ij-th element of P2. Similarly, the k-step ahead forecast can be found as P (k)ij :
Notice that if, for some ij we have Pij = 1 then state i is an absorbing sate.

De�nition 5 A Markov chain is said to be irreducible if it is possible to get to any state from
any state

De�nition 6 A state i is aperiodic if 9 n such that 8 n0 � n: Pr (xn0 = ei j x0 = ei) > 0, that
is, if returns to state i can occur at irregular times.

De�nition 7 A Markov chain is said to be aperiodic if every state is aperiodic.

De�nition 8 State i is positive recurrent if the mean recurrence time at state i is �nite, i.e.
if

Mi = E [Ti = inf fn � 1 : xn = ei j x0 = eig] <1

De�nition 9 A state i is said to be ergodic if it is aperiodic and positive recurrent.

De�nition 10 An irreducible Markov chain is ergodic if every state is ergodic.
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1.2.1 Unconditional probabilities and stationary distribution

The unconditional probability of a Markov process are determined by:

�t = Pr (xt) = �
0
0Pt ) �t+1 = �

0
tP

since �0tP =(�00Pt)P =�00Pt+1. An unconditional distribution is said to be time-invariant or
stationary if

� = �0P
�0 (I � P) = 0

(I � P0)� = 0

that is, the stationary distribution � can be found as the eigenvector (normalized to satisfyPS
j=1 Pij = 1) associated with the unit eigenvalue of P0. Notice that P stochastic ) 9 at least

one unit eigenvalue. Furthermore, the stationary distribution may not be unique because P may
have a repeated unit eigenvalue.

1.2.2 Asymptotic stationarity of Markov chains

When do unconditional distributions �t approach a stationary distribution? That is, does the
following condition hold:

lim
t!1

�t = �1

where (I � P0)�1 = 0? And if it does hold, does this depend upon the initial distribution �0?.
If the condition holds regardless of the initial distribution then the process is asymptotically
stationary with a unique invariant distribution. Markov chains whose matrix P has all nonzero
elements satisfy this condition (Theorem 1 LS, pp33).

1.3 The AR(1): Representation and properties

A speci�c example of a Markov process is the AR(1). Let "t � N(0; 1) iid shock. Then zt
follows an AR(1) process if we can write it as:

zt = (1� ')� + 'zt�1 + �"t

this is the recursive formulation of the AR(1) process because it recurs in the same form at eact
t. To go from the recursive formulation, to the in�nite order MA formulation, �rst replace zt�1
in the expression for zt :

zt = (1� ')� + ' [(1� ')� + 'zt�2 + �"t�1] + �"t

next, repeat this recursive replacing and after k + 1 times one obtains:

zt = (1� ')�
k�1X
j=0

'j + 'kzt�k + �
k�1X
j=0

'j"t�j
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which can be rearranged as follows:

zt = �
k�1X
j=0

'j � '�
k�1X
j=0

'j + 'kzt�k + �
k�1X
j=0

'j"t�j

= �

24'0 + k�1X
j=0

'j+1

35� '� k�1X
j=0

'j + 'kzt�k + �
k�1X
j=0

'j"t�j

= � + �
k�1X
j=0

'j+1 � �
k�1X
j=0

'j+1 + 'kzt�k + �
k�1X
j=0

'j"t�j

= � + 'kzt�k + �
k�1X
j=0

'j"t�j

and if we let k !1 one gets:

zt = � + �
1X
j=0

'j"t�j

that is, the in�nite-order MA representation of the AR(1) process, saying that the AR(1) process
can be written as an in�nite sum of past shocks. If j'j = 1 we have a unit root or say that zt
has in�nite memory.

1.4 Conditional Distribution

The distribution of zt conditional on knowing zt�1: Recall that a linear function of a normal RV
is itself a normal RV. Since at t the quantity zt�1 is known, it can be treated as a constant and
therefore zt, conditional on zt�1 is just a normal RV with its mean shifted by (1�')�+'zt�1:To
obtain the conditional mean and variance of zt �rst note that the variance remains unchanged
as �2 while the mean:

Et�1 [zt] = Et�1 [(1� ')� + 'zt�1 + �"t]
= Et�1 [(1� ')� + 'zt�1] + Et�1 [�"t]
= (1� ')� + 'zt�1

so the conditional (on t� 1) distribution of zt :

zt �t�1 N((1� ')� + 'zt�1; �2)

1.5 Unconditional Distribution

The distribution of zt presuming no knowledge of zt�1; zt�2:::This is equivalent to the distribu-
tion of zt conditional on knowing zt�k for a very large k, that is, the distribution of zt+k for a
very large k with information on t: This is why the inconditional distribution is also called the
long-run distribution. To obtain this, we use the in�nite order MA representation:

Ezt = E

24� + � 1X
j=0

'j"t�j

35
= � + E

24� 1X
j=0

'j"t�j

35
= �
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since j'j = 1 and each "t�j � N(0; 1), while the unconditional variance is:

V ar [zt] = V ar

24� + � 1X
j=0

'j"t�j

35
= V ar

24� 1X
j=0

'j"t�j

35
=

0@�2 1X
j=0

'2j

1AV ar ["t�j ]
=

�2

1� '2

note that in the last step the following expansion is used:

1X
j=0

'2j =

� 1
'2�1 ('

1 � 1) if :' 2 f�1; 1g
1 if ' 2 f�1; 1g

so that the unconditional distribution of zt is:

zt � N
�
�;

�2

1� '2

�
Ntaurally, as long as 0 < j'j < 1 the unconditional variance is greater than the conditional
variance.
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Chapter 2

Vector autregressions

2.1 The VAR(p) as a VAR(1)

The �rst task is to show that any general VAR(p) process can be represented as a VAR(1).
Consider the unrestricted VAR(p):

xt = �+�1xt�1 +�2xt�2 + :::+�pxt�p + "t

where x is a (n� 1) vector of endogenous variables in the model and �j is a (n� n) matrix of
coe¢ cients. That is, the �rst equation of this system is of the form:

x1t = �11+�
(1)
11 x1;t�1 + :::+ �

(p)
11 x1;t�p + :::+ �

(1)
12 x2;t�1 + :::

+�
(p)
12 x2;t�p + :::+ �

(1)
1n xn;t�1 + :::+ �

(p)
1n xn;t�p + "1t

Next, de�ne:

Xt �

2666664
xt
xt�1
xt�2
...

xt�p+1

3777775 ; F �

2666664
�1 �2 ::: �p�1 �p
In 0 ::: 0 0
0 In ::: 0 0
...

... :::
...

...
0 0 ::: In 0

3777775 ; vt �

2666664
"t
0
...
0
0

3777775 ; � �

2666664
�
0
...
0
0

3777775
and notice that this system can be written as:

xt = �+�1xt�1 +�2xt�2 + :::+�pxt�p + "t

xt�1 = xt�1
...

xt�p+1 = xt�p+1

or simply:
Xt = �+FXt�1 + vt

which is the so-called companion form of the VAR(p). That is, the VAR(p) expressed as a
VAR(1). The usual stability conditions required for estimating the VAR(p) now apply to the
"companion" matrix F . That is, stationarity requires that all the eigenvalues of the F matrix
lie inside the unit circle. Because any VAR(p) can be expressed as a VAR(1) in what follows
only a VAR(1) representation is considered.
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2.2 The VAR(1): from a structural model to VMA repre-
sentations

This is done in two steps. First, from the structural model obtain the SVAR and reduced
form VAR(1) representations. Then, from the SVAR and the reduced form VAR(1) obtain the
respective VMA representations. Consider the "structural" model:

y1t = �1 + �
(0)
12 y2t + �

(1)
11 y1;t�1 + �

(1)
12 y2;t�1 + �1t (2.1)

y2t = �2 + �
(0)
21 y1t + �

(1)
21 y1;t�1 + �

(1)
22 y2;t�1 + �2t

2.2.1 From the structural model to the VAR(1)

The structural model in (2:1) can be solved for and rearranged to yield y1t and y2t only as
functions of lagged endogenous variables. The easiest way to do this is by using matrix algebra.
First, re-write (2.1) as:"

1 ��(0)12
��(0)21 1

# �
y1t
y2t

�
=

�
�1
�2

�
+

"
�
(1)
11 �

(1)
12

�
(1)
21 �

(1)
22

# �
y1;t�1
y2;t�1

�
+

�
�1t
�2t

�
or, de�ning Xt =

�
y1t y2t

�0
simply as:

�0Xt = �+�1Xt�1 + �t (2.2)

Notice that from (2.2) the so-called SVAR representation can be obtained:

� (L)Xt = �+ �t (2.3)

where � (L) = �0 � �1L: Now, if �0 is non-singular, ��10 exists and the reduced form VAR(1)
can be obtained from (2.2) as:

Xt = �+�1Xt�1 + "t (2.4)

with:

� = ��10 � =

264 1

1��(0)12 �
(0)
21

�
(0)
12

1��(0)12 �
(0)
21

�
(0)
21

1��(0)12 �
(0)
21

1

1��(0)12 �
(0)
21

375� �1
�2

�
=

�
�1
�2

�
,

�1 = ��10 �1 =

264 �
(1)
11 +�

(0)
12 �

(1)
21

1��(0)12 �
(0)
21

�
(1)
12 +�

(0)
12 �

(1)
22

1��(0)12 �
(0)
21

�
(1)
21 +�

(0)
21 �

(1)
11

1��(0)12 �
(0)
21

�
(1)
22 +�

(0)
21 �

(1)
21

1��(0)12 �
(0)
21

375 = � �11 �12
�21 �22

�

and : "t = �
�1
0 �t =

264 1

1��(0)12 �
(0)
21

�
(0)
12

1��(0)12 �
(0)
21

�
(0)
21

1��(0)12 �
(0)
21

1

1��(0)12 �
(0)
21

375� �1t
�2t

�
=

�
"1t
"2t

�

2.2.2 From the VAR(1) to the VMA

Now, take the reduced form VAR(1):

Xt = �+�1Xt�1 + "t

and notice that:

Xt ��1Xt�1 = � + "t

�(L)Xt = � + "t
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where in this case �(L) = I � �1L: If all the eigenvalues of � lie inside the unit circle, the
following can be de�ned:

� = [� (L)]
�1
�

C (L) = [� (L)]
�1

and we arrive at the VMA representation for the reduced form VAR:

Xt = �+C (L) "t (2.5)

Naturally, a VMA representation also exists for the SVAR model (2.3) as:

Xt = �+� (L) �t

where � (L) = [� (L)]�1. At this point the following can be established:

"t = �
�1
0 �t = �0�t

with:

�0 = �
�1
0 =

264 1

1��(0)12 �
(0)
21

�
(0)
12

1��(0)12 �
(0)
21

�
(0)
21

1��(0)12 �
(0)
21

1

1��(0)12 �
(0)
21

375 = " (0)11 
(0)
12


(0)
21 

(0)
22

#

and:
C (L) = [� (L)]

�1
=
�
��10 �1 (L)

��1
= ��11 (L)�0 = � (L)�

�1
0 (2.6)

Notice also that the mean of both VMA representations is the same, �, since:

[� (L)]
�1
� =

�
I � ��10 �1L

��1
�

=
�
I � ��10 �1L

��1
��10 �

= (�0 � �1L)�1 �
= [� (L)]

�1
�

2.3 Identi�cation

Recall that from (2.4):
"t = �0�t (2.7)

which gives rise to the system of equations:

"1t = 
(0)
12 �2t + 

(0)
11 �1t

"2t = 
(0)
22 �2t + 

(0)
21 �1t

Next suppose that we want to study the e¤ects of �1t = 1 and �2t = 0: Can we carry
out such an experiment? this is equivalent to asking: does �t = [1 0]

0 result in a unique "t
vector? Try and solve the system above. From the �rst equation we have that "1t = 

(0)
11 , while

from the second equation we have that "2t = 
(0)
21 . But 

(0)
21 = �

(0)
21 

(0)
11 which in turn implies

that �(0)21 "1t = "2t. We then have two unknowns but only one linearly independent equation;
the system is underidenti�ed. In fact, the number of restrictions that we need to identify the
structural shocks can be obtained as follows. From (2.7) we know that:

V ("t) = �" = �0���00
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Now, we have estimates for �" which, in our current example is a (2� 2) matrix. This gives
us the RHS but not �0 or V(�t) separately. Even if we assume that V(�t) = �� = I; so that the
structural shocks are orthogonal to each other, �" = �0�00 represents only (n� (n+ 1))=2 lin-
early independent restrictions because of the symmetry of �". We need exactly (n� (n� 1))=2
additional restrictions, in this case, (n� (n� 1))=2 = 1. Two popular ways around this problem
are to impose either short run or long run restrictions.

2.3.1 Short run identifying restrictions

Take the �rst approach. If we argue from the structural model that shocks �2t contemporaneously
a¤ect y2t only, but shocks �1t contemporaneously a¤ect both y1t and y2t then we are saying that
�
(0)
12 = 0. Thus, we are imposing zero-restrictions directly on the �0 matrix:

�0 =

�
1 0


(0)
21 1

�
and now from the same observation of �1t = 1 and �2t = 0 we can solve for"1t = 1 and "2t = 

(0)
21 .

This is the so-called triangular identi�cation strategy originally proposed by Sims(1980) which
obviously implies a particular ordering for the system. With this identi�cation at hand, we can
now study the e¤ects of structural shocks �t using the VMA representation (2.5)

Xt = �+C (L) "t

= �+C (L) �0�t

so that:

Xt = �+C (L)

�
1 0
20 1

�
�t

= �+

" P1
j=0 c

(j)
11 L

j 0

20

�P1
j=0 c

(j)
21 L

j
� P1

j=0 c
(j)
22 L

j

#
�t

where c(0)ik = 1 8i; k: Since c
(j)
ik are known from "inverting" the estimated reduced form VAR, we

can now study the e¤ects of a structural shock.

2.3.2 Long run identifying restrictions

The second popular approach is to impose long-run restrictions on the system. Notice that the
matrix of long run multipliers is given by � (L) evaluated at L = 1, that is:

� (1) = �0 + �1 + �2 + :::

=

"

(0)
11 

(0)
12


(0)
21 

(0)
22

#
+

"

(1)
11 

(1)
12


(1)
21 

(1)
22

#
+

"

(2)
11 

(2)
12


(2)
21 

(2)
22

#
+ :::

=

" P1
j=0 

(j)
11 L

j
P1

j=0 
(j)
12 L

jP1
j=0 

(j)
21 L

j
P1

j=1 
(j)
22 L

j

#

Suppose, for instance, that shocks �2t are deemed to have only temporary or short run e¤ects,
while �1t are thought to have permanent or long run e¤ects. That is:

� (1) =

�
1 0
1 0

�
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then we can use the equivalence established in (2.6) to write:

� (1) = C (1) �0�
1 0
1 0

�
=

�
C11 C12
C21 C22

�"

(0)
11 

(0)
12


(0)
21 

(0)
22

#

where Cik =
P1

j=0 c
(j)
ik : The above produces, in principle, a system of four equations on four

unknowns because the c(j)ik are known from estimation. However, this results in only one linearly
independent restriction:


(0)
11 =

C22
C11C22 � C21C12

= �C12
C22


(0)
12 = 

(0)
21 = �

C12
C22


(0)
22

that is, the long-run neutrality assumption of �2t indirectly restricts the impact multiplier matrix
to be:

�0 =

"
C22

C11C22�C21C12
C12

C21C12�C11C22
C22

C11C22�C21C12
C12

C21C12�C11C22

#
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Chapter 3

State Space Models

3.1 State Space Representation

The idea is to express a dynamical system in a state space form. Suppose we have a state vector
�. We cannot observe � but we know can be expressed as:

�t
(r�1)

= �t
(r�1)

+ Ft
(r�r)

�t�1
(r�1)

+ Qt
(r�r)

�t
(r�1)

(SS1)

this is sometimes called the state transition equation. On the other hand, we do observe a vector
yt which we know is related to the unobserved state in the form:

yt
(n�1)

= Ht
(n�r)

�t
(r�1)

+ At
(n�k)

zt
(k�1)

+ Rt
(n�n)

"t
(n�1)

(SS2)

this is called the measurement equation and (SS1)-(SS2) is called the state space (SS) represen-
tation of the system under study. In this general form, the matrices Ft;Ht;At;Qt;Rt may be
functions of the data, structural parameters, or constants. The system above has an inherent
identi�cation issue: if we replace �t in the measurement equation, we obtain a mixture of errors
�t and "t which of course we cannot identify separately. The following assumptions are required
to attempt identi�cation:

A1. The number of shocks in the system is � the number of observables.

A2. �t; "t � N (0; I) and E [�s"t] = 0 8 s; t.

Example 11 Consider the following unobserved component model. Suppose that two �rms pro-
duce certain good and we cannot observe their individual output but only the total industry
output:

xt = x1t + x2t

Furthermore suppose that:

x1t = � + x1;t�1 + "1t with "1t � N
�
0; �21

�
x2t = �1x2;t�1 + �2x2;t�2 + "2t with "2t � N

�
0; �22

�
and: E ["1t; "2t] = 0 8 t

then xt is made up of a unit root with drift component and a (AR(2)) stationary component.
To espress this system as (SS1)-(SS2) let yt = xt and �t = [x1;t x2;t x2;t�1]

0. Then the
measurement equation becomes:

yt = [1 1 0]�t
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while the state transition equation is:

�t =

24 x1;t
x2;t
x2;t�1

35 =
24 �
0
0

35+
24 1 0 0
0 �1 �2
0 1 0

3524 x1;t�1
x2;t�1
x2;t�2

35+
24 �21 0 0
0 �21 0
0 0 0

35� "1;t
"2;t

�

3.2 The Kalman �lter

The Kalman �lter is a recursion that allows us to obtain the best forecast for the latent variable
�t given the observation of yt. Let:

	t � information set at t

�tjt�1 � E [�tj	t�1]
�tjt � E [�tj	t]

Ptjt�1 � E
h�
�t ��tjt�1

� �
�t ��tjt�1

�0i
Ptjt � E

h�
�t ��tjt

� �
�t ��tjt

�0i
where Ptjt�1 and Ptjt are covariance matrices of �tjt�1 and �tjt respectively. Next de�ne the
observables:

ytjt�1 � E [ytj	t�1] ("best forecast")
�tjt�1 � yt � ytjt�1 (forecast error)

Ftjt�1 � E
h
�2tjt�1

i
Finally de�ne �tjt as the "�letered" estimate of �t which uses information up to and in-

cluding t and �tjT as the "smoothed" estimate which includes information in the entire sample
(i.e., including information available only in periods s > t). If the elements of the matrices
F;H;A;Q;R are known, the Kalman �lter recursion is all that is needed to estimate the state
vector. Otherwise they can be estimated as described in the next section. The recursion com-
prises the following steps:

1. Initialize the �lter with an initial value for �1j0 and P1j0:

2. Prediction step: use the prediction equation:

�tjt�1 = �+ F�t�1jt�1
Ptjt�1 = FPt�1jt�1F0 +QQ0

ytjt�1 = H�tjt�1 + Azt

3. Observe yt and obtain the forecast errors and covariance matrix:

�tjt�1 = yt � ytjt�1 = yt �H�tjt�1 � Atzt

Ftjt�1 = E
h
�2tjt�1

i
= HPtjt�1H0 + RR0

4. Update step: use the updating equations:

�tjt = �tjt�1 +

Kalman gainz }| {
Ptjt�1H0F�1tjt�1�tjt�1 = �tjt�1 +Kt�tjt�1

Ptjt = Ptjt�1 �KtHPtjt�1

13



5. Repeat steps 2-5.

Step 1 is crucial for the recurssion; if the eigenvalues of the matrix F are known to be all inside
the unit circle, then �t is a stationary Markov process and as such has an ergodic distribution
with constant mean and variance. These unconditional �rst moments (based on the assumptions
about �t) can be used as starting values:

E [�t+1] = �+ FE [�t]
) E [�t] = (I � F)�1 �

since �t is covariance stationary and therefore E [�t+1] = E [�t] : Likewise:

E
�
�t+1�

0
t+1

�
= FE [�t�0t]F0 + E [�t�0t]
) � = F�F0 +QQ0

a discrete Lyapunov equation which can be solved for �. If, on the other hand, some of the
eigenvalues of the matrix F are known to be on the unit circle, then �t is non-stationary and
several options are available (see section 3 in this essay). In step four the Kalman gain is obtained
as the optimal stepsize adjustment to be made in �tjt once yt is available and we realize the
magnitude of our mistake �tjt�1.
An additional step is to obtain the "smoothed" estimates of the state vector �tjT ; PtjT .

After performing the recursion above, we obtain and store the sequences
�
�tjt; Ptjt

	T
t=1

and�
�t+1jt; Pt+1jt

	T�1
t=1

. The smoothed estimate for the �nal date is just the last element of�
�tjt; Ptjt

	T
t=1

: Next, generate and store
n
Jt = PtjtF0P�1t+1jt

oT
t=1

and then use the stored se-

quences to calculate:

�tjT = �tjt + Jt
�
�t+1jT � F�tjt � �

�
PtjT = Ptjt + Jt

�
Pt+1jT � Pt+1jt

�
J 0t

for t = T � 1; T � 2; :::

3.3 Predictive decomposition of the likelihood

At this point we assume that

ytj	t�1 � N
�
ytjt�1;Ftjt�1

�
so that we can write the joint density of observing (y1; :::; yT ) as:

Pr (y1; :::;yT ) =
TY
i=1

Pr (ytj	t�1)Pr (y0)

and then the log-likelihood may be written:

L = �1
2

TX
t=1

log
�
2�jFtjt�1j

�
� 1
2

TX
t=1

h
�0tjt�1F�1tjt�1�tjt�1

i
(3.1)

so the Kalman �lter is going to give us �tjt�1 and Ftjt�1. Naturally, maximization of (3.1) is
by numerical methods and therefore we need initial guesses for the elements of the matrices
F;H;A;Q;R.
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